
Research software engineering for HPC
Radovan Bast (fosstodon.org/@radovan)

UiT The Arctic University of Norway

Text: CC-BY 4.0

1 / 50

https://fosstodon.org/@radovan

- Theoretical chemist turned research
software engineer.

- I write research software and teach
programming to researchers and lead the
CodeRe�nery project.

- I lead the high-performance computing
group and the research software
engineering group at UiT.

About me

2 / 50

https://coderefinery.org/
https://hpc.uit.no/
https://research-software.uit.no/

- Script to convert data from
one format to another

- Script to read data and
visualize it

- Program that generates data

- Analysis script

- Set of scripts that form an
analysis pipeline

- Code that is compiled

- Code that is dynamically
interpreted and not compiled

- Web app

- ...

What is "research software"?

3 / 50

You don't need to be a
"proper software engineer"

to produce research software
We consider any code, script, notebook, or �le, regardless of size, as

"research software" if it is needed to generate, visualize, or reproduce
data/results as part of a publication.

4 / 50

- Version control
- Collaboration using Git
- Testing
- Documentation
- Notebooks
- Modular code development
- Reproducible research
- Software licensing
- How to share and publish code
- How to organize a code project
- ...

Next workshop September 19-21
and 26-28, 2023, register here:
https://codere�nery.github.io/2023-
09-19-workshop/

Lessons and recordings:
https://codere�nery.org/lessons/

CodeRe�nery
Typical format: 6 half-days, twice per year, online, free, live-streamed,
recorded, archived asynchronous Q&A in collaborative document

5 / 50

https://coderefinery.github.io/2023-09-19-workshop/
https://coderefinery.org/lessons/
https://coderefinery.org/workshops/upcoming/

- Version control

- Documentation

- Reproducibility and containers

- Building code with CMake
(HPC-speci�c part)

- Automated testing

- Sharing and reusing
[Midjourney, CC-BY-NC 4.0]

6 most important RSE topics?

6 / 50

Exercises
We will revisit these during the exercise session:

- Version control and documentation

- Reproducibility and containers

- Building code with CMake

- Sharing and reusing

7 / 50

https://coderefinery.github.io/research-software-engineering/
https://coderefinery.github.io/research-software-engineering/version-control-documentation/
https://coderefinery.github.io/research-software-engineering/containers/
https://coderefinery.github.io/research-software-engineering/cmake/
https://coderefinery.github.io/research-software-engineering/sharing-reusing/

Version control
📜
Inspiration and where to �nd more:

- Introduction to version control with Git
- Collaborative distributed version control
- Collaborating and sharing using GitHub without command line

8 / 50

https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-collaborative/
https://coderefinery.github.io/github-without-command-line/

Motivation: Version control is an answer to these questions:

"It broke ... hopefully I have a working version somewhere?"

"Can you please send me the latest version?"

"Where is the latest version?"

"Which version are you using?"

"Which version have the authors used in the paper I am
trying to reproduce?"

"Found a bug! Since when was it there?"

"I am sure it used to work. When did it change?"
9 / 50

Commits: keeping track of changes (example repository)

10 / 50

https://github.com/coderefinery/git-intro/commits/main/

- Roll-back: you can always go
back to a previous version and
compare

- Branching and merging: work
on di�erent ideas at the same
time

- Collaboration: review,
compare, share, discuss

- Example network graph

[Source: https://twitter.com/jay_gee/status/703360688618536960]

Features: roll-back, branching, merging, collaboration

11 / 50

https://github.com/coderefinery/git-intro/network
https://twitter.com/jay_gee/status/703360688618536960

Reproducibility (browse this example online)

12 / 50

https://github.com/networkx/networkx/blame/main/networkx/algorithms/boundary.py

Talking about code

Clone the code, go to the �le "src/util.rs", and search for
"time_iso8601". Oh! But make sure you use the version from
August 2023.

Or I can send you a permalink

[https://github.com/NordicHPC/sonar/blob/75daafc86582feb06299d6a47c82112f39888152/src/util.rs#L40-L44]

13 / 50

https://github.com/NordicHPC/sonar/blob/75daafc86582feb06299d6a47c82112f39888152/src/util.rs#L40-L44
https://github.com/NordicHPC/sonar/blob/75daafc86582feb06299d6a47c82112f39888152/src/util.rs#L40-L44

Collaboration through branches or forks

14 / 50

Code review

- Changes are reviewed before they are merged

- Main motivation for code review is the collaborative learning

- Also: better code quality

15 / 50

Where to start? Simple personal
projects

- Start with just the main branch
- Later use branches for

un�nished/untested ideas
- Use tags to mark important

milestones (phd-thesis-submitted,
published-manuscript)

- Better too many commits than too
few

- Better imperfect commits than no
commits

Projects with few persons

- Write-protect the main branch
- New idea/feature: new branch
- Use code review: changes are

reviewed and discussed before they
are merged

- Install and con�gure Git

- In 3 commands from nothing
to �rst commit:

$ git init
$ git add myscript.py
$ git commit

- Go through CodeRe�nery
lessons (Git intro and
Collaborative Git)

16 / 50

https://coderefinery.github.io/installation/
https://coderefinery.org/
https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-collaborative/

Documentation
💗✉ to your future self
Inspiration and where to �nd more:

- Documentation lesson material by CodeRe�nery
- Talk material "Documenting code" by S. Wittke

17 / 50

https://coderefinery.github.io/documentation/
https://coderefinery.org/
https://github.com/samumantha/documentation_example

Why? 💗✉ to your future self
- You will probably use your code in the future and may forget

details.

- You may want others to use your code (almost impossible
without documentation).

- You may want others to contribute to the code.

- Time is limited - let the documentation answer FAQs.

18 / 50

Checklist
- Purpose
- Installation instructions
- Dependencies and their versions or version ranges
- Copy-paste-able example to get started
- Tutorials covering key functionality
- Reference documentation (e.g. API) covering all functionality
- How do you want to be asked questions (mailing list or forum or chat or issue

tracker)
- Possibly a FAQ section
- Authors
- Recommended citation
- License
- Contribution guide

See also:

- JOSS review checklist

19 / 50

https://joss.readthedocs.io/en/latest/review_checklist.html

Not very useful (more commentary than comment):

now we check if temperature is larger than -50
if temperature > -50:
 print("ERROR: temperature is too low")

More useful (explaining why):

we regard temperatures below -50 degrees as measurement errors
if temperature > -50:
 print("ERROR: temperature is too low")

Keeping zombie code "just in case" (rather use version control):

do not run this code!
if temperature > 0:
print("It is warm")

Emulating version control:

somebody: threshold changed from 0 to 15 on August 5, 2013
if temperature > 15:
 print("It is warm")

20 / 50

- Useful for those
who want/need
to understand
and modify the
code

- Docstrings can
be useful both
for developers
and users of a
function

def kelvin_to_celsius(temp_k: float) -> float:
 """
 Converts temperature in Kelvin to Celsius.

 Parameters

 temp_k : float
 temperature in Kelvin

 Returns

 temp_c : float
 temperature in Celsius
 """
 assert temp_k >= 0.0, "ERROR: negative T_K"

 temp_c = temp_k - 273.15

 return temp_c

print(kelvin_to_celsius.__doc__)

In-code documentation

21 / 50

Project title

Purpose

Motivation (why the project exists)
and basics.

Installation

How to setup. Dependencies and their
versions.

Getting started

Copy-pastable quick start example.
Tutorials covering key functionality.

Usage reference

...

Recommended citation

...

License

...

Often a README is enough (�rst impression!)

22 / 50

When projects grow out of a README
- Write documentation in Markdown (.md) or reStructuredText

(.rst) or R Markdown (.Rmd)

- In the same repository as the code -> version control and
reproducibility

- Use one of many tools to build HTML out of md/rst/Rmd: Sphinx,
Zola, Jekyll, Hugo, RStudio, knitr, bookdown, blogdown, ...

- Deploy the generated HTML to GitHub Pages or GitLab Pages

Examples
- All CodeRe�nery lessons
- https://github.com/networkx/networkx

23 / 50

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/ReStructuredText
https://rmarkdown.rstudio.com/
https://cicero.xyz/v3/remark/0.14.0/github.com/coderefinery/research-software-engineering/main/presentation.md/sphinx-doc.org
https://www.getzola.org/
https://jekyllrb.com/
https://gohugo.io/
https://yihui.org/knitr/
https://bookdown.org/
https://bookdown.org/yihui/blogdown/
https://pages.github.com/
https://docs.gitlab.com/ee/user/project/pages/
https://coderefinery.org/lessons/from-coderefinery/
https://github.com/networkx/networkx

Reproducibility and containers
📦
Inspiration and where to �nd more:

- Reproducible research
- The Turing Way: Guide for Reproducible Research
- Ten simple rules for writing Docker�les for reproducible data science
- Computing environment reproducibility

24 / 50

https://coderefinery.github.io/reproducible-research/
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html
https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.5281/zenodo.8089471

[Heidi Seibold, CC-BY 4.0, https://twitter.com/HeidiBaya/status/1579385587865649153]
25 / 50

https://twitter.com/HeidiBaya/status/1579385587865649153

It all starts with a good directory
structure ...
project_name/
├── README.md # overview of the project

├── data/ # data files used in the project

│ ├── README.md # describes where data came from

│ └── sub-folder/ # may contain subdirectories

├── processed_data/ # intermediate files from the analysis

├── manuscript/ # manuscript describing the results

├── results/ # results of the analysis (data, tables, figures)

├── src/ # contains all code in the project

│ ├── LICENSE # license for your code

│ ├── requirements.txt # software requirements and dependencies

│ └── ...

└── doc/ # documentation for your project

 ├── index.rst

 └── ...

Lottery factor: If you win the lottery and leave research
today, will others be able to continue your work? 26 / 50

"it works on my machine 🤷"

27 / 50

Conda, Anaconda, pip, virtualenv,
Pipenv, pyenv, Poetry, rye,
requirements.txt,
environment.yml, renv, ...

- De�ne dependencies
- Communicate dependencies
- Install these dependencies
- Record the versions
- Isolate environments
- Provide tools and services to share

packages

Isolated environments help you
make sure that you know your
dependencies!

[Midjourney, CC-BY-NC 4.0]

Kitchen analogy

- Software <-> recipe
- Data <-> ingredients
- Libraries <-> cooking books/blogs

Recording dependencies

28 / 50

[From reddit]

Kitchen analogy

- Our codes/scripts <-> cooking
recipes

- Container de�nition �les <->
like a blueprint to build a
kitchen with all utensils in
which the recipe can be
prepared.

- Container images <-> example
kitchens

- Containers <-> identical
factory-built mobile food truck
kitchens

29 / 50

https://www.reddit.com/r/ProgrammerHumor/comments/cw58z7/it_works_on_my_machine/

Container: "operating system inside a �le"

Example SingularityCE/Apptainer de�nition �le ("recipe"):

Bootstrap: docker
From: ubuntu:20.04

%post
 export DEBIAN_FRONTEND=noninteractive
 apt-get update -y

 apt install -y git build-essential pkg-config
 apt install -y libz-dev libbz2-dev liblzma-dev
 apt install -y libcurl4-openssl-dev libssl-dev libgsl-dev

 git clone https://github.com/someuser/sometool.git
 cd sometool

 make

%runscript
 export PATH=/sometool/bin:$PATH

 $@

Popular implementations: Docker, SingularityCE (popular on HPC)
Apptainer (popular on HPC, fork of Singularity), podman

30 / 50

https://sylabs.io/docs/
https://apptainer.org/
https://www.docker.com/
https://sylabs.io/docs/
https://apptainer.org/
https://podman.io/

Container use cases

- Create a time capsule and share it on Zenodo (or similar)

- Document and communicate dependencies

- Have a common platform to test the code

- Easier to move it to other Linux computers/clusters

- Forward "travel in time": if cluster has too old software

- Backwards "travel in time": if software is no longer maintained
and does not build on laptop/cluster

Typical critique points

- "not the proper way to build"
- performance
- composability

31 / 50

https://zenodo.org/

We need a way to record and
communicate computational steps

- README (steps written out "in
words")

- Scripts (typically shell scripts)

- Notebooks (Jupyter or R Markdown)

- Work�ows (Snakemake, doit, ...) [Midjourney, CC-BY-NC 4.0]

Recording computational steps

32 / 50

Building code with CMake
🧱
Inspiration and where to �nd more:

- CMake introduction and hands-on workshop

33 / 50

https://coderefinery.github.io/cmake-workshop/

Why is Make not enough?
- Make only knows about targets and dependencies
- Make does not know which compiler (options) we want and which environment

we are on
- We need to tell Make what depends on what (Fortran 90+ projects)
- Modular projects become clunky to maintain

What is CMake?
- Cross-platform (this is the C in CMake, not the C language)
- Open-source
- Manages the build process in a compiler-independent manner
- Provides a family of tools and a domain-speci�c language

34 / 50

make

Makefile

CMakeLists.txt

cmake

libexample.so

b.f90
a.cpp

x.f90
y.c

z.cpp
 Green Hills MULTI
* Unix Makefiles
 Ninja
 Ninja Multi-Config
 Watcom WMake
 CodeBlocks - Ninja
 CodeBlocks - Unix Makefiles
 CodeLite - Ninja
 CodeLite - Unix Makefiles
 Eclipse CDT4 - Ninja
 Eclipse CDT4 - Unix Makefiles
 Kate - Ninja
 Kate - Unix Makefiles
 Sublime Text 2 - Ninja
 Sublime Text 2 - Unix Makefiles

CMake is not a build system

It generates �les for build systems.

35 / 50

How do CMakeLists.txt �les look?

cmake_minimum_required(VERSION 3.14)

project(example LANGUAGES CXX)

add_executable(hello hello.cpp)

add_library(greeting
 SHARED
 greeting.cpp
 greeting.hpp
)

find_package(MPI REQUIRED COMPONENTS CXX)

target_link_libraries(hello
 PRIVATE
 greeting
 MPI::MPI_CXX
)

36 / 50

Why CMake?

- Excellent support for Fortran, C, C++, and mixed-language
projects.

- Separation of source and build path: Out-of-source compilation.

- Really cross-platform (Linux, Mac, Windows, AIX, iOS, Android).

- Modular code development: Excellent support for multi-
component and multi-library projects.

- Tools: Testing and packaging framework with CTest and CPack.

- Good at discovering environment, libraries, and packages.

- Non-intrusive: All you need is a CMakeLists.txt. CMake won't
mind if other build tools are there as well in the project.

37 / 50

Automated testing
🤖 🚨 ✅
Inspiration and where to �nd more:

- Software testing lesson material

38 / 50

https://coderefinery.github.io/testing/

Technical possibilities
Any programming language has tools/libraries to perform:

- Unit tests: test a function or a module and compare function
result to a reference

- End-to-end test: run the whole code and compare result to a
reference

- Coverage analysis: Give overview of which parts of the code are
tested

- The test (set) can be run automatically on GitHub Actions or
GitLab CI after every Git commit

39 / 50

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/

Motivation
- Less scary to change code: tests will tell you whether something

broke

- Unit tests can guide towards better structured code: complicated
code is more di�cult to test

- Easier for new people to join

- Easier for somebody to revive an old code

40 / 50

Where to start
- A simple script or notebook probably does not need an automated test

If you have nothing yet

- Start with an end-to-end test
- Describe in words how you check whether the code still works
- Translate the words into a script
- Run the script automatically on every code change

If you want to start with unit-testing

- You want to rewrite a function? Start adding a unit test right there �rst.

41 / 50

Sharing and reusing
🌻
Inspiration and where to �nd more:

- UiT research software licensing guide (draft)
- Social coding lesson material by CodeRe�nery

42 / 50

https://research-software.uit.no/blog/2023-software-licensing-guide/
https://coderefinery.github.io/social-coding/
https://coderefinery.org/

Why software licenses matter
- You �nd some great code or data that you want to reuse for your

own publication (good for the original author: you will cite them
and maybe other people who cite you will cite them).

- You need to modify the code a little bit, or you remix the data a
bit.

- When it comes time to publish, you realize there is no license.

Now we have a problem:

- You manage to publish the paper without the software/data but others cannot
build on your software and data and you don't get as many citations as you
could.

- Or, you cannot publish it at all if the journal requires that papers should come
with data and software so that they are reproducible.

43 / 50

Beginning of a project

[Midjourney, CC-BY-NC 4.0]

- License does not seem important
- Easy to change (*)
- Work as if the code is public even

though it still may be private
- "Open core" approach: Core can be

open and on a public branch,
unpublished code can be on a
private repository

Later in the project

[C.Stadler/Bwag, CC-BY-SA 4.0]

- Can be important
- Especially when combining codes or

organizations
- Di�cult to change
- Di�cult to remove code that should

not be published
- Authors change a�liation

44 / 50

[European Union Public Licence (EUPL): guidelines July 2021,

https://data.europa.eu/doi/10.2799/77160]

- Derivative work: You have
started from an existing code
and made changes to it or if
you incorporated an existing
code into your code

- You have started from scratch:
not derivative work

Is your work derivative work or not?

45 / 50

https://data.europa.eu/doi/10.2799/77160

How do I add a license to my work?
- Create a LICENSE �le or LICENSES/ folder in your project which will hold license

texts.
- On top of each �le add and adapt the following header (more examples):

SPDX-FileCopyrightText: 2023 Jane Doe <jane@example.com>
#
SPDX-License-Identifier: MIT

- Add a CITATION.c� �le (example later)

Practical steps for making changes to an existing project (with a
license that allows you to do so):

- Fork (copy) the project.
- Summarize your changes in �le headers and bigger-picture changes in the

README.
- Some licenses are more permissive (you can keep your changes private) but

some licenses require you to publish the changes (share-alike).

46 / 50

https://reuse.software/faq/#license-templates
https://reuse.software/faq/
https://citation-file-format.github.io/

Make it persistent and citable
- Add a CITATION.c� �le:

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: Doe
given-names: Jane
orcid: https://orcid.org/1234-5678-9101-1121
title: "My Research Software"
version: 2.0.4
doi: 10.5281/zenodo.1234
date-released: 2021-08-11

- Get a digital object identi�er (DOI) for your code Zenodo or
similar.

- Software Heritage and CodeMeta exist as an alternative
ecosystem that is currently receiving some attention on a
European level. Comparison and links to converters can be found
in https://zenodo.org/record/8086413. 47 / 50

https://citation-file-format.github.io/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://zenodo.org/
https://www.softwareheritage.org/
https://codemeta.github.io/
https://zenodo.org/record/8086413

Many tools understand CITATION.c�

48 / 50

Sharing and reusing - Great resources
- UiT research software licensing guide (draft)

- Guide from the Aalto University in Finland: "Opening your
Software at Aalto University"

- Joinup Licensing Assistant - Find and compare software licenses

- Joinup Licensing Assistant - Compatibility Checker

- Social coding lesson material by CodeRe�nery

- Citation File Format (CFF)

- License Selector

49 / 50

https://research-software.uit.no/blog/2023-software-licensing-guide/
https://www.aalto.fi/en/open-science-and-research/opening-your-software-at-aalto-university
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-find-and-compare-software-licenses
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-compatibility-checker
https://coderefinery.github.io/social-coding/
https://coderefinery.org/
https://citation-file-format.github.io/
https://ufal.github.io/public-license-selector/

Conclusions/recommendations
It's about communicating!

- Track your code with Git

- Help each other with reviewing code: great learning

- Documentation: start with a README in the same Git repo

- Document your dependencies and computational steps

- When adding tests, start with an end-to-end test

- Make your code/script/notebook citable and give it a license

- Join a CodeRe�nery workshop

50 / 50

https://coderefinery.org/

