
Research software engineering for HPC
Radovan Bast (fosstodon.org/@radovan)

UiT The Arctic University of Norway

Text: CC-BY 4.0

1 / 50

https://fosstodon.org/@radovan

- Theoretical chemist turned research
software engineer.

- I write research software and teach
programming to researchers and lead the
CodeRefinery project.

- I lead the high-performance computing
group and the research software
engineering group at UiT.

About me

2 / 50

https://coderefinery.org/
https://hpc.uit.no/
https://research-software.uit.no/

- Script to convert data from
one format to another

- Script to read data and
visualize it

- Program that generates data

- Analysis script

- Set of scripts that form an
analysis pipeline

- Code that is compiled

- Code that is dynamically
interpreted and not compiled

- Web app

- ...

What is "research software"?

3 / 50

You don't need to be a
"proper software engineer"

to produce research software
We consider any code, script, notebook, or file, regardless of size, as

"research software" if it is needed to generate, visualize, or reproduce
data/results as part of a publication.

4 / 50

- Version control
- Collaboration using Git
- Testing
- Documentation
- Notebooks
- Modular code development
- Reproducible research
- Software licensing
- How to share and publish code
- How to organize a code project
- ...

Next workshop September 19-21
and 26-28, 2023, register here:
https://coderefinery.github.io/2023-
09-19-workshop/

Lessons and recordings:
https://coderefinery.org/lessons/

CodeRefinery
Typical format: 6 half-days, twice per year, online, free, live-streamed,
recorded, archived asynchronous Q&A in collaborative document

5 / 50

https://coderefinery.github.io/2023-09-19-workshop/
https://coderefinery.org/lessons/
https://coderefinery.org/workshops/upcoming/

- Version control

- Documentation

- Reproducibility and containers

- Building code with CMake
(HPC-specific part)

- Automated testing

- Sharing and reusing
[Midjourney, CC-BY-NC 4.0]

6 most important RSE topics?

6 / 50

Exercises
We will revisit these during the exercise session:

- Version control and documentation

- Reproducibility and containers

- Building code with CMake

- Sharing and reusing

7 / 50

https://coderefinery.github.io/research-software-engineering/
https://coderefinery.github.io/research-software-engineering/version-control-documentation/
https://coderefinery.github.io/research-software-engineering/containers/
https://coderefinery.github.io/research-software-engineering/cmake/
https://coderefinery.github.io/research-software-engineering/sharing-reusing/

Version control
📜
Inspiration and where to find more:

- Introduction to version control with Git
- Collaborative distributed version control
- Collaborating and sharing using GitHub without command line

8 / 50

https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-collaborative/
https://coderefinery.github.io/github-without-command-line/

Motivation: Version control is an answer to these questions:

"It broke ... hopefully I have a working version somewhere?"

"Can you please send me the latest version?"

"Where is the latest version?"

"Which version are you using?"

"Which version have the authors used in the paper I am
trying to reproduce?"

"Found a bug! Since when was it there?"

"I am sure it used to work. When did it change?"
9 / 50

Commits: keeping track of changes (example repository)

10 / 50

https://github.com/coderefinery/git-intro/commits/main/

- Roll-back: you can always go
back to a previous version and
compare

- Branching and merging: work
on different ideas at the same
time

- Collaboration: review,
compare, share, discuss

- Example network graph

[Source: https://twitter.com/jay_gee/status/703360688618536960]

Features: roll-back, branching, merging, collaboration

11 / 50

https://github.com/coderefinery/git-intro/network
https://twitter.com/jay_gee/status/703360688618536960

Reproducibility (browse this example online)

12 / 50

https://github.com/networkx/networkx/blame/main/networkx/algorithms/boundary.py

Talking about code

Clone the code, go to the file "src/util.rs", and search for
"time_iso8601". Oh! But make sure you use the version from
August 2023.

Or I can send you a permalink

[https://github.com/NordicHPC/sonar/blob/75daafc86582feb06299d6a47c82112f39888152/src/util.rs#L40-L44]

13 / 50

https://github.com/NordicHPC/sonar/blob/75daafc86582feb06299d6a47c82112f39888152/src/util.rs#L40-L44
https://github.com/NordicHPC/sonar/blob/75daafc86582feb06299d6a47c82112f39888152/src/util.rs#L40-L44

Collaboration through branches or forks

14 / 50

Code review

- Changes are reviewed before they are merged

- Main motivation for code review is the collaborative learning

- Also: better code quality

15 / 50

Where to start? Simple personal
projects

- Start with just the main branch
- Later use branches for

unfinished/untested ideas
- Use tags to mark important

milestones (phd-thesis-submitted,
published-manuscript)

- Better too many commits than too
few

- Better imperfect commits than no
commits

Projects with few persons

- Write-protect the main branch
- New idea/feature: new branch
- Use code review: changes are

reviewed and discussed before they
are merged

- Install and configure Git

- In 3 commands from nothing
to first commit:

$ git init
$ git add myscript.py
$ git commit

- Go through CodeRefinery
lessons (Git intro and
Collaborative Git)

16 / 50

https://coderefinery.github.io/installation/
https://coderefinery.org/
https://coderefinery.github.io/git-intro/
https://coderefinery.github.io/git-collaborative/

Documentation
💗✉️ to your future self
Inspiration and where to find more:

- Documentation lesson material by CodeRefinery
- Talk material "Documenting code" by S. Wittke

17 / 50

https://coderefinery.github.io/documentation/
https://coderefinery.org/
https://github.com/samumantha/documentation_example

Why? 💗✉️ to your future self
- You will probably use your code in the future and may forget

details.

- You may want others to use your code (almost impossible
without documentation).

- You may want others to contribute to the code.

- Time is limited - let the documentation answer FAQs.

18 / 50

Checklist
- Purpose
- Installation instructions
- Dependencies and their versions or version ranges
- Copy-paste-able example to get started
- Tutorials covering key functionality
- Reference documentation (e.g. API) covering all functionality
- How do you want to be asked questions (mailing list or forum or chat or issue

tracker)
- Possibly a FAQ section
- Authors
- Recommended citation
- License
- Contribution guide

See also:

- JOSS review checklist

19 / 50

https://joss.readthedocs.io/en/latest/review_checklist.html

Not very useful (more commentary than comment):

now we check if temperature is larger than -50
if temperature > -50:
 print("ERROR: temperature is too low")

More useful (explaining why):

we regard temperatures below -50 degrees as measurement errors
if temperature > -50:
 print("ERROR: temperature is too low")

Keeping zombie code "just in case" (rather use version control):

do not run this code!
if temperature > 0:
print("It is warm")

Emulating version control:

somebody: threshold changed from 0 to 15 on August 5, 2013
if temperature > 15:
 print("It is warm")

20 / 50

- Useful for those
who want/need
to understand
and modify the
code

- Docstrings can
be useful both
for developers
and users of a
function

def kelvin_to_celsius(temp_k: float) -> float:
 """
 Converts temperature in Kelvin to Celsius.

 Parameters

 temp_k : float
 temperature in Kelvin

 Returns

 temp_c : float
 temperature in Celsius
 """
 assert temp_k >= 0.0, "ERROR: negative T_K"

 temp_c = temp_k - 273.15

 return temp_c

print(kelvin_to_celsius.__doc__)

In-code documentation

21 / 50

Project title

Purpose

Motivation (why the project exists)
and basics.

Installation

How to setup. Dependencies and their
versions.

Getting started

Copy-pastable quick start example.
Tutorials covering key functionality.

Usage reference

...

Recommended citation

...

License

...

Often a README is enough (first impression!)

22 / 50

When projects grow out of a README
- Write documentation in Markdown (.md) or reStructuredText

(.rst) or R Markdown (.Rmd)

- In the same repository as the code -> version control and
reproducibility

- Use one of many tools to build HTML out of md/rst/Rmd: Sphinx,
Zola, Jekyll, Hugo, RStudio, knitr, bookdown, blogdown, ...

- Deploy the generated HTML to GitHub Pages or GitLab Pages

Examples
- All CodeRefinery lessons
- https://github.com/networkx/networkx

23 / 50

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/ReStructuredText
https://rmarkdown.rstudio.com/
https://cicero.xyz/v3/remark/0.14.0/github.com/coderefinery/research-software-engineering/main/presentation.md/sphinx-doc.org
https://www.getzola.org/
https://jekyllrb.com/
https://gohugo.io/
https://yihui.org/knitr/
https://bookdown.org/
https://bookdown.org/yihui/blogdown/
https://pages.github.com/
https://docs.gitlab.com/ee/user/project/pages/
https://coderefinery.org/lessons/from-coderefinery/
https://github.com/networkx/networkx

Reproducibility and containers
📦
Inspiration and where to find more:

- Reproducible research
- The Turing Way: Guide for Reproducible Research
- Ten simple rules for writing Dockerfiles for reproducible data science
- Computing environment reproducibility

24 / 50

https://coderefinery.github.io/reproducible-research/
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html
https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.5281/zenodo.8089471

[Heidi Seibold, CC-BY 4.0, https://twitter.com/HeidiBaya/status/1579385587865649153]
25 / 50

https://twitter.com/HeidiBaya/status/1579385587865649153

It all starts with a good directory
structure ...
project_name/
├── README.md # overview of the project

├── data/ # data files used in the project

│ ├── README.md # describes where data came from

│ └── sub-folder/ # may contain subdirectories

├── processed_data/ # intermediate files from the analysis

├── manuscript/ # manuscript describing the results

├── results/ # results of the analysis (data, tables, figures)

├── src/ # contains all code in the project

│ ├── LICENSE # license for your code

│ ├── requirements.txt # software requirements and dependencies

│ └── ...

└── doc/ # documentation for your project

 ├── index.rst

 └── ...

Lottery factor: If you win the lottery and leave research
today, will others be able to continue your work? 26 / 50

"it works on my machine 🤷"

27 / 50

Conda, Anaconda, pip, virtualenv,
Pipenv, pyenv, Poetry, rye,
requirements.txt,
environment.yml, renv, ...

- Define dependencies
- Communicate dependencies
- Install these dependencies
- Record the versions
- Isolate environments
- Provide tools and services to share

packages

Isolated environments help you
make sure that you know your
dependencies!

[Midjourney, CC-BY-NC 4.0]

Kitchen analogy

- Software <-> recipe
- Data <-> ingredients
- Libraries <-> cooking books/blogs

Recording dependencies

28 / 50

[From reddit]

Kitchen analogy

- Our codes/scripts <-> cooking
recipes

- Container definition files <->
like a blueprint to build a
kitchen with all utensils in
which the recipe can be
prepared.

- Container images <-> example
kitchens

- Containers <-> identical
factory-built mobile food truck
kitchens

29 / 50

https://www.reddit.com/r/ProgrammerHumor/comments/cw58z7/it_works_on_my_machine/

Container: "operating system inside a file"

Example SingularityCE/Apptainer definition file ("recipe"):

Bootstrap: docker
From: ubuntu:20.04

%post
 export DEBIAN_FRONTEND=noninteractive
 apt-get update -y

 apt install -y git build-essential pkg-config
 apt install -y libz-dev libbz2-dev liblzma-dev
 apt install -y libcurl4-openssl-dev libssl-dev libgsl-dev

 git clone https://github.com/someuser/sometool.git
 cd sometool

 make

%runscript
 export PATH=/sometool/bin:$PATH

 $@

Popular implementations: Docker, SingularityCE (popular on HPC)
Apptainer (popular on HPC, fork of Singularity), podman

30 / 50

https://sylabs.io/docs/
https://apptainer.org/
https://www.docker.com/
https://sylabs.io/docs/
https://apptainer.org/
https://podman.io/

Container use cases

- Create a time capsule and share it on Zenodo (or similar)

- Document and communicate dependencies

- Have a common platform to test the code

- Easier to move it to other Linux computers/clusters

- Forward "travel in time": if cluster has too old software

- Backwards "travel in time": if software is no longer maintained
and does not build on laptop/cluster

Typical critique points

- "not the proper way to build"
- performance
- composability

31 / 50

https://zenodo.org/

We need a way to record and
communicate computational steps

- README (steps written out "in
words")

- Scripts (typically shell scripts)

- Notebooks (Jupyter or R Markdown)

- Workflows (Snakemake, doit, ...) [Midjourney, CC-BY-NC 4.0]

Recording computational steps

32 / 50

Building code with CMake
🧱
Inspiration and where to find more:

- CMake introduction and hands-on workshop

33 / 50

https://coderefinery.github.io/cmake-workshop/

Why is Make not enough?
- Make only knows about targets and dependencies
- Make does not know which compiler (options) we want and which environment

we are on
- We need to tell Make what depends on what (Fortran 90+ projects)
- Modular projects become clunky to maintain

What is CMake?
- Cross-platform (this is the C in CMake, not the C language)
- Open-source
- Manages the build process in a compiler-independent manner
- Provides a family of tools and a domain-specific language

34 / 50

make

Makefile

CMakeLists.txt

cmake

libexample.so

b.f90
a.cpp

x.f90
y.c

z.cpp
 Green Hills MULTI
* Unix Makefiles
 Ninja
 Ninja Multi-Config
 Watcom WMake
 CodeBlocks - Ninja
 CodeBlocks - Unix Makefiles
 CodeLite - Ninja
 CodeLite - Unix Makefiles
 Eclipse CDT4 - Ninja
 Eclipse CDT4 - Unix Makefiles
 Kate - Ninja
 Kate - Unix Makefiles
 Sublime Text 2 - Ninja
 Sublime Text 2 - Unix Makefiles

CMake is not a build system

It generates files for build systems.

35 / 50

How do CMakeLists.txt files look?

cmake_minimum_required(VERSION 3.14)

project(example LANGUAGES CXX)

add_executable(hello hello.cpp)

add_library(greeting
 SHARED
 greeting.cpp
 greeting.hpp
)

find_package(MPI REQUIRED COMPONENTS CXX)

target_link_libraries(hello
 PRIVATE
 greeting
 MPI::MPI_CXX
)

36 / 50

Why CMake?

- Excellent support for Fortran, C, C++, and mixed-language
projects.

- Separation of source and build path: Out-of-source compilation.

- Really cross-platform (Linux, Mac, Windows, AIX, iOS, Android).

- Modular code development: Excellent support for multi-
component and multi-library projects.

- Tools: Testing and packaging framework with CTest and CPack.

- Good at discovering environment, libraries, and packages.

- Non-intrusive: All you need is a CMakeLists.txt. CMake won't
mind if other build tools are there as well in the project.

37 / 50

Automated testing
🤖 🚨 ✅
Inspiration and where to find more:

- Software testing lesson material

38 / 50

https://coderefinery.github.io/testing/

Technical possibilities
Any programming language has tools/libraries to perform:

- Unit tests: test a function or a module and compare function
result to a reference

- End-to-end test: run the whole code and compare result to a
reference

- Coverage analysis: Give overview of which parts of the code are
tested

- The test (set) can be run automatically on GitHub Actions or
GitLab CI after every Git commit

39 / 50

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/

Motivation
- Less scary to change code: tests will tell you whether something

broke

- Unit tests can guide towards better structured code: complicated
code is more difficult to test

- Easier for new people to join

- Easier for somebody to revive an old code

40 / 50

Where to start
- A simple script or notebook probably does not need an automated test

If you have nothing yet

- Start with an end-to-end test
- Describe in words how you check whether the code still works
- Translate the words into a script
- Run the script automatically on every code change

If you want to start with unit-testing

- You want to rewrite a function? Start adding a unit test right there first.

41 / 50

Sharing and reusing
🌻
Inspiration and where to find more:

- UiT research software licensing guide (draft)
- Social coding lesson material by CodeRefinery

42 / 50

https://research-software.uit.no/blog/2023-software-licensing-guide/
https://coderefinery.github.io/social-coding/
https://coderefinery.org/

Why software licenses matter
- You find some great code or data that you want to reuse for your

own publication (good for the original author: you will cite them
and maybe other people who cite you will cite them).

- You need to modify the code a little bit, or you remix the data a
bit.

- When it comes time to publish, you realize there is no license.

Now we have a problem:

- You manage to publish the paper without the software/data but others cannot
build on your software and data and you don't get as many citations as you
could.

- Or, you cannot publish it at all if the journal requires that papers should come
with data and software so that they are reproducible.

43 / 50

Beginning of a project

[Midjourney, CC-BY-NC 4.0]

- License does not seem important
- Easy to change (*)
- Work as if the code is public even

though it still may be private
- "Open core" approach: Core can be

open and on a public branch,
unpublished code can be on a
private repository

Later in the project

[C.Stadler/Bwag, CC-BY-SA 4.0]

- Can be important
- Especially when combining codes or

organizations
- Difficult to change
- Difficult to remove code that should

not be published
- Authors change affiliation

44 / 50

[European Union Public Licence (EUPL): guidelines July 2021,

https://data.europa.eu/doi/10.2799/77160]

- Derivative work: You have
started from an existing code
and made changes to it or if
you incorporated an existing
code into your code

- You have started from scratch:
not derivative work

Is your work derivative work or not?

45 / 50

https://data.europa.eu/doi/10.2799/77160

How do I add a license to my work?
- Create a LICENSE file or LICENSES/ folder in your project which will hold license

texts.
- On top of each file add and adapt the following header (more examples):

SPDX-FileCopyrightText: 2023 Jane Doe <jane@example.com>
#
SPDX-License-Identifier: MIT

- Add a CITATION.cff file (example later)

Practical steps for making changes to an existing project (with a
license that allows you to do so):

- Fork (copy) the project.
- Summarize your changes in file headers and bigger-picture changes in the

README.
- Some licenses are more permissive (you can keep your changes private) but

some licenses require you to publish the changes (share-alike).

46 / 50

https://reuse.software/faq/#license-templates
https://reuse.software/faq/
https://citation-file-format.github.io/

Make it persistent and citable
- Add a CITATION.cff file:

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: Doe
given-names: Jane
orcid: https://orcid.org/1234-5678-9101-1121
title: "My Research Software"
version: 2.0.4
doi: 10.5281/zenodo.1234
date-released: 2021-08-11

- Get a digital object identifier (DOI) for your code Zenodo or
similar.

- Software Heritage and CodeMeta exist as an alternative
ecosystem that is currently receiving some attention on a
European level. Comparison and links to converters can be found
in https://zenodo.org/record/8086413. 47 / 50

https://citation-file-format.github.io/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://zenodo.org/
https://www.softwareheritage.org/
https://codemeta.github.io/
https://zenodo.org/record/8086413

Many tools understand CITATION.cff

48 / 50

Sharing and reusing - Great resources
- UiT research software licensing guide (draft)

- Guide from the Aalto University in Finland: "Opening your
Software at Aalto University"

- Joinup Licensing Assistant - Find and compare software licenses

- Joinup Licensing Assistant - Compatibility Checker

- Social coding lesson material by CodeRefinery

- Citation File Format (CFF)

- License Selector

49 / 50

https://research-software.uit.no/blog/2023-software-licensing-guide/
https://www.aalto.fi/en/open-science-and-research/opening-your-software-at-aalto-university
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-find-and-compare-software-licenses
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-compatibility-checker
https://coderefinery.github.io/social-coding/
https://coderefinery.org/
https://citation-file-format.github.io/
https://ufal.github.io/public-license-selector/

Conclusions/recommendations
It's about communicating!

- Track your code with Git

- Help each other with reviewing code: great learning

- Documentation: start with a README in the same Git repo

- Document your dependencies and computational steps

- When adding tests, start with an end-to-end test

- Make your code/script/notebook citable and give it a license

- Join a CodeRefinery workshop

50 / 50

https://coderefinery.org/

