Task 52 General Meeting 2023 Complex Terrain WG presentation

Alexander Stökl

Online 2023-06-14

Technology Collaboration Programme

About

- The complex terrain working group functions as part of the IEA wind LiDAR Task 52 and focuses on the application of wind LiDAR in complex terrain and/or complex flow.
- The working group is both concerned with:
 - Ground based (vertical profiling) LiDAR
 - Nacelle based LiDAR
 - as distinct, yet connected topics.
- Working group meetings in 6 weeks intervals and shifting focus
- About 15-20 people involved

Motivation

- Complex terrain and complex flow remain major obstacles for the widespread application of wind LiDAR
- Task 52 Theme "replacing met masts"
- Assessing LiDAR measurement uncertainty
- Correction of LiDAR data for complex terrain errors
- Characterization of terrain complexity as a reference for LiDAR errors and uncertainty

Ground based LiDAR

- Follow up to previous Task 32 effort
- Aim:
 - Finding complexity thresholds for ground based LiDAR measurements
 - Finding complexity thresholds for correction methods for LiDAR in complex terrain
- Method:
 - Has to be based on actual data (parallel and co-located LiDAR & met-mast data)
 - No sharing of data but sharing for evaluation tools & collection of results.
- Deliverable:
 - Task 52 recommendation for application of ground based LiDAR in complex terrain.

The problem:

Wind speed has two components:

- Parallel to beam-axis (||)
- Normal to beam-axis (\bot)

Measurement of the beamaxis component only:

$$u_{\text{measured}} = \frac{u_{1\parallel} - u_{2\parallel}}{2 \cdot \sin \varphi}$$

Different wind speeds with different flow geometries give same measurement result.

$$u_{\text{measured}} = \frac{u_{1\parallel} - u_{2\parallel}}{2 \cdot \sin \varphi}$$

Different wind speeds with different flow geometries give same measurement result.

$$u_{\text{measured}} = \frac{u_{1\parallel} - u_{2\parallel}}{2 \cdot \sin \varphi}$$

Different wind speeds with different flow geometries give same measurement result.

$$u_{\text{measured}} = \frac{u_{1\parallel} - u_{2\parallel}}{2 \cdot \sin \varphi}$$

In General:

- Measurement at different locations
- Measurement at different times (scanning pattern, one beam direction after the other)
- => Measurement uncertainty with unknown magnitude

Previous results

- **Report:** IEA Wind TCP Task 32: Comparative Exercise on Ground Based Lidar in Complex Terrain, pub. in December 2022.
- Setup: 5 Austrian sites in complex terrain, parallel & co-located LiDAR and met-mast data, 11 different correction methods
- Results: All sites, selected for their great complexity, proved to be too complex to allow a reliable correction.
 There are candidates for the characterization of complexity.
- **Conclusions:** For the identification of thresholds, a larger number of datasets, covering a wider range of site complexity and site conditions, is needed.

	energie werkstatt
	REPORT
IEA Wind TCP Tas Ground I	sk 32: Comparative Exercise on Based Lidar in Complex Terrain
Authors:	Alexander Stöki (Energiewerkstatt e.V.) Sara Köller (Meteolest AG) Johannes Cordes (Deutsche WindGuard Consulting GmbH) Oliver Grüning Ramboll Deutschland GmbH) Andrew Black (Valsala France) Atsuahi Yoshimura (Green Power Investment)

Available at: https://zenodo.org/record/7598338

Absolute relative error LiDAR - met-mast

Ground based LiDAR

• Aim:

- Finding complexity thresholds for ground based LiDAR measurements
- Finding complexity thresholds for correction methods for LiDAR in complex terrain
- Method:
 - Has to be based on actual data (parallel and co-located LiDAR & met-mast data)
 - No sharing of data but sharing for evaluation tools & collection of results.
- Deliverable:
 - Task 52 recommendation for application of ground based LiDAR in complex terrain.
- Time line:
 - Next 12 months: collection of datasets & analysis, write-up in 2nd half of 2024

Nacelle based LiDAR

Use cases:

- Power curve verification
- Yaw misalignment
- Turbine control
- Analyzing inflow conditions and terrain effects on site (problem solving)
- Determination of extreme and fatigue loads (WT design & site suitability)

Interpreting of nacelle LiDAR data at turbine position either requires:

- Pre-construction site calibration with 2 met-masts
- Site calibration with stopped WT (limited usefulness)
- Numerical site calibration with flow modelling

Flow modelling would be the preferred method, but involves unknown uncertainties and lacks acceptability.

Nacelle based LiDAR

- Activity currently in a formative phase, not sensible to give a timeline
- Working title: "Validation of numerical site calibration methods based on flow modeling for nacelle based LiDARs"
- Method:
 - Contribution of suitable datasets (reference measurements for a site, e.g. from a met mast, and nacelle LiDAR data), covering a range of terrain conditions and complexity.
 - Numerical flow models for the sites with different methodology and parametrization.
 - Analysis of the fidelity of the flow models and their usefulness for interpreting nacelle based LiDAR data.
 - Estimation of the overall uncertainties depending on terrain complexity.

Call for Datasets & Contributors

- Both for ground based and nacelle based LiDARs
- Robust conclusions and guidance depend on a large and diverse number of datasets, covering a range in site complexity, geographical regions & wind conditions.
- Contribution does not necessarily require a clearance for sharing data! (distribution of results rather than distribution of data)
- Happy to welcome new members to the working group!