

Abstract:

In this study, we present Omega, an advanced

conversational agent based on Large Language Models

(LLMs) such as OpenAI's ChatGPT, capable of conducting

image processing and analysis tasks through a human-

friendly natural language interface. The system

leverages the LangChain Python library and is integrated

as a plugin to napari, allowing users to instruct complex

tasks without requiring prior programming knowledge.

Omega can also generate instructional strategies, make

interface widgets upon request, and rectify its own

coding mistakes. Its abilities extend to executing Python

code, controlling the napari viewer, querying

documentation, and utilizing hardware acceleration

libraries. The presented approach, while in its early

stages, hints at a future where language-based agents

could revolutionize how we interact with and use

complex computational systems, making them more

accessible to a broader audience.

 We stand at a pivotal juncture for Artificial

Intelligence. Large Language Models (LLMs) such as

ChatGPT1–3 are now capable of engaging in insightful

conversations, demonstrating an impressive command

of human knowledge and logic. These large language

models (LLM) are not only adept conversationalists but

also possess an increasingly accurate understanding of

numerous scientific and engineering disciplines4.

Notably, ChatGPT, a groundbreaking model from

OpenAI, can not only code in various programming

languages but also explain and rectify provided code5.

This capability is ushering in an era where users,

irrespective of their programming skills, can instruct

computers to perform complex tasks that would have

previously required coding. Natural language is

emerging as the hot new programming language. Could

we harness these advancements to make image

processing and analysis faster, more accessible, and

tailor-made to the user's task?

We introduce Omega, an LLM-based conversational

agent capable of performing image processing tasks,

analyzing images to gather insights, correcting its own

coding mistakes, and conducting follow-up

quantifications and analyses. For instance, a user can

instruct Omega to “segment cell nuclei in the selected

image on the napari viewer,” then “count the number of

segmented nuclei,” and finally “return a table that lists

the nuclei, their positions, and areas” (see Fig. 1, and

Supp Video 1 and 2). Moreover, Omega can provide

advice and instructions on various image processing and

analysis topics. A user can ask Omega to create a “step-

by-step plan to segment nuclei in an image,” and Omega

will generate a detailed strategy (see Supp. Video 3). The

user can then interactively apply these steps, make

changes in response to the outcomes, and ask follow-up

questions to complete the task (see also Supp. Video 3).

Omega can also create on-demand user interface

widgets from user prompts. For example, a user may ask

for a “widget that removes segments in a labels layer

outside of a range of segment areas” (see Fig 1 and Supp.

Video 4) or for a “widget that adds a scale-bar of length

20 µm given a pixel resolution of 0.400 µm.” (See Fig 1,

and Supp. Video 5).

Omega is written in Python as a plugin to napari6 and

leverages the LangChain Python library7 and OpenAI's

application programming interface (API). While Omega

works best with OpenAI's ChatGPT, it can also leverage

other LLMs, such as Anthropic's Claude models (see

Supp. Video 6). Omega is a conversational agent that can

converse with the user, like ChatGPT's popular web

interface. We utilize the ReAct framework8 to enable

Omega – Harnessing the Power of Large Language Models
for Bioimage Analysis

Loïc A. Royer1, *

1Chan Zuckerberg Biohub, San Francisco, USA.
*Correspondence: loic.royer@czbiohub.org



https://github.com/royerlab/napari-chatgpt
https://vimeo.com/845559877?share=copy
https://vimeo.com/845559897?share=copy
https://vimeo.com/845559913?share=copy
https://vimeo.com/845559913?share=copy
https://vimeo.com/845559960?share=copy
https://vimeo.com/845559992?share=copy
https://napari.org/
https://vimeo.com/845560019?share=copy
https://github.com/royerlab/napari-chatgpt
https://github.com/royerlab/napari-chatgpt
http://royerlab.org/
https://www.czbiohub.org/sf/
mailto:loic.royer@czbiohub.org
https://github.com/royerlab/napari-chatgpt
https://www.czbiohub.org/
https://twitter.com/loicaroyer

multi-step reasoning and task-specific actions, including

access to online sources of information and specialized

tools for executing code and interfacing with napari.

Omega can also correct its own coding mistakes by

receiving feedback on encountered syntax and

execution errors (Supp. Video 7).

Omega’s tools allow it to download files from the web

(Supp. Video 8), perform web searches (Supp. Video 9),

execute arbitrary Python code (Supp. Video 10), control

the napari viewer (Supp. Video 11), and query the

parameters and documentation of Python functions

(Supp. Video 12). Additional tools incorporated into

Omega include special-purpose tools that give access to

two popular cell and nuclei segmentation algorithms:

cellpose9 (Supp. Video 13) and StarDist10 (Supp. Video 1

and 4), as well as to our denoising software Aydin11

(Supp. Video 14). Importantly, Omega inherits

ChatGPT's Python coding abilities and knowledge (Supp.

Video 15). To our surprise, the two LLMs tested,

ChatGPT and Claude, have extensive knowledge of

napari's programming interface (Supp. Video 11) as well

as other standard and popular Python libraries such as

NumPy12 (Supp. Video 15), scikit-image13 (Supp. Video

16), and OpenCV14 (Supp. Video 17). These models can

also utilize hardware optimization and acceleration

libraries such as numba15 for just-in-time compilation

(Supp. Video 18) and CuPy16 for GPU acceleration (Supp.

Video 19). Omega can leverage all this knowledge and

tools to perform tasks and answer questions.

However, the promise of this approach also requires

prudence. It is well known that LLMs sometimes

hallucinate facts and occasionally make trivial reasoning

mistakes4,17. Indeed, we have observed that ChatGPT

sometimes uses functions that do not exist in the

standard libraries. This is cause for caution because non-

expert users might be led astray by an overly confident

agent. Moreover, it is incumbent upon the user to

explain the task clearly and unambiguously in natural

Figure 1. Harnessing the Power of Large Language Models for Bioimage Analysis with Omega. (a) Omega is a napari plugin
that first appears as a widget that lets users configure and start Omega. Images and other layers (labels, points, shapes) are
listed in napari’s layer list and accessible to Omega. Omega can add to the layer’s list any layer resulting from processing or
analysis. Users can ask Omega to make tailor-made widgets that are added to napari. These widgets can input any set of
layers and return new layers. (b) Upon starting, Omega opens a browser window that displays a chat box page. Users can
then begin dialoguing with Omega, asking questions about image processing and analysis, opening images in the napari
viewer, asking for a widget, and processing and analyzing images or any other layer supported by napari, such as labels,
points, or shapes.

https://vimeo.com/845560031?share=copy
https://vimeo.com/845560056?share=copy
https://vimeo.com/845560105?share=copy
https://vimeo.com/845560143?share=copy
https://vimeo.com/845560164?share=copy
https://vimeo.com/845560197?share=copy
https://www.cellpose.org/
https://vimeo.com/845560217?share=copy
https://github.com/stardist/stardist
https://vimeo.com/845559877?share=copy
https://vimeo.com/845559960?share=copy
http://aydin.app/
https://vimeo.com/845560238?share=copy
https://vimeo.com/845560261?share=copy
https://vimeo.com/845560164?share=copy
https://vimeo.com/845560261?share=copy
https://vimeo.com/845560336?share=copy
https://vimeo.com/845560360?share=copy
https://vimeo.com/845560381?share=copy
https://github.com/royerlab/napari-chatgpt

language. We are still in the early days of this

technology, and rapid progress will hopefully reduce the

risks and improve the quality of the reasoning and code

produced18. In the meantime, Omega implements

several features that aim to mitigate these problems.

Omega implements several introspection routines that

check the correctness of generated code by looking for

function calls to the wrong library versions, missing

import statements, or missing libraries.

Looking ahead, Omega could be extended with the

ability to understand and produce speech to facilitate

interaction. Moreover, most currently available LLMs

are 'blind'. They can't see the content in images and

must rely on our description of what images contain

when reasoning about how to solve a task. The advent

of models capable of ingesting images in addition to text

could address this issue 19,20. Another approach is to

combine LLMs with specialized image-centric and

generalizable models, such as the zero-shot

generalization Segment Anything Model (SAM21) or

other specialized models to extend Omega’s capabilities

further.

This work suggests that LLM-based agents could assist

many users in image processing, analysis, and

visualization. Beyond just completing tasks, Omega

offers an interactive platform that can assist in

educating users. Users can ask questions about a

particular course of action, why a specific function was

used, or for an explanation of some of the concepts used

or mentioned by Omega (Supp. Video 4 & 16).

Moreover, the multilingual capabilities of ChatGPT and

other LLMs mean that Omega is accessible to non-

English speakers, which could broaden accessibility and

dissemination to underserved communities (Supp.

Video 20).

The source code and instructions to use Omega are

available at github.com/royerlab/napari-chatgpt.

Acknowledgments:

Thanks to: OpenAI for early API access to their ChatGPT

4 models, facilitated by Logan Kilpatrick via Mark

Andrew Kittisopikul; Anthropic for early API access to

their latest Claude models, facilitated by Josh Batson;

and Sandra Schmid for careful proofreading.

Ethics Declaration:

The author declares no conflict of interest.

References:

1. OpenAI. GPT-4 Technical Report. Preprint at
http://arxiv.org/abs/2303.08774 (2023).

2. Ouyang, L. et al. Training language models to follow
instructions with human feedback. Preprint at
http://arxiv.org/abs/2203.02155 (2022).

3. Sanderson, K. GPT-4 is here: what scientists think.
Nature 615, 773–773 (2023).

4. Laskar, M. T. R. et al. A Systematic Study and
Comprehensive Evaluation of ChatGPT on
Benchmark Datasets. Preprint at
http://arxiv.org/abs/2305.18486 (2023).

5. Bubeck, S. et al. Sparks of Artificial General
Intelligence: Early experiments with GPT-4.
Preprint at http://arxiv.org/abs/2303.12712
(2023).

6. Sofroniew, N. et al. napari: a multi-dimensional
image viewer for Python. Zenodo (2022).

7. Chase, H. LangChain, 10 2022. URL Httpsgithub
Comhwchase17langchain.

8. Yao, S. et al. ReAct: Synergizing Reasoning and
Acting in Language Models. Preprint at
http://arxiv.org/abs/2210.03629 (2023).

9. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to
train your own model. Nat. Methods 19, 1634–
1641 (2022).

10. Weigert, M., Schmidt, U., Haase, R., Sugawara, K. &
Myers, G. Star-convex Polyhedra for 3D Object
Detection and Segmentation in Microscopy. in
2020 IEEE Winter Conference on Applications of
Computer Vision (WACV) 3655–3662 (IEEE, 2020).
doi:10.1109/WACV45572.2020.9093435.

11. Solak, A. C., Loic A. Royer, Abdur-Rahmaan
Janhangeer & Kobayashi, H. royerlab/aydin:
v0.1.15. (2022) doi:10.5281/ZENODO.5654826.

12. Harris, C. R. et al. Array programming with NumPy.
Nature 585, 357–362 (2020).

13. Van der Walt, S. et al. scikit-image: image processing
in Python. PeerJ 2, e453 (2014).

14. Bradski, G. The openCV library. Dr Dobbs J. Softw.
Tools Prof. Program. 25, 120–123 (2000).

15. Lam, S. K., Pitrou, A. & Seibert, S. Numba: A llvm-
based python jit compiler. in Proceedings of the
Second Workshop on the LLVM Compiler
Infrastructure in HPC 1–6 (2015).

https://vimeo.com/845559960?share=copy
https://vimeo.com/845560316?share=copy
https://vimeo.com/845560397?share=copy
https://github.com/royerlab/napari-chatgpt
https://openai.com/
https://www.anthropic.com/

16. Nishino, R. & Loomis, S. H. C. Cupy: A numpy-
compatible library for nvidia gpu calculations. 31st
Confernce Neural Inf. Process. Syst. 151, (2017).

17. Li, J., Cheng, X., Zhao, W. X., Nie, J.-Y. & Wen, J.-R.
HaluEval: A Large-Scale Hallucination Evaluation
Benchmark for Large Language Models. Preprint at
http://arxiv.org/abs/2305.11747 (2023).

18. Peng, B. et al. Check your facts and try again:
Improving large language models with external
knowledge and automated feedback. ArXiv Prepr.
ArXiv230212813 (2023).

19. Wu, C. et al. Visual ChatGPT: Talking, Drawing and
Editing with Visual Foundation Models. (2023)
doi:10.48550/ARXIV.2303.04671.

20. Royer, L. A. The future of bioimage analysis: a dialog
between mind and machine. Nat. Methods 20,
951–952 (2023).

21. Kirillov, A. et al. Segment Anything. Preprint at
http://arxiv.org/abs/2304.02643 (2023).

22. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y. & Iwasawa,
Y. Large Language Models are Zero-Shot
Reasoners. Preprint at
http://arxiv.org/abs/2205.11916 (2023).

Methods:

In the following, we provide details on how Omega is

implemented: from the chat window web server, the

cascaded LLM approach to the Python code repair

strategies, and more. We can’t possibly paragraph the

entirety of the code and explain all the tricks that make

Omega possible. Therefore, the best and most up-to-

date description of how Omega works is simply the code

itself, which can be consulted at:

https://github.com/royerlab/napari-chatgpt.

Overall Architecture. Omega is provided as a napari

plugin following the latest plugin standard (npe2). The

plugin was built by following the instructions described

here. Omega’s ‘widget plugin’ provides a simple

interface that lets users configure different options and

start Omega (see Fig 1a). Once the user starts Omega

(see start button on Supp. Fig. 1), the plugin starts a web

server at the local address 127.0.0.1 that hosts the

Omega Chat page. The plugin then opens a web browser

window at that address to display the page. At that

point, the user can start dialoguing with Omega. Ideally,

this chat window is side-by-side with the napari window

so that the user can see both the conversation displayed

on the browser and the outcome shown in the viewer.

We typically use two LLM instances (via OpenAI or

Anthropic APIs): one for dialog and the second for code

generation. The LLM instance used for code generation

has a temperature setting set to one order of magnitude

less than the one for dialog.

Omega configuration. The Omega widget (see Supp. Fig.

1) allows users to set: (i) the LLM model (GPT3.5, GPT4,

Claude, etc.); (ii) the model’s creativity level (normal,

slightly creative, moderately creative, creative) that

corresponds to different temperature settings of the

LLM model. A temperature near zero (normal creativity)

means that the model is nearly deterministic in its

answers – which is desirable in factual dialoguing and

code generation. When the temperature increases, the

LLM models explore more atypical and often creative

responses – but they also tend to make more factual,

reasoning, and coding mistakes. (iii) The type of agent

memory used (infinite, bounded, and hybrid). In the case

of infinite memory, the agent remembers every word of

the conversation, which in practice only works for LLM

models with extensive input text lengths such as GPT4

(32k) or Claude (100k). In contrast, the bounded

memory only remembers the last k messages exchanged

between the agent and user. The hybrid memory

precisely remembers the last k messages and

summarizes all previous messages. (iv) The agent's

personality (neutral, coder, prof, yoda, mobster)

modulates the style and tone of the conversation. The

following options are related to code generation and to

the different strategies adopted to mitigate and prevent

errors: (v) The option “fix missing imports” controls

whether to check the generated code, identify missing

imports, and prepend them to the code. (vi) the option

“fix bad function calls” controls whether to verify if the

function calls present in the generated code correspond

to functions that exist in the packages installed in the

Python environment. (vii) the “Install missing packages”

controls whether to list all Python packages required by

generated code, compare that list with the list of

installed packages, and proceed to install those missing.

(viii) The “Autofix coding mistakes” option controls

whether Omega will try to fix its own coding mistakes

when exceptions occur when interacting with the napari

viewer. Similarly, (ix) the “Autofix widget coding

https://github.com/royerlab/napari-chatgpt
https://napari.org/stable/plugins/index.html

mistakes” controls whether Omega will try to fix its own

coding mistakes when exceptions occur while making a

new widget. Finally, (x) the last option, “High console

verbosity,” controls Omega's console verbosity level.

Chat server. The chat page is served by uvicorn – an

ASGI web server implementation for Python, and uses

FastAPI for communication between the chat box and

Python. It leverages Jinja2 as the template engine for

generating the served HTML page. The chat box and

Python communications are handled via a web socket on

the client side and a FastAPI endpoint on the server side.

Messages between the agent and user are exchanged as

JSON-encoded dictionaries.

Omega ReAct Agent. Omega is implemented as

LangChain’s ConversationalChatAgent, which uses the

ReAct framework8 to decide which tool to use and uses

memory to remember the previous messages in the

conversation. By default, Omega uses a modified version

of LangChain’s hybrid conversational memory (see code

here).

Prompt engineering for Python code generation. The

building of Omega required much effort in “Prompt

Engineering,” which is the art of designing prompts that

nudge LLMs into producing the correct answers

expected by users. LLMs are known to require very

explicit – if not obvious – instructions. For instance,

simply adding to the prompt: “Let’s think step by step,”

improves the quality of results22. In the case of Omega,

we had to make explicit that: “You are an expert Python

programmer with deep expertise in image processing

and analysis,” that: “Your responses are accurate and

informative,” that it should “Make sure that the code is

correct, complete and functional without any missing

code, data, or calculations”. LLM prompts used for code

generation also contain the current Python version

number and the names and versions of all image-

processing relevant libraries installed in the

environment. Our experiments show that ChatGPT

knows about differences in the parameters of a function

across different package versions. This means that

explicitly providing the information about which specific

library versions are installed is critical for correct code

generation. We also had to provide detailed instructions

so that the code generated could be easily interfaced

with Omega’s code, thus facilitating interaction with the

napari viewer. A simple strategy is to ask the LLM to

produce a function with a well-defined signature (input

parameters, their types, and return type) and load the

code dynamically as a Python module.

Omega’s Tools. Omega has at its disposal several tools

that give it the ability to: (i) search text and images on

the web and Wikipedia, access a Python REPL (Read-

Eval-Print Loop) for executing arbitrarily non-napari

related code, (ii) gather detailed information about

Python functions available in the environment, (iii) get

information about the latest exceptions that occurred,

(iv) obtain information about the state of the napari

viewer and about the layers present, (v) make and add

widgets to napari’s UI, and (vi) use special-purpose

libraries for cell segmentation and image denoising.

Following the ReAct8 approach, the agent maintains a

conversation with the user and can use tools to answer

questions or perform tasks. This is achieved by listing the

available tools and their description in the prompt sent

to the LLM. Part of the dialog related to tool usage is

internal to the agent and not shared with the user. In

Omega, we choose a cascaded LLM approach where,

besides the main ReAct agent, the tools invoke LLMs to

generate and introspect code and summarize the text.

This avoids polluting the main dialog loop trace with long

pieces of generated code and makes it possible to tailor

prompts to each code generation task.

Custom protocol for tool communication. Most

conversational ReAct-based agents use JSON-formatted

dictionaries to allow communication between LLMs and

the tools. This works well when simple short text strings

are exchanged between the LLM and the tool, but this

fails for arbitrary code because of all the complexities

entailed, such as escaping reserved characters. Imposing

such a high competence bar on the LLM by requiring it

to produce a very complex JSON string is, therefore,

unreasonable. To solve this issue and reduce the

complexity of the syntax that the LLM has to adhere to,

we use a simplified multi-line key-value format (see

code here).

https://www.uvicorn.org/
https://fastapi.tiangolo.com/
https://jinja.palletsprojects.com/
https://python.langchain.com/docs/get_started/introduction.html
https://github.com/royerlab/napari-chatgpt/blob/main/src/napari_chatgpt/omega/memory/memory.py
https://github.com/royerlab/napari-chatgpt/blob/main/src/napari_chatgpt/omega/omega_agent/agent_output_parser.py

Python code introspection and repair. Careful prompt

engineering can be highly effective at ensuring that the

generated code is synthetically correct, that function

calls refer to existing and available functions, and that

the code is interfaceable with the rest of Omega’s code.

However, despite our best efforts, there are cases in

which the generated code is incorrect. Omega

implements several mitigation strategies that reduce

the probability of error.

Adding missing import statements. The first typical type

of code generation error that we noticed is missing

import statements. To address this, Omega implements

a particular routine using the code generation LLM to

introspect the code by listing all missing import

statements. This might seem paradoxical: why should

the LLM make a mistake during code generation but be

able to catch it during verification? The explanation is

that code generation is more challenging than code

verification because it requires both Python and

Application domain knowledge. In contrast, code

verification only requires knowledge of Python and its

libraries – generally, the more restricted and well-

defined the task, the better the outcome.

Installing missing packages. Adding missing import

statements is only helpful if the corresponding libraries

are installed in the Python environment. Using the same

code introspection approach, we ask the code

generation LLM instance to list all Python packages

required to run the generated code. This list of packages

is compared to installed packages, and only missing

packages are installed using pip. Edge cases like GPU

accelerated libraries like Tensorflow or CuPy are

handled with special rules. Future versions of Omega

might implement a feature by which the user is asked

permission to install packages.

Incorrect function call detection and repair. An

additional mitigation approach involves enumerating all

function calls occurring in the code using standard

Python language introspection features and checking

that these functions exist and that the corresponding

packages are installed. This detection step is highly

reliable because it does not use LLMs. Once an incorrect

function call is detected, we carefully construct a

specialized prompt that combines all the information,

particularly the correct function signature and asks the

LLM code generation instance to fix the code

accordingly.

Context-aware code repair upon code execution error.

Once the above fixes are applied to the generated code,

then Omega executes that code. If exceptions are

detected during execution, the code and exception(s)

are provided to the code generation LLM instance. With

a specialized prompt, the LLM is explicitly asked to fix

the code, given a detailed error description. This process

can be repeated recursively until no exceptions occur or

the maximum number of repair steps has been reached.

Importantly, Omega has a mechanism so that task-

specific coding instructions used during code generation

are also available during code repair.

Napari integration and communication. Giving Omega

access to the napari viewer is not trivial because of the

threading model mismatch between the agent

controller and the napari viewer. The agent runs in async

mode per LangChain’s implementation, while napari’s

threading model is inherited from the Qt cross-platform

application framework. We address this using a thread-

safe bidirectional asynchronous communication queue

that establishes a bridge between Omega and napari

(see the NapariBridge class here). The queue passes

code as a string and then executes that code using

napari’s thread-worker functionality. All captured

standard output strings are captured and returned to

Omega. Exceptions are dealt with according to the error

mitigation strategies described above. The following

details the tools that provide Omega access to napari.

Napari viewer query tool. This tool lets Omega gather

any information about the state of the napari viewer or

any of the layers (images, labels, points, etc.) currently

loaded. This is achieved by carefully crafting a prompt

incorporating the user’s question, information on layers

that are present in the viewer, and task-specific coding

instructions. In this prompt, the code generation LLM

instance is asked to write a ‘query(viewer:

Viewer)’ function that takes the viewer as a

parameter and prints out the answer to the user’s

question.

https://github.com/royerlab/napari-chatgpt/blob/main/src/napari_chatgpt/omega/napari_bridge.py

Napari viewer control tool. Similarly, this tool lets

Omega control the napari viewer, such as changing the

state of the viewer’s canvas, adding, and removing

layers, etc. In that case, we carefully crafted a prompt

incorporating the user’s question, information on layers

that are present in the viewer, and task-specific coding

instructions. In this prompt, the code generation LLM

instance is asked to write a script that is then executed.

Widget maker tool. This tool takes the user’s plain text

description of a widget or instructions on modifying a

previously generated widget and adds that widget to

napari’s user interface. For instance, if the user asks for

a 'Gaussian filter with a sigma parameter,' this tool will

make the corresponding widget with a single float

parameter. This automatic user interface generation is

made possible by the MagicGUI library as part of the

standard plugin infrastructure of napari. The generated

code goes through all the checks and verifications

described above.

Cell segmentation and image denoising tools. We can’t

expect LLMs, even the best ones such as ChatGPT 4 or

Anthropic’s Claude, to know about the latest version of

state-of-the-art bioimage analysis libraries such as

Cellpose and StarDist for cell and nuclei segmentation

and Aydin (aydin.app) for image denoising. To ensure

their availability and facilitate their usage, the

integration of these libraries is done explicitly through

specific interfacing functions that expose a subset of

relevant parameters from these libraries. Specially

crafted prompts explain in detail how to use these

functions, how to choose between the different

variants, and how to set the parameters. What is

remarkable is that the prompts need to be very explicit

and clear – as if one had to carefully explain to a

colleague how to use these functions and provide

context and examples.

‘Classic’ cell segmentation. In addition to Cellpose and

StarDist, we implemented a straightforward yet

configurable threshold-based ‘classic’ segmentation

algorithm using scikit-image functions. This simple

algorithm is a reasonably practical baseline for

segmenting 3D images of nuclei. Images are first

normalized, then using a disk- or ball-based footprint of

radius 2; the image is eroded several times. Next, one of

the following thresholding functions is applied: otsu,

yen, li, minimum, triangle, mean, or isodata. The LLM

makes the choice based on user prompt instructions.

Next, the closing and opening operators are applied

several times to remove potential small segments. At

this point, an optional routine is available that uses

watersheds to split the under-segmented segments.

Finally, the resulting binary image is labeled, and a label

layer is returned and added to napari.

https://pyapp-kit.github.io/magicgui/
http://aydin.app/
https://scikit-image.org/

Supplementary material:

Supplementary Figure 1. Users can use Omega's main widget to select different options, including the LLM model's type and
version, the level of creativity (which increases the model's temperature), the type of conversational memory used, and the
agent's personality. Other parameters relate to code checking and automatic repair. To begin using Omega, simply click on
the "Start Omega" button, and a browser window will open, displaying the agent's chat box.

Supplementary Video 1. Omega can segment nuclei with StarDist and perform follow-up analysis. The video showcases
Omega's ability to segment cell nuclei in a 2D image using Stardist. Omega successfully segments the nuclei and adds a label
layer to the napari viewer. With further instructions, Omega can count the segmented nuclei and create a CSV file on the
desktop folder of the machine. This file contains coordinates and areas of all segments, sorted by decreasing area, with one
segment per row. Omega also opens the file using the system’s default CSV viewer. The video has been sped up by a factor of
2.

Supplementary Video 2. Omega can segment nuclei in a 3D image. This video shows how Omega segments the nuclei in a 3D
image displayed in the napari viewer. Omega uses a specialized tool for cell and nuclei segmentation and employs a 'classic'
approach that combines single thresholding, specifically Otsu, with watershed splitting to prevent under-segmentation. After
segmentation, Omega adds a labels layer to the viewer, and we inquire about the number of segments detected. The response
is 27. The video has been sped up by a factor of 2.

https://github.com/stardist/stardist
https://vimeo.com/845559877?share=copy
https://en.wikipedia.org/wiki/Otsu%27s_method
https://vimeo.com/845559897?share=copy

Supplementary Video 3. Omega can devise step-by-step strategies and interactively execute them. In this video, we
requested Omega's assistance developing a detailed strategy for segmenting nuclei in a 2D image. We clarified that the nuclei
appear brighter than the background. Omega provided us with a 6-step plan. The first step involved loading the image into
napari, which was already done. Next, Omega suggested applying a Gaussian filter to smoothen the image and eliminate noise.
However, since the image was not noisy, we asked Omega to move on to step 3, which involved thresholding. Using the scikit-
image library, Omega utilized the Otsu method to determine the threshold value and change the image to binary form. As a
result, a new layer was added to the viewer with the outcome. We then asked Omega to implement step 4, which involved
morphological operations to remove minor artifacts and separate touching nuclei. We specifically requested two erosions.
However, we were unsure whether applying grey morphology operators to the original would be more sensible. Omega agreed
and provided us with an updated plan that swapped the order of thresholding and erosion. We started over and used the new
plan, beginning with step 3 and proceeding to steps 4 and 5, resulting in a reasonably good segmentation. The video has been
sped up by a factor of 2.

Video sped up by a factor 2x.

Supplementary Video 4. Omega can make widgets on demand, e.g., to filter segments per area. In this video, we first ask
that Omega segment the nuclei in the currently selected 2D image. Then, we tell Omega to make a widget that can filter the
segments in a label layer according to their area. Segments whose areas are outside of a given range are removed from the
newly created labels layer. We then start using that widget and experiment with the two parameters: min area and max area.
The video has been sped up by a factor of 2.

https://vimeo.com/845559913?share=copy
https://vimeo.com/845559960?share=copy

Supplementary Video 5. Omega can make complex widgets such as a widget that draws scale bars. In the video, we
requested Omega create a widget for us to draw a scale bar on a 2D single-channel image. We explained that we needed to
set the length of the scale bar and the pixel resolution in microns. Although it created a functional widget, it used a default
pixel intensity of 1, unsuitable for our image, which had higher values thus making the scale bar very dark. We then requested
Omega to make the same widget but with the option to choose the intensity of the scale bar. We achieved our desired
outcome this time and successfully drew a satisfactory scale bar. The video has been sped up by a factor of 2.

Supplementary Video 6. Omega can also work with other LLM models besides ChatGPT. This short video shows that Omega
also works with Anthropic’s Claude LLM model. The video has been sped up by a factor of 2.

https://vimeo.com/845559992?share=copy
https://www.anthropic.com/
https://vimeo.com/845560019?share=copy

Supplementary Video 7. Omega corrects its own coding mistakes. In the video, Omega applied the SLIC super-pixel
segmentation algorithm to a selected image. However, Omega made a mistake using the non-existent 'multichannel'
parameter when using the scikit-image SLIC function, resulting in an error. Omega noticed this mistake and corrected it on the
second try, successfully adding the segmented image to the viewer. The video has been sped up by a factor of 2.

Supplementary Video 8. Omega can search and open image file from the web. In this video, we requested Omega to open a
dataset from Blin et al.'s PLOS Biology 2019 in napari. The dataset can be accessed online and streamed using the ZARR image
file format and library. Omega was able to fulfill our request successfully letting us explore the dataset. Next, we requested
Omega to open a picture of Albert Einstein in napari. Omega then utilized its web image search function to locate a suitable
image and loaded it into napari. The video has been sped up by a factor of 2.

https://www.iro.umontreal.ca/~mignotte/IFT6150/Articles/SLIC_Superpixels.pdf
https://vimeo.com/845560031?share=copy
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000388
https://zarr.readthedocs.io/en/stable/
https://zarr.readthedocs.io/en/stable/
https://vimeo.com/845560056?share=copy

Supplementary Video 9. Omega can teach concepts in image processing. In this video, we ask Omega what it knows about
‘gradient-based image fusion.’ Omega then proceeds to give an interesting explanation of the general idea behind this
approach to image fusion. We then ask Omega to apply these ideas and make a widget that takes two image layers and returns
the gradient-based image fusion of these two images. Omega successfully creates a functional widget that we test on two
images. The video has been sped up by a factor of 2.

Supplementary Video 10. Omega can do math and write arbitrary Python code. In this video, we test Omega's Python coding
skills by asking some basic math questions. For example, we asked for the value of 1010+1 and the number of permutations
possible with ten objects. Then, we asked Omega to write all permutations of a list of 5 strings ('a', 'b', 'c', 'd', 'e') to a file on
the machine's Desktop folder, with one permutation per row. Omega completed this task and opened the file using the
system's default text viewer. Following this, we asked to create a new file containing only permutations where the letters 'a'
and 'b' are consecutive, providing some examples. However, we soon realized that our statement could have been clearer as
it was ambiguous whether the order of 'a' and 'b' mattered. The video has been sped up by a factor of 2.

https://vimeo.com/845560105?share=copy
https://vimeo.com/845560143?share=copy

Supplementary Video 11. Omega can control the napari viewer. This video showcases how Omega can manage the napari
viewer window. Initially, we requested to change the viewer to 3D rendering mode. Subsequently, we ask it to rotate the
orientation of the 3D image by 20 degrees on all axes and zoom in by 50% twice. Then, we request to modify the gamma
setting of all layers to a value of 1.5. Finally, we eliminate all layers in the viewer except for the 'nuclei' one. Lastly, we zoom
out and switch back to 2D rendering mode. The video has been sped up by a factor of 2.

Supplementary Video 12. Omega can determine how to call Python functions. In the video, we requested information from
Omega regarding the convolution function in scipy’s ndimage package. Omega provided an extensive explanation of the
function signature and details about the parameters. However, when we asked to apply the function to a selected image, it
generated code for a 2D image instead of a 3D image. After informing Omega that the image was, in fact, 3D, it was able to
apply the function successfully with appropriate default parameters. The video has been sped up by a factor of 2.

https://vimeo.com/845560164?share=copy
https://scipy.org/
https://vimeo.com/845560197?share=copy

Supplementary Video 13. Omega can use Cellpose to segment cells and nuclei. This brief video showcases how Omega utilizes
Cellpose to segment cell nuclei in a 2D image (z-projection). The video has been sped up by a factor of 2.

Supplementary Video 14. Omega can use Aydin to denoise images. This video showcases Omega’s access to our image-
denoising tool Aydin. We first ask Omega to apply Aydin’s Noise2Self-FGR (Feature Generation & Regression) approach on a
noisy single-channel photograph of the New York skyline (see detailed use case and tutorial here). We see some console
output from Aydin running within Omega, and eventually, it displays a denoised version of the image overlayed as a new layer
in napari. Next, we ask Omega to apply the same denoising algorithm to a 3D image of Drosophila Egg Chambers (LimSeg Test
dataset, Machado et al.), which it does successfully. The video has been sped up by a factor of 2.

https://www.cellpose.org/
https://vimeo.com/845560217?share=copy
https://aydin.app/
http://proceedings.mlr.press/v97/batson19a/batson19a.pdf
https://royerlab.github.io/aydin/v0.1.15/use_cases/newyork.html
http://doi.org/10.5281/zenodo.1472859
http://doi.org/10.5281/zenodo.1472859
https://vimeo.com/845560238?share=copy

Supplementary Video 15. Omega can follow detailed instructions and has extensive knowledge of NumPy. In this video that
runs for about 20 minutes, we demonstrate the process of creating a piece of 'Digital Art' by giving Omega detailed step-by-
step instructions. We begin by requesting Omega to generate an empty image and continue by progressively altering it. We
add noise and apply functions to the pixel values, threshold, and segment structures. This video highlights Omega's proficiency
in NumPy operations and the extensive text conversations that can be utilized for image processing and analysis. The video
has been sped up by a factor of 2.

Supplementary Video 16. Omega knows how to use the scikit-image library for processing and analyzing images. This video
showcases Omega's mastery of the scikit-image library and image processing. We asked Omega to segment an image with
bright coins on a dark background, but we realized that the background was not uniform. To correct the background, we
consulted with Omega and learned about different algorithms that could be used. Initially, we attempted to use the rolling-
ball algorithm, but we encountered some issues due to Omega’s use of a white tophat filter instead of a black tophat filter.
We then tried CLAHE (Contrast Limited Adaptive Histogram Equalization), which worked reasonably well, but perhaps we
should have used larger tiles. The video has been sped up by a factor of 2.

https://numpy.org/
https://vimeo.com/845560261?share=copy
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization#Contrast_Limited_AHE
https://vimeo.com/845560316?share=copy

Supplementary Video 17. Omega knows how to use OpenCV. In this video, we requested Omega to download an MP4 movie
using the provided URL. The movie displays a hallway and people passing by – a commonly used video for testing person
detection algorithms. We then asked Omega to utilize the OpenCV library to detect people in each movie frame and draw a
bounding box around each detection. Omega complied with our request and displayed each frame and bounding boxes around
each detected person. However, we observed two issues. Firstly, adding each 2D movie frame as individual napari image layers
is impractical, resulting in many layers. Secondly, OpenCV's RGB channel ordering is incompatible, causing the napari viewer
to display incorrect colors for each frame. The video has been sped up by a factor of 2.

Supplementary Video 18. Omega knows how to use Numba. In the video, we asked Omega to perform a z-projection of a 3D
image using the Numba library to speed up the code through just-in-time compilation. Although we did not specify the
projection type, Omega used the reasonable choice of max projection and successfully computed it. However, during the
process, Omega utilized the NumPy function np.max() in the just-in-time compiled function, defeating our purpose. We then
requested Omega to refrain from using NumPy functions and instead write a z-projection loop. Omega completed the task,
but this time, it opted for an average projection. We later explicitly asked Omega to perform a max projection. The video has
been sped up by a factor of 2.

https://github.com/intel-iot-devkit/sample-videos/blob/master
https://opencv.org/
https://vimeo.com/845560336?share=copy
https://numba.pydata.org/
https://vimeo.com/845560360?share=copy

Supplementary Video 19. Omega knows how to use CuPy. This video presents Omega's proficiency in utilizing the GPU-
accelerated CuPy library. Initially, we requested Omega to confirm the installation and functionality of CuPy. Subsequently,
we instruct Omega to perform a z-projection of all images displayed in napari. The video has been sped up by a factor of 2.

Supplementary Video 20. Omega can dialog in many different languages. In this video, we speak with Omega in French. This
is possible because most LLMs (ChatGPT, Claude, and others) are naturally multilingual. Omega replies to the user in French,
but the tools used still operate internally in English, as most of the prompt templates are written in that language. We have
tested Omega in several languages, including Spanish, Italian, German, and even Chinese. This feature could hopefully enhance
the accessibility of this tool for underserved or non-English-speaking communities. The video has been sped up by a factor of
2.

https://cupy.dev/
https://vimeo.com/845560381?share=copy
https://vimeo.com/845560397?share=copy

