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Abstract—Federated learning is a popular framework
that enables harvesting edge resources’ computational
power to train a machine learning model distributively.
However, it is not always feasible or profitable to have
a centralized server that controls and synchronizes the
training process. In this paper, we consider the problem
of training a machine learning model over a network
of nodes in a fully decentralized fashion. In particular,
we look for empirical evidence on how sensitive is the
training process for various network characteristics and
communication parameters. We present the outcome of
several simulations conducted with different network
topologies, datasets, and machine learning models.

Index Terms—peer-to-peer, federated learning, net-
work topology

I. Introduction
The wide adoption of handheld devices and the Internet

of Things (according to current statistics, the number of
sensors connected to the internet will reach the impres-
sive amount of 1 trillion in 2030 [17]) together with an
incredible increase in the diffusion of mobile applications
is leading to an exponential growth of the data generated
at the edge of the network, in a pace that is threatening
the network capacity of the Internet [4], [20]. The direct
consequence of this dynamics in data is that it is becoming
unfeasible or unprofitable to move all the data generated at
the edge of the network to a remote central cloud. We are
moving from performing data-intensive computations in
public or private clouds to performing these computations
locally at the edge [3], [18]. This translates to the need to
enable in-place computations and then bring processing
logic where the data is generated.
The Edge computing paradigm represents a concrete

attempt to address this need [24]. Edge computing brings
the Utility Computing paradigm [2] (i.e., the idea of using
and renting computing capacity as any other utility) to
a fully decentralized computing infrastructure, i.e., end-

users and their applications can take advantage of a perva-
sive computing presence to which offload or run computing
tasks.
Typically, multiple Edge nodes (or Edge peers) work

together with a remote cloud to realize a “so-called”
Cloud/Edge Continuum, namely a computing environ-
ment in which tasks and data move from the Cloud to
the Edges and vice-versa. This kind of system organization
also suits the structure of AI-enhanced applications orga-
nized according to the Federated Learning paradigm [12],
[19], [28]. With Federated Learning (FL), each node at
the edge of the network runs a learning process locally.
The coefficients computed during the learning phase are
periodically sent to a central aggregation entity, e.g., a
remote Cloud server. Such an entity collects the model
coefficients from nodes of the system and aggregates them
into the working model, which is then pushed back to the
Edge Peers.
The models trained in this way find wide application in

different fields, including those scenarios in which the uti-
lization of the data collected at the edge is associated with
strict data protection rules [28]. Keeping sensitive data
close to the source makes distributed solutions especially
useful in cases when data privacy is sensitive. Moreover,
these solutions are also beneficial when the network is
limited in bandwidth or has restrictions in latency. Nev-
ertheless, the centralization of the parameters aggregation
brings the bottlenecks and missing possibilities to such an
approach.
An alternative to centralized federated learning is the

decentralized one. The decentralized learning process as-
sumes Edge nodes to be part of an unstructured peer-to-
peer network that can be used to directly communicate
with a subset of Edge peers in the network (see Figure 1).
Edge peers gather data from their connected end-users and
train over this data to realize advanced services. In such an
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Fig. 1: Decentralized scenario. Edge nodes manages data
of a set of end users and connect to each other via a peer-
to-peer network.

approach, the Edge peers, after performing the training of
the model locally, do not send their model coefficients to
some central entity. The aggregation of the locally archived
coefficients between the entities composing the network
is fully decentralized. Namely, Edge peers exchange and
aggregate the coefficients between themselves by using
point-to-point communications.

Several recent works (such as [6], [15], [25]) have ex-
plored decentralized solution for FL. Most of them empha-
sized how decentralization impacts the quality of train-
ing and, consequently, on the quality of the prediction.
However, just a few explore the decentralized system’s
behavior in terms of the characteristics of the overlay
and its convergence speed. In this paper, we are inter-
ested in the following research question: how sensitive is
the convergence of a decentralized FL system to network
characteristics? To this end, we made an effort to answer
this question by observing the convergence speed in a
set of training simulations in decentralized settings with
different characteristics, including network topologies and
communication parameters.

II. Related work
Federated learning is one of the most popular trends

in research communities dealing with distributed machine
learning [5], [9], [10], [21]. At its core, FL is a distributed
framework in which machine learning models are trained
over a set of devices, with each device having a small subset
of the whole training data. Recently, research communities
devoted much effort toward the decentralization of the
learning process. Nevertheless, the study of the benefits
of fully decentralized against centralized solutions is still
a challenge and is of particular interest [27].

Hegedus et al. [6] propose an empirical comparison of
gossip-based learning and federated learning. The authors
propose the evaluation of the effectiveness of both these
technologies based on the three available datasets. In
the paper, the authors consider a network with a fixed
number of neighbors. Lian et al. [15] and Tang et al.

[25] introduce the idea of applying gossip algorithms and
evaluate their effectiveness in comparison with centralized
solutions. Koloskova et al. [11] improves the algorithms
proposed by Lian et al. [15] with arbitrary gradient com-
pression. Lalitha et al. [13] propose a formal description
and an algorithm for a distributed federated learning
problem. These works propose a solid theoretical idea for
the concept of decentralized learning. Nevertheless, the
actual evaluation of the impact of different distributed
topologies is mostly missing.
The work of Savazzi et al. [23] studies gossip-based

distributed solutions for the learning models. The focus
of this work is on the way data is distributed between
nodes in the system. Another work that relies on the
data segmentation between the nodes for the learning is
the work of Hu et al. [7]. The focus of this work is on
bandwidth optimization rather than the speed of accuracy
convergence. Although not directly connected with the
scope of our investigation, but still very relevant to the
work of Wang et al. [26]. In their research, they propose to
group the devices based on their data similarity, followed
by selecting the devices with the best performance capac-
ity. The authors evaluate the impact of data heterogeneity
on device selection, model convergence, model accuracy,
and fault tolerance in a federated learning setting.
A.Reisizadeh et al. propose FedPAQ [22] federated

learning method. In their work, they address the communi-
cation and scalability challenges in federated learning by
applying three key points: (1) periodical averaging with
the server, (2) only a fraction of the devices participating
in each round of model training, and (3) the edge nodes
quantifies their updates before the parameters uploads.
Jameel et al. [8] propose to rely on a subset of super-peers
that are part of a ring topology. Each super-peer connects
to a subset of the ordinary peers. Nevertheless, this work
focuses mainly on the description ring topology.
While most of the existing works concentrate on the

modeling of the distributed federated learning or its op-
timization, in our work, we focused on the impact that
different distributed topologies have on the learning accu-
racy and convergence speed.

III. System model
A. Federated Learning
Federated Learning comes in many flavors (see [14], [16])

and it is extensively used in many real world applications
[28]. In this paper, we focus on the so-called horizontal FL,
in which data on each node (or device) shares the same
feature space but is composed of different, unique samples.
A typical horizontal federated-learning system considers N
nodes who collaboratively train a machine learning model.
More formally, each node i has a local dataset Di, such

that the whole dataset D = {D1∪·· ·∪DN} and that Di∩
Di′ = ∅ for i 6= i′. The training process of horizontal FL is
agnostic with respect to the specific learning model used.
Commonly used models in FL exploit a gradient-descent



strategy to minimize the value of a loss function l(·) (a
function that gives a measure of the error), defined on the
parameters vector w, i.e. l(w).

Procedurally, the training phase of the model is usually
composed of the following steps [28]: (i) the nodes train a
local instance of the machine learning model by using their
data. Afterward, The coefficients of the model are sent to a
centralized server; (ii) the server performs an aggregation
of the coefficients received by the nodes to create an "ag-
gregated" model; (iii) the server sends back the aggregated
model’s coefficients to the nodes; (iv) nodes update their
model with the aggregated one received. These four steps
continue until the training step is completed (typically
until the loss function of the aggregated model reaches
convergence). Therefore, the ultimate objective of a FL
system is to maximize the quality of the model at the
centralized server, which is then sent to all the nodes in
the system. FL comes with many security implications,
especially in terms of data privacy and integrity. In this
paper, we do not consider these security aspects. In re-
ality, nodes would employ cryptography schemes, such as
homomorphic encryption [1], to protect their privacy and
avoid data leakage. While privacy is essential in the actual
implementation of FL systems, our analysis is not affected
by the (non) presence of privacy-preserving mechanisms.

B. Decentralized Federated Learning

By comparison with the centralized FL, the general ob-
jective of decentralised learning is to minimize the average
of the loss functions for all the nodes in the system. Indeed,
the core difference between centralized and decentralized
federated learning is, as the name implies, that the latter
does not require a centralized server to work. Instead, the
training phase and model distribution are performed only
with peer-to-peer communications between nodes.

We model the communication network with a undirected
graph of N nodes. We define the neighborhood of a user
i, denoted as Ni, as the set of nodes j that have an edge
in the network going from i to j. We also consider the
edge to be bi-directional, i.e. if j ∈Ni then i ∈Nj . Nodes
communicate in rounds, with each rounds having the same
length for each node, ∆g. In our model Ni does not change
over rounds and remains static.

The training procedure is the following: (i) Each node
i initially trains its model on the local Di and obtain wi;
(ii) for each ∆g, the wi is communicated to a subset of
Ni, according to the available bandwidth. Here, we assume
that each neighbour j also communicates back its own wj .
(iii) upon the reception of a w nodes update their model
by means of an aggregation function A(·).
The aggregation function is a crucial element when

considering the quality of a model. Since our focus is not on
the quality, here we consider a simple aggregation function
that performs an average of the coefficients [27].

Pendigits HAR full-HAR
Size 10992 10000 499276
Number of features 16 93 93
Number of labels 10 4 4
Label distribution balanced 4:3:2:1 4:3:2:1

TABLE I: Datasets properties

IV. Experiments
All the experiments have been run in Python 3.8 on a

single workstation machine. The Scikit-learn1 library was
used for the classifiers. The networks were generated with
the NetworkX2 libraries.

Datasets. For the experiments, we have considered two
datasets prepared for multi-label classification tasks. The
properties of the datasets are listed in Table I. The first
dataset is the Pendigits3, in which each sample contains
features taken from handwritten digits from 250 different
subjects. The task is to classify each image with the
correct digits. In the second dataset, HAR4, four human
activities (inactive, active, driving, walking) were recorded
with a mobile app and put in relation with several sensors
measurements in the phone. The task is to classify the
activities using data from the accelerometer, gyroscope,
magnetometer, and GPS. For most of the experiments, we
randomly selected 10K samples from the original dataset
(which consists of around 500K samples) to be similar in
size to the Pendigts dataset.
The 10% part of each dataset is reserved for testing,

and the remainder 90% is distributed to nodes for
training. The training data has been divided among
clients proportionally, i.e., each client roughly receives the
same amount of samples. This means that when testing
larger networks, the number of samples is lower per node:
this is the cause of lower general quality in the prediction
power of larger networks. Data does not change during
the simulation.

Models. We used two machine learning classifiers in our
experiments. The first one is a stochastic gradient descent
(SGD) model that trains linear Support Vector Machine
using the hinge loss function. The second one is a Logistic
Regressor classifier. Since logistic regressors are used for
binary classification problems, we use the one-vs-rest
(OvR) strategy for the multi-class classification. The
OvR subdivides the original multi-classification problem
into multiple binary sub-problems (one for each class)
and trains a model for each sub-problem. The model that
obtains the best results is used for the prediction.

1https://scikit-learn.org/
2https://networkx.org/
3http://archive.ics.uci.edu/ml/datasets/pen-based+

recognition+of+handwritten+digits
4https://lbd.udc.es/research/real-life-HAR-dataset/



Networks. We use three different types of networks de-
rived from graph theory to build the overlay between
nodes. For each overlay, we assume a bidirectional commu-
nication channel that corresponds to an undirected graph.
Nodes have no self-edges or double edges. All networks are
also fully connected.
• Regular random graph. Every node has the same

degree. Neighbors are chosen randomly.
• Small-world graph. It is built with the Watts–Strogatz

technique5. It has short average path lengths, i.e.,
the distance between two randomly chosen nodes is
proportional to the logarithm of the graph’s size.
Some social networks and biological networks can be
modeled with a small-world graph.

• Scale-free graph. It is built with the Barabási–Albert
preferential attachment technique. These graphs have
nodes, called hubs, with a disproportionately large
degree compared with other nodes. Many networks
can be models as a scale-free graph, including the
Internet and many social networks.

These networks are characterized by two
parameters. The first one is the size of the network
N = {32,64,128,256,512}. The second parameter
K = {5,10,15,20} controls how nodes connect to each
other. The semantic of this parameter is different with
respect to the network considered. In the random graph, it
defines the degree of the nodes; in the small-world graph,
it defines the number of nearest neighbors that each node
connects to in the ring topology; in the scale-free graph,
it defines the number of edges to attach from a new node
to existing nodes.

Communication. The communication among nodes is
divided into synchronous rounds, or iterations, in which
each node has a chance to communicate and exchange
the model coefficients with another node. Each node can
communicate only with its neighbors on the network. An
iteration terminates when all nodes have had the chance to
communicate. Communication between nodes is affected in
two ways. First, we simulate connections between nodes
not working properly by dropping some communication
with various percentages, d = {0,0.1,0.2,0.3}. When a
communication is dropped the corresponding model infor-
mation is lost. Second, we define the maximum number
of nodes communications per rounds, c = {1,2,4,8}. For
example, when c = 1, each node can communicate with
only one neighbor at each iteration. The selection of
neighbors is made accordion to a round-robin algorithm.
WhenNi < ci, node i communicates with all its neighbours
at each iteration.

V. Evaluation
The system is evaluated by considering how fast each

experiment converges to a value for the model accuracy,

5The probability of adding a new edge for each edge is set to 0.2

i.e., the fraction of correctly classified items. We have also
measured other quality metrics such as precision, zero-
one-loss, and f1 score, and we observed that the results
are comparable with the accuracy. The system accuracy
is the average of the accuracy values of all nodes in the
network. It is computed at the end of every iteration.
The convergence is measured by counting the difference
between consecutive measurements of the system accuracy.
We consider the system to have converged if, for three
consecutive times, the accuracy is not lower than the
previous value and the difference is less than 0.001.
Figure 2 shows the influence of the degree parameter K

on the convergence and the overall accuracy of the decen-
tralized learning. On the random graph, the degree has
a high impact in terms of overall classification accuracy.
In particular, a 5 degrees network converges to an accu-
racy slightly above 86%, whereas the 20 degrees network
converges to 88%. The speed convergence is also affected,
with the 10 degrees network converging earliest at the
13th iteration. The small-world network obtains similar
values for the final accuracy. There is a marginal difference
between the various degree values, having a similar trend
in all cases. Similar to the small-world network, the scale-
free network shows marginal differences in all cases. We
can notice significant "steps" in the increment of accuracy
due to those iterations in which high-degree nodes are
updated with better models.
Figure 3 shows how the accuracy varies over time with

the size of the network N . It is worth noticing that the
lower maximum accuracy obtained by larger networks
is because the amount of data per node is much lower,
skewing the global accuracy drastically. However, we can
notice that smaller networks reach convergence faster than
larger ones, but no significant differences can be seen for
different kind of networks.
Table II reports aggregated results of comparing all

experiments varying multiple parameters with a network
of fixed size (N = 128). The global system accuracy is
only slightly influenced by the various parameter configu-
rations, with better results for the SDG model. In terms of
convergence, it is clear how topology has a relevant impact,
as the small-world networks converge more rapidly than
the other networks on average.
Finally, in Figure 4 are reported the results of a large

scale experiments conducted with the full HAR dataset
over a large (N=1024) network. These results show that
in large-scale setups, a scale-free network seems to yield
better results in terms of convergence than the other
networks.

VI. Conclusion
Although decentralized federated learning is gaining

momentum, only a few works analyze its behavior related
to the network topology. This paper evaluated the impact
of different network characteristics on the convergence
speed of a decentralized federated learning system. In



Fig. 2: Accuracy over time with different networks in relation to degree. The dotted horizontal line is the accuracy
obtained with the centralized FL. The vertical lines indicate when a given series (indicated by the color) reached
convergence. The plots are generated with c = 1, d = 0.3, n = 128, and the Pendigits dataset.

Fig. 3: Accuracy over time with different networks in relation to network size. The dotted horizontal line is the accuracy
obtained with the centralized version and n = 32. The vertical lines indicate when a given series (indicated by the color)
reached convergence. The plots are generated with c = 1, d = 0.3, k = 5, and the Pendigits dataset.

Dataset Model Network Acc. Conv.

HAR
Log. Reg

Scale-free 0.87 10.03
Random Graph 0.86 7.62
Small-world 0.87 6.33

SGD
Scale-free 0.88 11.33
Random Graph 0.87 10.11
Small-world 0.88 8.22

Pendigits
Log. Reg

Scale-free 0.86 12.59
Random Graph 0.86 9.11
Small-world 0.86 7.12

SGD
Scale-free 0.89 14.50
Random Graph 0.89 11.17
Small-world 0.89 9.73

TABLE II: Accuracy and Convergence speed for different
datasets, models, and network type. Values are calculated
on network of n = 128 by averaging the results obtained
with various degree, bandwidth and churn.

particular, we have empirically evaluated how sensitive is
the training process for the various network characteristics
and parameters.

Our results suggest that clustered networks such as
scale-free and small-world look more suitable to support
decentralized training. In particular, small-world network
seems to converge faster for a small setup when the

Fig. 4: Accuracy over time in relation to different networks.
The dotted horizontal line is the accuracy obtained with
the centralized FL. The vertical lines indicate when a given
series (indicated by the color) reached convergence. The
experiment was run with N = 1024, c = 1, d = 0, and the
full-HAR dataset.

amount of training sample per node is relatively low. By
comparison, scale-free network obtained better results in
the large-scale test. That could indicate that having a
hierarchical organization of the network in which hubs
(or super peers) can collect the aggregated models and



redistribute them could increase the convergence speed.
Naturally, this is a trade-off, as hierarchical systems also
increase the load on specific nodes and are sensitive to the
single point of failure (if a super-peer becomes unavailable,
much valuable information is lost). We reserve to study
these trade-offs in future work, also considering dynamic
networks, i.e., that changes during the training phase.
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