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Abstract: An n x n nonnegative matrix A = (ai;) is said to be Smarandachely primitive
if A® > 0 for at least two integers k > 0 and primitive if for some integers k > 0. The
least such integers k is called the Smarandache exponent or exponent of A and denoted by
9 (A) and (A), respectively. The symmetric primitive matrices with exponent > n — 2 has
been described in articles [4]-[9]. In this paper the complete characterization of symmetric
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81. Introduction

An n x n nonnegative matrix A = (a;;) is said to be Smarandachely primitive if A* > 0 for at
least two integers k > 0 and primitive if for some integers k£ > 0. The least such integer k is
called the Smarandache exponent or exponent of A and denoted by v (A) and (A), respectively.
The associated graph of symmetric matriz A, denoted by G(A), is the graph with a vertex set
V(G(A)) ={1,2,--- ,n} such that there is an edge from ¢ to j in G(A) if and only if a;; > 0.
A graph G is called to be primitive if there exists an integer k£ > 0 such that for all ordered
pairs of vertices 4,j € V(G)(not necessarily distinct), there is a walk from ¢ to j with length
k.The least such k is called the exponent of G, denoted by v(G). Clearly,a symmetric matrix
A is primitive if and only if its associated graph G(A) is primitive. And in this case, we have
v(A) = v(G(A)). By this reason as above, we shall employ graph theory as a major tool and
consider v(G(A)) to prove our results.

Let SE,, be the exponent set of n x n symmetric primitive matrices. In 1986,Shao! proved
SE, ={1,2,---,2n—2}\ S, where S is the set of all odd numbers among [n,2n-2] and gave the
characterization of the matrix with exponent 2n — 2. In 1990, Wang[®! gave the characterization

(6]

of the matrix with exponent 2n — 4. In 1991, Li'® obtained the characterization with exponent
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2n— 6. In 1995, Cai and Zhang!™ derived the complete characterization of symmetric primitive
matrices with exponent 2n — 2r(> n). In 2003, Cai and Wang!® got the characterization with
exponent n — 1. In 2004,Cail® characterized the matrix with exponent n — 2. The purpose of
this paper is to go further into the problem and give the complete characterization of symmetric

primitive matrices with exponent n — 3.

§2. Some lemmas on v(G)

For convenience, We will narrate the lemmas with graph theory below.

(4]

Lemma 2.1'Y G is a primitive graph iff G is connected and has odd cycles.

The local exponent from vertex u to v, denoted by ~y(u,v), is the least integer k such that
there exists a walk of length [ from u to v for all I > k.We denote y(u,u) by v(u) for short.

Lemma 2.2[4 If G is a primitive graph, then

G) = .
(@) uﬁggg}gc)v(u,v)

We denote by P(u,v) the shortest walk from w to v in G. The length of P(u,v) is called
the distance between u and v, denoted by dg(u,v). The diameter of G is defined as

diam(Q) = da(u,v).
iam(G) u,'gIel?})((G) a(u,v)

Let G7 and G2 be two subgraphs of G.P(G1,G2) denotes the shortest walk between Gy
and Gs.Its length

da(G1,G2) = min{dg(u,v) | u € V(G1),v € V(G2)}.

[9]

Lemma 2.3”! Let G be a primitive graph,and let u,v € V(G). If there are two walks from u

to v with length ky and ks, respectively,where ki + ko = 1(mod ),then
~v(u,v) < max{ky, ka} — 1.

Let u,v € V(G),we name the walk from u to v with different parity length to dg(u,v) a
dissimilar walk, denoted by W (u,v). The shortest (u, v)-dissimilar walk is called the primitive
walk between u and v, denoted by W, (u,v), its length is denoted by b(u, v) [9].

Lemma 2.4 If G is a primitive graph, then
y(u,v) = b(u,v) — 1.
Therefore,
v(G) = max b(u,v)—1.

u,veV(G)

Lemma 2.5 Let G be a primitive graph, then
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(1) v(u,v) > dg(u,v);
(i1) v(u,v) = dg(u,v)(mod 2);
(7i1) v(G) > diam(G),and v(G) = diam(G)(mod 2).

Lemma 2.6!8 Suppose G is the primitive graph with order n. If there are u,v € V(G) such
that v(u,v) = v(G), then for any odd cycle C in G we have

V(P (u,0)) NV(C)] < n—~(G).

Apparently, any (u, v)-dissimilar walk is inevitably correlative with some odd cycle. And for
any odd cycle C, there is a (u, v)-dissimilar walk correlative with C, we denote it by W (u, v, C').
Therefore, there must be some smallest odd cycle Cy such that W, (u,v) = W(u,v,Cy). We
call Cy a (u,v)-primitive cycle or the primitive cycle of P(u,v). If there exists a (u, v)-shortest
path which intersects with its primitive cycle Cp, then we can choose some (u, v)-shortest path,
denoted by P(u,v) might as well, such that their intersected vertexes can be arranged on a
path.Set p = [V (P(u,v)) NV (Cy)|,then p < min{n —~(G), [2], 3(|Co| — 1)}. Ulteriorly, we have

7(“‘7’0) = 7(“‘7’0700)
dg(u, Co) + |P(Co)| + da(v,Co) — 1
da(u,v) +|Col —2(p — 1) — 1,

where P(Cyp) denotes the left part of Cy which deletes the part in common with P(u,v). If the
(u,v)-shortest path has at most one intersected vertex with its primitive cycle Cp, there must
be w € V(Cp) such that dg(u, Co) = dg(u, w) and dg (v, Cy) = da(v, w). Further we have

7(”71)) = 7(”71)700)
dg(u, Co) + |Co| + dc:(v, CQ) -1
de(u,w) + |Co| + dg (v, w) — 1.

83. Constructions of graphs

Let G be a primitive graph with order n. If there exists a vertex w € V(G) such that v(w) =
v(G), we call G a graph of the first type, otherwise a graph of the second type. Firstly, we define
a class of graphs N,,_3 as follows:

Denote the set Ny, = M, UNPL U U NS where NP1 < d < n—2,d =
1(mod 2),n = 1(mod 2)) are defined as follows.

Let n = 2r + 3 and K = (V,E) be a graph, where the vertex set V = |J V; with
0<i<r
VinVi=¢(0<i<j<r)and Vp ={wy |l =1,2,---,7+ 3}k =0,1,---,7),the edge set

E=F UEy with By ={w |u e V;,v € V;41,0<i<r—1}and Ey = {uv | u,v € V,.}. For any
odd number d such that 1 < d <n — 2, let t = r—%(d—l). We put the path P, = uq ou1,1 - - u1t
and the cycle Cy = uy g1 441 U1 pU2, -~ U2 e+1U1 ¢,a0d set K(g) = P U Cy which we call it
a structural graph. Let the set of induced subgraphs with order n of K which contain K4 be
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K@, For any N € K9, we denote the spanning subgraph of N which contains subgraph K, (d)
by N4y, and define the set of graphs N@ as:

ND ={Ny |Ne KD 1<d<n-2d=1(mod 2)}.

We mark the graphs of N4 with ./\/7(1'17)3 which satisfy the following qualifications:

(1) diam(N(g) < n —3;
(2) For any odd number d’ > d, there doesn’t exist the graph K4 in N(g);

(3) Let = be the vertex of N4 such that dy, (z,Cq) > t, then there must exist a odd
cycle C such that:
2dN ) (2,C) +|C] <n —2.

Let u; € V(P(x,Cq)) N P,(i < t) be the vertex with the smallest subscript. If C' is the odd
cycle which doesn’t intersect with K4y and has at most one intersected vertex with P(z,u;)(The
shortest path from C to P(x,u;) is denoted by P(w, z), where w € V(P(z,u;)) and z € V(C).
And it suggests that C' and P(x,u;) has only one vertex in common if w = z), and such that

2dn,,, (w, z) + |C| is as small as possible, then

(i) if |C]+d =4 and dn, (2,u;) + dn, (w,2) + |C| =t + 3, then we must have
2dN ) (w, 2) + |C] # 2(t — i) + d.
(@) if |C| =d =1 and dn, (v, u;) + dn, (w,z) =t + 1, then we must have
AN, (W, 2) #t —i.
(#ii) if |C] =d =1 and dn, (¥, u;) + dn, (w,2) =t + 2, then we must have
|dN(d) (wvz) - (t - Z)' > 6.

Another class of graphs M,,_3 is defined as follows:
Let n —3 = m + 2r, then n — 3 = m(mod 2). Let T = (U, F) be a graph, where the

vertex set U = |J Uy with U;NU; =90 <i<j<r)and U; = {u | k=0,1,--- ,n—
0<i<r
1}i = 0,1,2,---,r), the edge set F = Fy U Fy U F3 with Fy = {u;jug; | j+1+i+k =

1(mod 2)},F5 = {uv | u,v € U, } and F3 = {uv | u € U,_1,v € U, }.We defined the set of graphs
M3 = Mi?lg U Mijlg u Mfzg U Mf’zg as follows:

(i) Construction of J\/lfzo_)3: Let dy, d; be the odd numbers such that 1 < dg,d; < 5 and
2 < dp+d; < 6,and tg,t; be the positive numbers such that 2r + 1 = 2tg + dy < 2t; + dy
and m + 1ty +t1 +do +di < n+1. We put the path Py = ugjui,;j---u,,; and the path
Pro=wuguii-uy (0 < h<i<j<m+h<n—1). Let Cy be the cycle with length
dp which has only one intersected vertex uy, ; with Fy, while Cy, be the cycle with length
dy which has only one intersected vertex u;, ; with P; and doesn’t intersect with Cgy,. Put
Kay.a, = P(uo,p,wo,m+n) U Py U P UCyUCH, and call it a structural graph. Let V (do,dy) =
V1 (do, dl)UVQ(do, dl), where Vl(do, dl) = V(Kdo,dl) with |Vl(d0, d1)| =m+to+ti+do+di—1 <
n,and Va(do,d1) C U \ Vi(do, dy) with |Va(do,d1)| = to + 3 — t1 — di < 2. Therefore, we have
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[V (do,d1)] = n. We choose the connected subgraph Ty, 4, of T[V(do,d1)] to form the set of
graphs Mﬁfl3, where Tg, 4, satisfies that:

(1) diam(Tgy,a,) <n—3;

(2) V(Td07d1) = V(d07 dl)? and E(Kd07d1) - E(TdO;dl);

(3) there doesn’t exist a path P5 and an cycle Cy, such that 2t + dy < 2tg + dy and they
have only one common vertex uy, ;,where Py = ug ju; ;- - - U, with length to > 0 and Cy, is an
odd cycle with length do;

(4) if there exist a (x4, ;,Yp,i)-path with length p = to +4 — 1 — di < 3 which connects
PoUCy to PLUCY in Ty, 4, — E(Kay.4,), where 0 < a <ty and 0 < b < t1, then we have

a+b+p>j—i,a+b+i+j=p(mod 2),

and
(2to+do) — 2t1+d1) —(p+i—j)<a—-b<p+i—j;

(5) if there exists a vertex x in Ty,,q, such that dr, , (z,Co) > to and dr, , (v,C1) >
to + %(do — dy), there must exist an odd cycle C' such that

2dr,, 4, (,C) +|C| <m+2r+1.

(#i) Construction of ./\/151123: Let m +2tg+3 =n,t9 > 0. Let Cyy = w0, - - - Uy, iUty ,it2 "
u1i42u0(0 < h < i < m+4+h < n-—1), then |C,| = 2to + 1(Cy, is a loop on wug, if
to = 0). Put the graph K, 1, = P(uo,n, wo,m+n) U Ct,, and call it a structural graph. Let
V(m,to) = Vi(m,to) U Va(m,to), where Vi(m,to) = V(K1) and Va(m,tg) C U\ Vi(m,to)
with [Va(m,to)| = 2. We choose the connected subgraph T, ;, of T[V(m,to)] to form the set
of graphs MS}lg, where 15, ;, satisfies that:

(1) diam(T i) <1 —3;

(2) V(Tim,to) = V(m, to), and E(Km,) € E(Tmg,);

(3) neither does there exist an odd cycle with length 25 + 1 that has only one intersected
vertex with P(ug pn, wo,m+n), nor does there exist an odd cycle Cy with length d such that
2t +d < 2tg + 1 in T}y, 4, Where t = dr,, , (P(uo,n, u0,m+n), Ca) > 0;

(4) if there exists a (up,i, Uq,i+2)-path with length p < 3 which divides up Cy, in Ty, —
E(Km.1,), where 0 < a,b < ty, then a,b must satisfy that:if a + b = p(mod 2), then |a — b| < p;
ifa+b+4+1=p(mod 2), then a +b+p > 2ty + 1;

(5) if there exists a vertex x in T, 4, such that dr,, , (v, Cy,) > %m, there must be an odd
cycle C such that

2dr,

m,tg

(z,C)+|C|<m+2r+1,

(731) Construction of ./\/151223: Let m + 2ty + 3 = n,tp > 0. We put the cycle Cy, =
Qi+ Uty iZUtg i1 - U0,i+1%0,4:(0 < h < i< i+1<m+h <n-—1), where z = w41, or
Utg+1,i+1,then |Cy| = 2t + 3. Put Ky iy = Puo,n, wo,m+n) U Ciy, and we call it a structural
graph. Let V(m,to) = Vi(m,to) U Va(m,ty), where Vi(m,to) = V(Kp,,) and Va(m,tg) C
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U\ Vi(m,to) with |Va(m,to)| = 1. We choose the connected subgraph T}, ;, of T[V (m,to)] to
form the set of graphs J\/l,(z2_)3,where Ton,i, satisfies that:

(1) diam(Typ i) < n —3;

(2) V(T te) = V(m, to), and E(Kn.iy) € E(Tm);

(3) neither does there exist an odd cycle with length less than 2(¢y + ¢) — 1 which have
q(1 < ¢ < 2) intersected vertexes with P(ug,p, U m+h), nor does there exist an odd cycle Cy
with length d such that 2t +d < 2to + 1 in T}y, 4,, where t = dr,, (P(uo,hy %0,m+h)s Ca) > 0;

(4) if there exists a (up,i, Uqg,i+1)-path with length p < 2 that divides up Ci, in Ty, —
E(Kpm.t,), where 0 < a,b < to+ 1, then a,b must satisfy that: if a + b = p(mod 2), then
a+b+p>2tg+2;if a+b+ 1= p(mod 2),then |a —b] < p+1;

(5) if there exists a vertex x in T), 1, such that dr,, , (z,C)) > sm — 1, there must be an

odd cycle C' such that
2dr

m,tg

(,C)+|C| <m+2r+1.
(tv) Construction of ./\/151323: Let m 4+ 2tg + 1 = n,tp > 0. We put the cycle Cy, =

U0, k—1 * * * Uty k—1Utg k41 ** - U0, k+1U0,kU0k—1(0 < h < k=1 < k+1<m+h <n-—1), then
|Ci| = 2to + 3. Put Kpyyy = Pluon, uom+n) U Chy, and call it a structural graph. Put
V(m,to) = V(Km,,). We choose the connected subgraph T, 1, of T[V (m,to)] to form the set
of graphs ./\/151323, where T, 1, satisfies that:

(1) diam(Tm 1) <1 —3;

(2) V(Tim,to) = V(m, to),and E(Km,t,) € E(Tmt);

(3) neither does there exist an odd cycle with length less than 2(ty + ¢) — 3 which have
q(1 < ¢ < 3) intersected vertexes with P(ug,p, U m+h), nor does there exist an odd cycle Cy
with length d such that 2t +d < 2tg + 1 in T}y, 4,, where t = dr,,, , (P(uo,n, 0, m+1n), Ca) > 0;

(4) if there exist an edge up k—1Uq k+1 that divides up Cy, in Ty, 4y — E(Kp ), where
0 <a,b < tpy, then a,b must satisfy that:

a+b=1(mod 2),|a —b| < 3;

if there exists an edge vgzq (or viys) that divides up Cy, in Ty ¢y — E(Km 1, ), where 1 < a < to(or
1 <b<tp), then a(or b) must satisfy that: a = 2(or b= 2), or a = 1(or b = 1)(iff ty = 1);

(5) if there exists a vertex x in Ty ¢, such that dr,, , (z,C) > 2m — 2, there must exist
an odd cycle C such that
2dr,, ,, (,C)+ |C| <m+2r+1.

84. Main results and proofs

Theorem 4.1 G is a graph with order n of the first type with v(G) =n — 3 iffl G € N,,_3.

Proof For the necessity, suppose G is a graph with order n of the first type with v(G) =

n — 3. Then there must be a vertex ug and an odd cycle C' in G such that

Y(ug) = ¥(uo, C) =v(G) =n — 3.



62 Lichao, Huangfu and Junliang Cai

We choose 1y and C such that d = |C| is as great as possible, and denote C' = Cy. Note that

Y(G) = v(uo) = dg(uo, uo)(mod 2), dg(uo, ug) = 0,

we set v(G) = 2r. So we get n = 2r + 3.
Let t = dg(up, Cy),then

Y(up) =2t +d—1=2r=n—3.

Thus we get
1
n:2t+d+2,t=r—§(d—1),1§d§2r+1.

We put the path P, = P(ug, Cy) = uguy - - - ug, the cycle Cy = ugtipqq -+ - - uppq—1ue, and let

=~
—
Nl
~—
I

V(Pt U Cd)7 ‘/Q(tv d) = V(G) \ Vvl@’ d)7
E(P,UCy), Ex(t,d) = E(G) \ Ey(t, d).

=
i
—
S

I

Thus
ny = |V1(t,d)| =t+d,ny = |Vé(t,d)| =t+2.

It suggests above that there is a structural graph K = P U Cy in G.To testify that G €
./\/;@3 C N, _3,we shall prove that: (a) G meets the construct qualifications of ./\/;@3, and (b)
G is a subgraph of K.

(a) Note that diam(G) < v(G) = n — 3, then the first construct qualification meets.By the
choose of Cy, there doesn’t exist the structural graph K4)(d’ is an odd number with d’ > d)
in G, thus the second qualification meets. Suppose that there exists a vertex x such that
da(z,Cq) > t, then

Y(x,Cq) =2dg(x,Cq) +d—1>2t+d—1=n—3.
If 2d¢(z,C) 4+ |C| > n — 2 for any odd cycle C which is different from Cy in G, we can get
v(z,C) =2dg(z,C)+|C| —1>n—3.
Thus we get a contradiction
(G) =z y(@) > n—3=7(G).

Let u; € V(P(z,Cq)) N Pi(i < t) be the vertex with the smallest subscript. Then P(x,u;)
is a shortest path from C' to F;. Let C be the odd cycle which doesn’t intersect with K (g
and has at most one intersected vertex with P(x,u;)(The shortest path from C to P(z,u;) is
denoted by P(w, z), where w € V(P(z,u;)) and z € V(C'). It suggests that C and P(z, u;) have
only one vertex in common if w = z), and such that 2dx,, (w, 2) + |C| is as small as possible.
Note that

~¥(z, ug, C) de(u,ug) + 2da(w, z) + |C| — 1,
Y(z,ug,Ca) < dg(u,up) + 2dg(ui,ug) +d — 1,

IN
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we then have

v(@, uo, C) + (@, uo, Ca)
= 2(dg (u, uo) + dg (ui, ur) +da(w, 2) +|Cl+d — 1) — (d + [C]).
(1) Suppose that |C| +d =4. If dg(z,u;) + dg(w, 2) + |C| =t + 3 and 2dg(w, z) + |C| =

2(t — i) + d, then we have
7(‘@7 Uo, C) = 7(x7 uo, Cd)

and
da(x,u;) + da(w, 2) + |C| = 1=t + 2 = |[Va(d)|.
Therefore,
da(z,uo) + dag(w, 2) + dg(us, ug) + |Cl+d — 1 =n.
Thus we get
7(x7u07 C) + 7(‘T7u07 Cd) =2n—-4= 2(” - 2)
and

v(z, o, C) = v(2,u0,Cq) =n — 2.

(2) Suppose that |C| =d = 1. If dg(x,u;) + dg(w, z) =t + 1 and dg(w, z) =t —i. Then
we have

y(w,u0,C) = y(x,up, Cq)

and
de(z,ui) +da(w, 2) + [C] =1 =1+ 1= [V(d)| — 1.
Therefore,
de(z,ug) + da(w, 2) + dg(ui,ug) + |C|+d—1=n—1.
Thus we get
")/(.I,’LL07 C) + ’Y(Ia uo, Od) = 2(” - 1) —-2= 2(” - 2)
and

’7(1},110, C) = 7(x7u07 Cd) =n—2.

(3) Suppose that |C| = d = 1.If dg(z, u;) + dg(w,z) = t + 2 and |dg(w, z) —t —i] < 6.
Then we have
|7(‘/I:7 uo, C) - 7(‘T7 Uo, Cd)' < 67

and
de(z,u;) +da(w, z) + |Cl =1 =t+42 = |Va(d)].
Therefore,
de(z,ug) + da(w, 2) + dg(ui,ue) + |C| +d — 1 =n.
Thus we get

Y(z,ug, C) + y(x,u0,Cq) =2n —2=2(n —1).
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Note that
¥(z, up, C) = y(x, ug, Cyq)(mod 2).

Hence we get
min{vy(z, ug, C), y(z,up,Cq)} > n —2.

The three cases lead to a common contradiction
¥(z,up) = min{y(z, up, C), y(z,up,Cq)} > n — 2.

So the third qualification meets.

(b) Let
V(G) = Uy UULU---UU,_, UT,,

where

Ui, ={u| dg(ug,u) =i,u € V(G)},

(i:071,... r—1).
Uy = {u | dg(uo,u) > r,u € V(G)},

Then G[U;](i = 0,1,--- ,r— 1) must be a null graph. Otherwise, there must be some odd cycle
in G’ = G[UgUU U---UU,_4]. Let C be the odd cycle such that de(uo, C) + $(|C| — 1) is as
small as possible in G’. Then we have

a0, C) + 3(C] = 1) < r.
This implies a contradiction
V(o) < ¥(uo, C) = 2d¢(uo, C) +[C] =1 < 2r =n — 3 = y(uo).
Note that |U;| > 1(i = 0,1,---,r). Then we have
|U;| <2r4+3—r=r+3.

So we can assert that G is a subgraph of K. Therefore, G € Néd_)g C Nn_s.

For the sufficiency, without loss of generality, we let G € N,Ei)3 with 1 < d < n—2 and
d = 1(mod 2). It is obvious that G is connected and has K4 = P; UCy as its structural graph.
In the following argument, we shall prove two results:

(1) y(uo) =n - 3

Clearly, we have
Y(ug, Cq) = 2dc(up, Cq) + |Cal =1 =2t+d—1=n—3.
Hence we have n = 2t +d + 2. Put
ny = |Vi(d)| = |[V(P,UCyq)| =t +d,

and
ng = [Va(d)| = [V(G) \ V1| =t + 2.
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If there is an odd cycle C' in G such that v(ug,C) < n — 3 = 2r, then 2dg(uo,C) +
|C| =1 < 2r, ie. dg(uo,C) + 3(|C| — 1) < r. This implies that G[U’] contains the odd cycle
C,where U' = {u|| dg(up,u) < r,u € V(G)}. Because the induced subgraph K[V'] of K about
V' = {u]| di(uo,u) < ryu € V(K)} is bipartite, its subgraph G[U’] doesn’t contain any odd

cycles,a contradiction. So we have y(ug) =n — 3.
(2) Vu,ve V(G),y(u,v) <n-—3

It is obvious that v(u) < n — 3 for any vertex in G. In what follows, it suffices to prove
~¥(u,v) < n —3 for any two distinct vertexes u and v in V(G).

If dg(u,Cq) + da(v,Cq) < 2t, We can easily get vy(u,v) < n —3. So we put dg(u,Cq) +
de(v,Cy) > 2t, and without loss of generality we let dg(u, Cy) > t,then there must be an odd
cycle C in G such that 2d¢g(u, C') +|C| < n — 2. Suppose that V(P (u,C)) NV (P,) # ¢, let w €
V(P(u,C)) NV (P,) be the first vertex along P(u,C) from u to C, then dg(u,w) > da(ug, w).
We then have

IN

’7(”070) < 2(d0(u07w) + dg(w,C)) + |C| -1
2(dg(u,w) + dg(w,C)) + |C|] =1
= 2dg(u,C)+|C| —1<n—3=r~(up),

¥(uo)

N

a contradiction. Therefore P(u,C) doesn’t intersect with P;.
Let M be the component with u of G[V2(d)] in G, we shall complete our arguments in the

following three cases:
@ V(@) NV(Ca) # ¢
By the connectivity of G and |Va| = ¢ 4+ 2, we have dg(u,Cy) = t + 1 or t + 2 which

correspond to the following six cases.
(a) dg(u,Cq) =t +2,dg(v,Cy) =t —1
If v € V(P;), we have
Y(u,v) < Alu,v,Cq) < dg(u,Cq) + da(v,Cy) + |Cq| — 2
= (t+2)+(t-1)+d—2=2+d—1=n—3.
If v € V(P(u,C)), we have
Y(u,v) < y(u,v,C) =dg(u,C) +de(v,C)+|C| -1
< 2dg(u,C)+|C|—1<n-3.
(b) de(u,Cq) =t +2,da(v,Cq) =t
If v € V(P;),note that P(u,C) has no intersected vertex with P;, we then have
V(P(u,v) UV (Cq)| =2t +d+2=n.

Hence the odd cycle C such that 2dg(u, C') + |C| < n — 2 must be a loop on P(u,v), this means
|C| = 1. So we get

IN

Y(u,v,C) = dg(u,v) + |C| —1
= dg(u,v) < diam(G) < v(G).

v(u, v)
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If v e V(P(u,C)), we have

Y(uw,v) < (w0, C) =dg(u, C) +da(v,C) +|C[ -1
< 2dg(u,C)+1C)—1<n-3.
(C) dG(ua Od) =i+ 2,dG(U, Od) =t+1
This suggests that v € V(P(u,C)), i.e. uv € E(P(u,C)), hence we have
Y(uw,0) < (w0, C) =dg(u, C) +da(v,C) +|C[ -1
< 2dg(u,C)+|C|—1<n-3.
(d) dg(u,Cyq) =t +1,dg(v,Cq) =t

The argument is similar to (a).
(e) dg(u,Cyq) =t+ 1,de(v,Cyq) =t +1
Let uw € E(P(u,C)),there must be vw € E(G) \ (E(Kq4)U E(P(u,C))). Hence we have
7(”7’0) < FY(UH v, O) < dG(uv C) + dG(’U, C) + |O| -1
= 2dg(u,C)+|C|—1<n-3.
(f) da(u,Cy) =t+1,dg(v,Cq) =t + 2
The argument is similar to (c).
(D) V(C)nV(Ca) = &, V(C)NV(P) # ¢

Let u;, u; € V(C)NV(P,) be the vertexes with the smallest and biggest subscripts respec-
tively, where ¢ < j <t — 1. By the construct qualification (2), we have

2d(ug, ui) + |C| > 2d(ug, ut) + d,

i.e.

1 1
5(|O|—1) Zt—i+§(d+1).
By d(u,Cy) >t + 1, we have

d(u,C)+%(|C|—1)+(t—j)2t+1,

i.e.

1
d(w,C) +5(C1 =1) 2 j+1.
Hence,
1
d(w,c) +[C| = (=i +1) 2 t+ 1+ S(d +1).
In addition, notice that |Va(d)| = ¢ + 2. We have
du,C) +|C| = (j—i+1) < t+2.

So we have )
t—|—1—|—§(d+1)§d(u,c)+|0|—(j—i+1)§t—|—2.
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This means
d=1,|C| =2t —2i+3,

and
d(u,C) =i+j—t@i+j>t).

If v € V(M), it is obvious that
V(u,v) <7(u, C) <~(G).
If v ¢ V(M), clearly we have
1
7(“’7 ’U) < 7(”7“’0) < 7(”7“’07 C) < d(uu C) + d(’u,o, C) + §(|C| - 1)
= (i+j-t+i+t—i+1)=i+j+1<~(G).
(IT1) V(C) N V(Ca) = 6, V(C) NV(P) = &

Let u; € V(P(u, Cq))NV (P;)(i < t) be the vertex with the smallest subscript, then P(u, u;)

is the shortest path from u to P;. We shall discuss in the two following cases.

(a) Suppose C and P(u,u;) have at least two intersected vertexes. Then |C] > 3.
Let v € V(M).If P(u,C) intersects with P(v,C), then we have

Y(uw,v) < y(u,v,0)
< 2max{d(u,C),d(v,C)} +|C| -1
< 2(Vald)] - [Ch)+1C] -1

2t — |C] + 3 < 2t < 4(Q).

If P(u,C) doesn’t intersect with P(v,C'), then we have
Y(u,v) < y(u,v,C) < Vo(d)] = 1=t +1 < y(G).
Let v ¢ V(M) and |V, | = [Vi(d) \ V(P(uo, us))| > 2. Then we have
Y(u,v) < (u,0,C) <n— V| =1 <n—3=7(G).

If V|| = 1, it means that i = ¢t — 1 and d = 1. Note that d(u,Cy) > t+ 1, we have
d(u,u;) > i+ 1 = t. Note that |Va(d)| =t + 2,|C| > 3,we have |C| < 5: if |C] = 3, there
must be only two intersected vertexes of C' and P(u,u;); if |C| = 5, there must be just three

intersected vertexes of C' and P(u,u;). Thus we can easily have

(b) Suppose that there is at most one intersected vertex of C' and P(u,u;). Let P(w, z)
be the shortest path from C to P(u,u;), where w € V(P(u,u;)) and z € V(C)(w = z suggests
that there is only one intersected vertex of C' and P(u,u;)).

Let v € V(M). If P(u,C) doesn’t intersect with P(v,C), we have

Y(u,v) < y(u,v,C) < [Va(d)| =1 =t+1<~(G).
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If P(u,C) intersects with P(v,C), note that 2d(u, C') + |C| < 2t + d, we then have

d(u,C) <t + %(d— ).

If d(v,C) < t+2—|C|, i.e. d(v,C)+|C| -1 < t, we have

y(u,v) < y(u,v,C) <d(u,C) +dv,C)+|C| -1
< (t+%(d—|C|))+t§2t+d—1=7(G).
If d(v,C) > t + 2 — |C|, note that d(v,C) + |C| < |Va(d)| =t + 2, we then have
d(v,C)=t+2—1C]|.

Now it is clear that u is just on P(v,C) and d(v,Cy) >t + 1. So there must be an odd cycle
C’ such that

2d(v,C") + |C'] < 2t +d.
If C' is a loop on P(u,v), we then have

Y(u,v) < d(u,v) < diam(G) < v(G).

Otherwise, C’ doesn’t intersect with P(u,v). This suggests that d(u,C’) < d(v,C"). Hence we
have

V(u,v) < (v, C) < 7(G).
If |C'] > 3,then C’ must intersects with C. Similarly, d(u, C") < d(v,C"). So we have
Y(w,v) <v(v,C") < (G).

Let v ¢ V(M). Note that

¥(u, ug, C) = d(u, up) + 2d(w, z) + |C| — 1,
~v(u, ug, Cq) = d(u, ug) + 2d(u;, us) +d — 1,
we have
7(”7“’07 C) + 7(”7“’07 Cd)
= 2(d(u,uo) + d(u, ue) + d(w, 2) + |C] +d = 1) = (d + |C]).
If d+ |C| > 6, we have

~(u, uo) = min{y(u, ug, C), y(u, uo, Cq)} < n —3.
Therefore, we get
'y(u,v) < FY(ua UO) < FY(G)
In what follows, it suffices to discuss the case such that |C|+ d < 4.
Suppose that |C| +d = 4 and d(u, u;) + d(w, z) + |C] < t + 2, we have

d(u,u;) +d(w,z) + |C] =1 <t+1=|Va(d)] — 1,
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ie.
d(u,ug) + d(ui,ug) + d(w, 2) + |C|+d—1<n-—1.

Hence we have
FY(ua uop, C) + ’Y(U,UO, Od) S 2(” - 1) —4= 2(” - 3)

This suggests that
mln{’}/(uv Uo, C)v F)/(ua Uo, Od)} <n-— 3.

Suppose that d(u,w;) + d(w, z) + |C| > t + 3, note that
d(uyu;) +d(w, 2) + |C| — 1 < |Va(d)| =t + 2,

we then have
d(u, u;) + d(w, z) + |C| = 1 = [Va(d)],

ie.
d(u,ug) + d(us, ug) + d(w, z) + |C|+d — 1 = n.

Hence
y(u, uo, C) +y(u,u0,Cq) < 2n —4 = 2(n —2).
By the construction of the G, we have
2d(w, z) + |C| #2(t — i) + d,

ie.
FY(ua Uo, C) 3& FY(ua Uo, Cd)

This suggests that
min{y(u, ug, C), y(u, uo, Cq)} < n —3.

Suppose that |C| =d =1 and d(u, u;) + d(w, z) < t, we then have
d(uyu;) +d(w, 2) + |C| — 1 =t = |Va(d)| — 2,

ie.
d(u,ug) + d(us,u) + d(w, z) + |C|+d—1<n-—2.

We then have
~v(u, ug, C) + y(u, up, Cq) < 2(n—2) — 2 =2(n—3).

Thus we have
min{vy(u, ug, C), v(u, uo, Cq)} < n —3.

Suppose that d(u,u;) + d(w, z) >t + 1. Note that

d(uyu;) +d(w, z) + |C| =1 < |Va(d)| =t + 2,

69
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we then have
t+1<d(u,u;)+dw,z) <t+2.

If d(u,u;) + d(w, z) =t + 1, we thus get
d(u,ug) + d(ui,ug) + d(w, 2) + |C|+d—1=n—1.
It means that
~y(u, ug, C) 4+ y(u, up, Cq) =2(n — 1) = 2 = 2(n — 2).
Note that d(w, z) # t — i, we have
~(u, ug, C) # v(u, ug, Ca).

We therefore get
mln{’}/(uv Uo, C)v FY(ua uo, Od)} <n-— 3.

Suppose that d(u,u;) + d(w, z) =t + 2, then we have
d(u,ug) + d(ug,ut) + d(w, z) + |C|+d — 1 =n.

Hence
v (u, uo, C) + 7y (u, ug, Cq) = 2n.

If |[d(w, z) —t —i| > 6, we then get
|’}/(’U4, Uo, C) - 7(”7 U, Cd)' > 6.

This suggests that
mln{’}/(uv Uo, C)v FY(ua uo, Od)} <n-— 3.

From those as above, we can easily get
7(”7“) < 7(“’7 UQ) < V(G)

Hence, ¥V u,v € V(G), we have v(u,v) <n — 3. O

Theorem 4.2 G is a graph with order n of the second type with v(G) =n — 3 iff G € M,,_s.

Proof For the sufficiency, V G € M,,_3, we have v(G) = n — 3 and y(w) < v(G) for all
w € V(G) by a direct verification.
Now for the necessity, suppose G is a graph of order n of the second type with v(G) = n—3.

Then there must be two distinct vertexes v and v and an odd cycle Cy such that
y(u,v) = vy(u,v,Co) = v(G) =n — 3.

We put the path P(u,v) = vovy - - vy, where vg = u and v, = v with n — 3 = m(mod 2).

Without loss of generality,we set

n—3=m+2r,dy =|Co| = 1(mod 2).



The Characterization of Symmetric Primitive Matrices with exponent n — 3 71

Suppose that C is an odd cycle in G, then we have
V(P(u,0)) N V(C)| < n—(G) = 3

In the following, we shall complete our arguments in four cases.

(I) Suppose that any odd cycle doesn’t intersect with any (u,v)-shortest path in G, then we
have
to = dg(P(’u,’U),CQ) > 0.

By the equation y(u,v) = y(u, v, Cp), we can easily get
n=m+ 2ty +do + 2.
We put the path Py = P(P(u,v),Co) = zox1 - - - x1,, where xo = v; and x,, € V(Cp). Set
Vi = V(P(u,v)) UV(Co) UV (F), V2 = V(G) \ V1,

then we have
|V1| :m+t0+d0,|‘/2| :t0+2.

Suppose that the odd cycles C; and C5 satisfy the following qualifications respectively.
7(”) = 7(“’7 01)7 ’7(/0) = 7(U7 02)
If V(P(u,Cy)) NV (Py) # ¢ and V(P(v,C2)) NV (Py) # ¢, it is clear that

v(u, Cl) =(u, 00)7 Y(v,C2) = ’7(”7 Co).

Hence
y(u) = y(u,Co) = 2dg(u,Co) +do — 1 = 2dg(u, z4,) +do — 1 < n — 3,
y(v) = 7(v,Co) =2da(v,Co) +do — 1 =2dg(v,z,) +do — 1 < n—3.
Thus we get
v(G) =~y(u,v) = ~(u,v,Co) =dag(u,zt,) +dg(v,x,) +do — 1

< 7’L—3:’7(G),

a contradiction. So we assume V(P (u,Cy)) NV (Py) = ¢ without loss of generality. Suppose
v; € V(P(u,Cy))NV(P(u,v)) is the intersected vertex with the biggest subscript, put the path
P, = P(P(u,v),C1) = yoy1- -y, with dy = |C1| and ¢, = dg(vi, C1), where yg = v; and
yt, € V(C1). Then we have V(Py) NV (Py) = ¢(i < j) and

th<ti+d — 1< |Vo| <t +2.
By the choose of P(u,v) and Cy, we have

2t + dy < 2t1 + dy.
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Hence
2t1 +2d7 — 6 +dy < 2ty +dy < 2t + dy < 2ty + 5.

So we get
2<dp+d <6,[tg—t1] <2.

Set Kg,.4, = P(u,v) U Py U P, UCyUCq, then we have
|V(Kd07d1)| =m-+tly+11+ do +d;—1< n,

and
V(G)\ V(Kag,a,) =to+3—t1 —dy <2.

It is easy to verify that G meets the first three construct qualifications (1),(2) and (3) of Ty, 4, -
We shall prove that G meets the other qualifications:

Suppose there exists a (x4, yp)-path with length p which connects Py U Cp to Py U Cy in
G — E(Kgy,4,), where 0 < a <ty and 0 < b < t;. Clearly,p = to +4 — t1 — di < 3. Because any
odd cycle doesn’t intersect with the (u,v)-shortest path P(u,v), then we have

a+b+p>j—i,a+b+i+j=p(mod 2),
and

dg(vo,vi) +dg(vi,yp) +p  +  da(za,v)) +da(vj,vm) + 2dc(a, 74,) +[Col — 1
¥(u, v),

Y]

and

dg(vo,vi) +da(vi,yp) + 0 +  da(2a,vj) + da(vj, vm) + 2da(ys, y¢,) + |Ci| — 1
v (u,v).

v

Hence we have
i+tb+p+a+m—j+2(to—a)+do—1>m+2tg+dy—1,

and
i+b+ptat+m—j+2t —b)+d —1>m+2tg+do— 1.

Therefore,we get
(2to +do) — (2t1 +dy) —(p+i—j)<a—b<p+i—j.

The qualification (4) thus meets.
Suppose that there exists a vertex z in G such that dg(z,Cy) > to and dg(z,Cp) >
to + %(do —dy), then we can conclude that

v(z, Co) < 7(G),y(z,C1) < v(G).

Hence there must be an odd cycle C' in G such that

v(x) =v(z,C) <~(G),
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ie.
2dg(x,C)+|C|—1<n—3=m+2r

The fifth qualification (5) meets.
Clearly, G C T, then we have G € M;OZB.

(IT) Suppose that there exists an odd cycle C' and a path P(u,v) in G such that |V (P(u,v))N
V(C)| = 1, but for any odd cycle C’ and any (u,v)-shortest path P’(u,v), |V(P'(u,v)) N
V(C")| > 2 doesn’t come into existence. Without loss of generality, we assume that C' is the
smallest odd cycle which meets the above qualifications, and V(P(u,v)) NV(C) = {v;}. Hence

n—3=7v(u,v) <y(u,v,C)=m+|C|-1=|V(Pu,v)UC)| —1<n-1.

Note that n — 3 = m(mod 2), we have m + |C| = n — 2 or m + |C] = n. Suppose
that m + |C| = n, then we can assert that C' isn’t a primitive cycle of P(u,v), and V(G) =
V(P(u,v)) UV(C). Note that

m = dg(u,v) <vy(u,v) =n—3,

then we have |C| > 3. Suppose that the odd cycles C; and Cy satisty the following equations
respectively:
W(U) = 7(“’7 01)7 V(U) = 7(U7 02)

If both C and Cs intersect with C', clearly we have

’Y(uv Cl) = ’Y(uv C)v FY(’Uv CQ) = ’Y(uv C)

It is easy to verify
max{y(u, C),y(v,C)} = ¥(G),

a contradiction. Hence, we assume that C; doesn’t intersect with C' without loss of generality.
Therefore, C; must intersect with P(u,v), and Cy is a loop on v; of P(u,v)(without loss of
generality,we set ¢ < j). This contradicts the choose of C.Hence,m + |C| # n. Therefore,we set
m + |C] =n — 2. We then have

n—3= ’}/(U,’U) = 'Y(U,’U, C)
We might as well put the cycle C = Cy = yo - - yeo 21, - - - 190, Where yo = v;. Thus, we have
|C| = 2to+ 1,n =m + 2ty + 3.

We put the graph K, +, = P(u,v)UCy. It is obvious that its order is n — 2. It is easy to verify
that G meets the first three construct qualifications (1), (2) and (3) of T}, 4,. We shall prove
that G meets the other qualifications:

Suppose that there is a (x4, yp)-path with length p which divides up Cy in G — E(K, 1),
where 0 < a,b < ty.Clearly,p < 3. Note that any odd cycle in G has only one intersected vertex
with the (u,v)-shortest path, and Cy is the smallest odd cycle which has only one intersected

vertex with P(u,v):
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If a+b+ 1= p(mod 2), then we have
da(viyza) + da(vi, yp) +p = [Col,

i.e.
a+b+p>2t+1.

If a + b = p(mod 2), then we have

dg(vo, vm) + 2dg(xq, vi) + |Co| — da(xa,vi) — da(vi, yp) +p — 1 > y(u,v)

and
da(vo, vm) + 2d(vi, yp) + |Co| — d(za, vi) — da(vi, yp) +p — 1 2> y(u,v),
i.e.
m+a+2t0—b—|—p2 m+2t0
and

m+b+2t0—a+p2m+2t0.

Hence, |a — b| < p, and the fourth qualification (4) comes into existence.
Suppose there exists a vertex z in G such that dg(z,Co) > im, then we have y(z, Co) >
~v(G). Therefore, there must be an odd cycle C' such that

V(@) = (2, C) <~(G),
ie.
2dq(z,C)+|C|—1<n—3=m+2r

The fifth qualification (5) comes into existence.
Clearly, G C T, then we have G € Miflg.

(III) Suppose that there exists an odd cycle C' and a path P(u,v) in G such that [V (P(u,v))N
V(C)| = 2, but for any odd cycle ¢’ and any (u,v)-shortest path P’(u,v), |V(P'(u,v)) N
V(C")| > 3 doesn’t come into existence. Without loss of generality, we assume that C' is the
smallest odd cycle satisfying the above qualifications, and V(P (u,v)) NV (C) = {v;, v;(i < j)}.
Clearly, 7 =i+ 1. Hence, we have

n=3 = 7(uv) <y(wv,0) =it (m—j)+|C| -2
= m+|C|-3=|V(P(u,v)UC)| —2<n-2.
Note that n — 3 = m(mod 2). We have v(u,v) = v(u,v,C). Hence, C is a (u, v)-primitive

cycle, where n = m+|C|. We might as well put the cycle C' = Cy = yo - - - Y1, 22+, - - - ToYo,where
Yo = v; and zo = v;41. Hence, we have

|CQ|=2t0+3,n=m+2to+3.

We put the graph K, ¢, = P(u,v)UCy. It is obvious that its order is n — 1. Tt is easy to verify
that G meets the first three construct qualifications (1),(2) and (3) of T}, 4. We shall prove
that G meets the other qualifications:
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Suppose that there exists a (4, y»)-path with length p which divides up Co in G—E(K,;, 4,).
where 0 < a,b < tg.Clearly,p < 2. Note that any odd cycle has at most two intersected
vertexes with any (u,v)-shortest path in G, and Cj is the smallest odd cycle which has just two

intersected vertexes with P(u,v).

(a) If a+ b+ 1 = p(mod 2), then we have

dc(vo, vm) + 2dc(vj, zqa) +|Co| —  da(vj,zq) — da(vi,yp) — dg(vi,vj) +p—1
> y(u,v)
and
dg(vo, vm) + 2da(vi, yp) + |Co| —  da(vj,zq) — da(vi, yp) — da(vi,vj) +p—1
> y(u,v).

Hence, we have
m+a+2tg—b+p+1>m+ 2

and
m+b+2tg—a+p+1>m-+ 2.

Therefore, we have
la—bl<p+1.

(b) If @ + b = p(mod 2), because Cy is the the smallest odd cycle which has just two
intersected vertexes with P(u,v), we have
dg(vj, xq) + da(vi, yp) + da(vi,v5) +p > |Col.
We thus get
a+b+p> 2ty +2.

Suppose that there exists a (z,x,)-path(or (z,yp)-path) with length p in G — E(K,4,)
which divides up Cp, where 0 < a,b < tg. Clearly, p < 2. If a + to + 1 = p(mod 2), note that

Cy is the smallest odd cycle which has just two intersected vertexes with P(u,v), then we have
dG(Uju :Ea) + p + dG(Za yto) + dG(ytm Ui) + dG(viv Uj) > |CO|

We thus get
a+p>to+ 1

If a + top = p(mod 2), then we have
dc(vo, Um) + 2dc(Ta,vj) + (p+ da(Tas Tr,) + da (2, 24)) — 1 > y(u,v),

i.e.
m+2a+ (p+to—a+1)—1>m+ 2t.

We then get
a+p=to.
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Using analogous argument, we can get the corresponding restrained qualifications for b. Hence

the fourth construct qualification (4) comes into existence.

Suppose that there exists a vertex z in G such that dg(z,Cy) > %m — 1, then we have

~¥(z,Cy) > v(G). Hence, there must exist some odd cycle C such that

V(@) =7(,C) <~(G),
ie.
2dg(x,C)+|C|—1<n—3=m+2r

The fifth qualification (5) thus comes into existence.
Clearly, G C T, then we have G € Mflg.

(IV) Suppose that there exists an odd cycle C and a path P(u,v) in G such that |V(P(u,v))N
V(C)| = 3. Without loss of generality,we assume that C' is the smallest odd cycle which
meets the above qualifications, where V(P(u,v)) N V(C) = {vi, vk, vj(i < k < j)}. Clearly,
j=k-+1,i=Fk— 1. Hence,we have
n—3 = ~vu,v) <y(u,v,C)=i+(m—j)+|C|—3
= m+|C|-5=|V(P(u,v)UC)|—3<n-3.

Therefore, we have
Y(u,v) =y(u, v, C), [V(P(u,v)) UV(C)| = [V(G)| = n.

We might as well put the cycle C' = Cy = yoy1 - - - Y, Tt - - - T1ZoWY0, Where yo = Vp—1, W = v

and xg = vgy1. Hence, we have
|Co| = 2to + 3,n = m + 2ty + 1.

We put the graph K, 1, = P(u,v)UCy. It is easy to verify that G meets the first three construct
qualifications (1), (2) and (3) of T},,. We shall prove that G meets the other qualifications:
Suppose that there exists an edge zqyp in G — E(K,y, +,) which divides Cy, where 0 < a,b <
to. Note that Cj is the smallest odd cycle which has just three intersected vertexes with the
(u,v)-shortest path P(u,v), then we have a + b = 1(mod 2). In addition, we have

dg(vo,vm) + 2da(za,vj) + |Co| —da(xa,v)) — da(vi,vj) — da(vi, y»)
> y(u,v)
and
da(vo,vm) + 2da(vi, )  +  [Col — da(xa,vj) — da(vi,vs) — da(vi, yp)
=z y(wv).

Hence, we have
m+a+2tg—b+1>m+2t—2

and
m+b+2tg—a+1>m-+ 2ty — 2.
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We thus get |a — b| < 3.
Suppose that there exists an edge vy, in G — E(K,,,) which divides up Cy, where
1 S a S to.

If a is an odd number, then we have
da(vo, vm) — da (v, vj) + 1+ da(vj,xq) — 1 > v(u,v),

i.e.
m—1+14+a—12>m+ 2ty — 2.

Thus, we have a > 2ty — 1. Therefore, we have tg = 1,a = 1.

If a is an even number, then we have

dc(vo, vm) —da(vi,vr) 4+ |Col —da(vj,2q) — da(vi,v;) + da (v, xq) — 1

> (u,v),

ie.
m—14+2t+3)—a—24+1—-1>m+2ty—2,

We thus get a < 2. Hence, we have a = 2.

Suppose that there is an edge viyp in G — E(K,, 1,) which divides Cp, where 1 < b < ¢.
Using an analogous argument, we have b = 2, or b = 1 (iff ¢, = 1). Hence, the fourth
qualification (4) comes into existence.

Suppose that there is a vertex x in G such that dg(z, C) >
~(G). Therefore, there must be an odd cycle C' such that

$m—2, then we have y(z, C) >

y(z) =7(z,C) <4(G),

ie.
2dg(z,C)+|C|—1<n—-3=m+2r

Hence, the fifth qualification (5) comes into existence.
Clearly,G C T, then we have G € MY, 0
Using the connection between the exponent of a matrix and the exponent of a graph stated

above, we have get the following result by combining Theorems 4.1 with 4.2.

Theorem 4.3 Let A be a symmetric primitive matrix with order n, then y(A) = n — 3 iff
G(A) c ./V'nfg UM, _3.
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