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Abstract: An n × n nonnegative matrix A = (aij) is said to be Smarandachely primitive

if Ak > 0 for at least two integers k > 0 and primitive if for some integers k > 0. The

least such integers k is called the Smarandache exponent or exponent of A and denoted by

γS(A) and γ(A), respectively. The symmetric primitive matrices with exponent ≥ n− 2 has

been described in articles [4]-[9]. In this paper the complete characterization of symmetric

primitive matrices with exponent n− 3 is obtained.
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§1. Introduction

An n× n nonnegative matrix A = (aij) is said to be Smarandachely primitive if Ak > 0 for at

least two integers k > 0 and primitive if for some integers k > 0. The least such integer k is

called the Smarandache exponent or exponent ofA and denoted by γS(A) and γ(A), respectively.

The associated graph of symmetric matrix A, denoted by G(A), is the graph with a vertex set

V (G(A)) = {1, 2, · · · , n} such that there is an edge from i to j in G(A) if and only if aij > 0.

A graph G is called to be primitive if there exists an integer k > 0 such that for all ordered

pairs of vertices i, j ∈ V (G)(not necessarily distinct), there is a walk from i to j with length

k.The least such k is called the exponent of G, denoted by γ(G). Clearly,a symmetric matrix

A is primitive if and only if its associated graph G(A) is primitive. And in this case, we have

γ(A) = γ(G(A)). By this reason as above, we shall employ graph theory as a major tool and

consider γ(G(A)) to prove our results.

Let SEn be the exponent set of n×n symmetric primitive matrices. In 1986,Shao[4] proved

SEn = {1, 2, · · · , 2n−2}\S, where S is the set of all odd numbers among [n,2n-2] and gave the

characterization of the matrix with exponent 2n− 2. In 1990,Wang[5] gave the characterization

of the matrix with exponent 2n− 4. In 1991, Li[6] obtained the characterization with exponent
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2n−6. In 1995, Cai and Zhang[7] derived the complete characterization of symmetric primitive

matrices with exponent 2n− 2r(≥ n). In 2003, Cai and Wang[8] got the characterization with

exponent n− 1. In 2004,Cai[9] characterized the matrix with exponent n − 2. The purpose of

this paper is to go further into the problem and give the complete characterization of symmetric

primitive matrices with exponent n− 3.

§2. Some lemmas on γ(G)

For convenience, We will narrate the lemmas with graph theory below.

Lemma 2.1[4] G is a primitive graph iff G is connected and has odd cycles.

The local exponent from vertex u to v, denoted by γ(u, v), is the least integer k such that

there exists a walk of length l from u to v for all l ≥ k.We denote γ(u, u) by γ(u) for short.

Lemma 2.2[4] If G is a primitive graph, then

γ(G) = max
u,v∈V (G)

γ(u, v).

We denote by P (u, v) the shortest walk from u to v in G. The length of P (u, v) is called

the distance between u and v, denoted by dG(u, v). The diameter of G is defined as

diam(G) = max
u,v∈V (G)

dG(u, v).

Let G1 and G2 be two subgraphs of G.P (G1, G2) denotes the shortest walk between G1

and G2.Its length

dG(G1, G2) = min{dG(u, v) | u ∈ V (G1), v ∈ V (G2)}.

Lemma 2.3[9] Let G be a primitive graph,and let u, v ∈ V (G). If there are two walks from u

to v with length k1 and k2, respectively,where k1 + k2 ≡ 1(mod ),then

γ(u, v) ≤ max{k1, k2} − 1.

Let u, v ∈ V (G),we name the walk from u to v with different parity length to dG(u, v) a

dissimilar walk, denoted by W (u, v). The shortest (u, v)-dissimilar walk is called the primitive

walk between u and v, denoted by Wr(u, v), its length is denoted by b(u, v) [9].

Lemma 2.4[8] If G is a primitive graph, then

γ(u, v) = b(u, v) − 1.

Therefore,

γ(G) = max
u,v∈V (G)

b(u, v) − 1.

Lemma 2.5[8] Let G be a primitive graph, then
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(i) γ(u, v) ≥ dG(u, v);

(ii) γ(u, v) ≡ dG(u, v)(mod 2);

(iii) γ(G) ≥ diam(G),and γ(G) ≡ diam(G)(mod 2).

Lemma 2.6[8] Suppose G is the primitive graph with order n. If there are u, v ∈ V (G) such

that γ(u, v) = γ(G), then for any odd cycle C in G we have

|V (P (u, v)) ∩ V (C)| ≤ n− γ(G).

Apparently, any (u, v)-dissimilar walk is inevitably correlative with some odd cycle. And for

any odd cycle C, there is a (u, v)-dissimilar walk correlative with C, we denote it by W (u, v, C).

Therefore, there must be some smallest odd cycle C0 such that Wr(u, v) = W (u, v, C0). We

call C0 a (u, v)-primitive cycle or the primitive cycle of P (u, v). If there exists a (u, v)-shortest

path which intersects with its primitive cycle C0, then we can choose some (u, v)-shortest path,

denoted by P (u, v) might as well, such that their intersected vertexes can be arranged on a

path.Set p = |V (P (u, v))∩V (C0)|,then p ≤ min{n−γ(G), [n2 ], 1
2 (|C0|−1)}. Ulteriorly, we have

γ(u, v) = γ(u, v, C0)

= dG(u,C0) + |P (C0)| + dG(v, C0) − 1

= dG(u, v) + |C0| − 2(p− 1) − 1,

where P (C0) denotes the left part of C0 which deletes the part in common with P (u, v). If the

(u, v)-shortest path has at most one intersected vertex with its primitive cycle C0, there must

be w ∈ V (C0) such that dG(u,C0) = dG(u,w) and dG(v, C0) = dG(v, w). Further we have

γ(u, v) = γ(u, v, C0)

= dG(u,C0) + |C0| + dG(v, C0) − 1

= dG(u,w) + |C0| + dG(v, w) − 1.

§3. Constructions of graphs

Let G be a primitive graph with order n. If there exists a vertex w ∈ V (G) such that γ(w) =

γ(G), we call G a graph of the first type, otherwise a graph of the second type. Firstly, we define

a class of graphs Nn−3 as follows:

Denote the set Nn−3 = N (1)
n−3 ∪ N (3)

n−3 ∪ · · · ∪ N (n−2)
n−3 ,where N (d)

n−3(1 ≤ d ≤ n− 2, d ≡
1(mod 2), n ≡ 1(mod 2)) are defined as follows.

Let n = 2r + 3 and K = (V,E) be a graph, where the vertex set V =
⋃

0≤i≤r

Vi with

Vi ∩ Vj = φ(0 ≤ i < j ≤ r) and Vk = {ul,k | l = 1, 2, · · · , r + 3}(k = 0, 1, · · · , r),the edge set

E = E1∪E2 with E1 = {uv | u ∈ Vi, v ∈ Vi+1, 0 ≤ i ≤ r − 1} and E2 = {uv | u, v ∈ Vr}. For any

odd number d such that 1 ≤ d ≤ n− 2, let t = r− 1
2 (d−1). We put the path Pt = u1,0u1,1 · · ·u1,t

and the cycle Cd = u1,tu1,t+1 · · ·u1,ru2,r · · ·u2,t+1u1,t,and set K(d) = Pt ∪ Cd which we call it

a structural graph. Let the set of induced subgraphs with order n of K which contain K(d) be



The Characterization of Symmetric Primitive Matrices with exponent n− 3 59

K(d). For any N ∈ K(d), we denote the spanning subgraph of N which contains subgraph K(d)

by N(d), and define the set of graphs N (d) as:

N (d) = {N(d) | N ∈ K(d), 1 ≤ d ≤ n− 2, d ≡ 1(mod 2)}.

We mark the graphs of N (d) with N (d)
n−3 which satisfy the following qualifications:

(1) diam(N(d)) ≤ n− 3;

(2) For any odd number d′ > d, there doesn’t exist the graph K(d′) in N(d);

(3) Let x be the vertex of N(d) such that dN(d)
(x,Cd) > t, then there must exist a odd

cycle C such that:

2dN(d)
(x,C) + |C| ≤ n− 2.

Let ui ∈ V (P (x,Cd)) ∩ Pt(i ≤ t) be the vertex with the smallest subscript. If C is the odd

cycle which doesn’t intersect with K(d) and has at most one intersected vertex with P (x, ui)(The

shortest path from C to P (x, ui) is denoted by P (w, z), where w ∈ V (P (x, ui)) and z ∈ V (C).

And it suggests that C and P (x, ui) has only one vertex in common if w = z), and such that

2dN(d)
(w, z) + |C| is as small as possible, then

(i) if |C| + d = 4 and dN(d)
(x, ui) + dN(d)

(w, z) + |C| = t+ 3, then we must have

2dN(d)
(w, z) + |C| 6= 2(t− i) + d.

(ii) if |C| = d = 1 and dN(d)
(x, ui) + dN(d)

(w, z) = t+ 1, then we must have

dN(d)
(w, z) 6= t− i.

(iii) if |C| = d = 1 and dN(d)
(x, ui) + dN(d)

(w, z) = t+ 2, then we must have

|dN(d)
(w, z) − (t− i)| ≥ 6.

Another class of graphs Mn−3 is defined as follows:

Let n − 3 = m + 2r, then n − 3 ≡ m(mod 2). Let T = (U,F ) be a graph, where the

vertex set U =
⋃

0≤i≤r

Ui with Ui ∩ Uj = φ(0 ≤ i < j ≤ r) and Ui = {ui,k | k = 0, 1, · · · , n −

1}(i = 0, 1, 2, · · · , r), the edge set F = F1 ∪ F2 ∪ F3 with F1 = {ui,juk,l | j + l + i + k ≡
1(mod 2)},F2 = {uv | u, v ∈ Ur} and F3 = {uv | u ∈ Ur−1, v ∈ Ur}.We defined the set of graphs

Mn−3 = M(0)
n−3 ∪M(1)

n−3 ∪M(2)
n−3 ∪M(3)

n−3 as follows:

(i) Construction of M(0)
n−3: Let d0, d1 be the odd numbers such that 1 ≤ d0, d1 ≤ 5 and

2 ≤ d0 + d1 ≤ 6,and t0, t1 be the positive numbers such that 2r + 1 = 2t0 + d0 ≤ 2t1 + d1

and m + t0 + t1 + d0 + d1 ≤ n+ 1. We put the path P0 = u0,ju1,j · · ·ut0,j and the path

P1 = u0,iu1,i · · ·ut1,i(0 ≤ h ≤ i < j ≤ m+ h ≤ n− 1). Let Cd0 be the cycle with length

d0 which has only one intersected vertex ut0,j with P0, while Cd1 be the cycle with length

d1 which has only one intersected vertex ut1,i with P1 and doesn’t intersect with Cd0 . Put

Kd0,d1 = P (u0,h, u0,m+h) ∪ P0 ∪ P1 ∪ C0 ∪ C1, and call it a structural graph. Let V (d0, d1) =

V1(d0, d1)∪V2(d0, d1), where V1(d0, d1) = V (Kd0,d1) with |V1(d0, d1)| = m+t0+t1+d0+d1−1 ≤
n,and V2(d0, d1) ⊆ U \ V1(d0, d1) with |V2(d0, d1)| = t0 + 3 − t1 − d1 ≤ 2. Therefore, we have
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|V (d0, d1)| = n. We choose the connected subgraph Td0,d1 of T [V (d0, d1)] to form the set of

graphs M(0)
n−3, where Td0,d1 satisfies that:

(1) diam(Td0,d1) ≤ n− 3;

(2) V (Td0,d1) = V (d0, d1), and E(Kd0,d1) ⊆ E(Td0,d1);

(3) there doesn’t exist a path P2 and an cycle Cd2 such that 2t2 + d2 < 2t0 + d0 and they

have only one common vertex ut2,l,where P2 = u0,lu1,l · · ·ut2,l with length t2 > 0 and Cd2 is an

odd cycle with length d2;

(4) if there exist a (xa,j , yb,i)-path with length p = t0 + 4 − t1 − d1 ≤ 3 which connects

P0 ∪ C0 to P1 ∪C1 in Td0,d1 − E(Kd0,d1), where 0 ≤ a ≤ t0 and 0 ≤ b ≤ t1, then we have

a+ b+ p > j − i, a+ b + i+ j ≡ p(mod 2),

and

(2t0 + d0) − (2t1 + d1) − (p+ i− j) ≤ a− b ≤ p+ i− j;

(5) if there exists a vertex x in Td0,d1 such that dTd0,d1
(x,C0) ≥ t0 and dTd0,d1

(x,C1) ≥
t0 + 1

2 (d0 − d1), there must exist an odd cycle C such that

2dTd0,d1
(x,C) + |C| < m+ 2r + 1.

(ii) Construction of M(1)
n−3: Let m+ 2t0 + 3 = n, t0 ≥ 0. Let Ct0 = u0,i · · ·ut0,iut0,i+2 · · ·

u1,i+2u0,i(0 ≤ h ≤ i ≤ m+ h ≤ n− 1), then |Ct0 | = 2t0 + 1(Ct0 is a loop on u0,i if

t0 = 0). Put the graph Km,t0 = P (u0,h, u0,m+h) ∪ Ct0 , and call it a structural graph. Let

V (m, t0) = V1(m, t0) ∪ V2(m, t0), where V1(m, t0) = V (Km,t0) and V2(m, t0) ⊆ U \ V1(m, t0)

with |V2(m, t0)| = 2. We choose the connected subgraph Tm,t0 of T [V (m, t0)] to form the set

of graphs M(1)
n−3, where Tm,t0 satisfies that:

(1) diam(Tm,t0) ≤ n− 3;

(2) V (Tm,t0) = V (m, t0), and E(Km,t0) ⊆ E(Tm,t0);

(3) neither does there exist an odd cycle with length 2t0 + 1 that has only one intersected

vertex with P (u0,h, u0,m+h), nor does there exist an odd cycle Cd with length d such that

2t+ d < 2t0 + 1 in Tm,t0 , where t = dTm,t0
(P (u0,h, u0,m+h), Cd) > 0;

(4) if there exists a (ub,i, ua,i+2)-path with length p ≤ 3 which divides up Ct0 in Tm,t0 −
E(Km,t0), where 0 ≤ a, b ≤ t0, then a, b must satisfy that:if a+ b ≡ p(mod 2), then |a− b| ≤ p;

if a+ b + 1 ≡ p(mod 2), then a+ b+ p ≥ 2t0 + 1;

(5) if there exists a vertex x in Tm,t0 such that dTm,t0
(x,Ct0 ) ≥ 1

2m, there must be an odd

cycle C such that

2dTm,t0
(x,C) + |C| < m+ 2r + 1;

(iii) Construction of M(2)
n−3: Let m + 2t0 + 3 = n, t0 ≥ 0. We put the cycle Ct0 =

u0,i · · ·ut0,izut0,i+1 · · ·u0,i+1u0,i(0 ≤ h ≤ i < i + 1 ≤ m+ h ≤ n− 1), where z = ut0+1,i or

ut0+1,i+1,then |Ct0 | = 2t0 + 3. Put Km,t0 = P (u0,h, u0,m+h) ∪ Ct0 , and we call it a structural

graph. Let V (m, t0) = V1(m, t0) ∪ V2(m, t0), where V1(m, t0) = V (Km,t0) and V2(m, t0) ⊆
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U \ V1(m, t0) with |V2(m, t0)| = 1. We choose the connected subgraph Tm,t0 of T [V (m, t0)] to

form the set of graphs M(2)
n−3,where Tm,t0 satisfies that:

(1) diam(Tm,t0) ≤ n− 3;

(2) V (Tm,t0) = V (m, t0), and E(Km,t0) ⊆ E(Tm,t0);

(3) neither does there exist an odd cycle with length less than 2(t0 + q) − 1 which have

q(1 ≤ q ≤ 2) intersected vertexes with P (u0,h, u0,m+h), nor does there exist an odd cycle Cd

with length d such that 2t+ d < 2t0 + 1 in Tm,t0 , where t = dTm,t0
(P (u0,h, u0,m+h), Cd) > 0;

(4) if there exists a (ub,i, ua,i+1)-path with length p ≤ 2 that divides up Ct0 in Tm,t0 −
E(Km,t0), where 0 ≤ a, b ≤ t0 + 1, then a, b must satisfy that: if a + b ≡ p(mod 2), then

a+ b+ p ≥ 2t0 + 2; if a+ b+ 1 ≡ p(mod 2),then |a− b| ≤ p+ 1;

(5) if there exists a vertex x in Tm,t0 such that dTm,t0
(x,Ct0 ) ≥ 1

2m− 1, there must be an

odd cycle C such that

2dTm,t0
(x,C) + |C| < m+ 2r + 1.

(iv) Construction of M(3)
n−3: Let m + 2t0 + 1 = n, t0 ≥ 0. We put the cycle Ct0 =

u0,k−1 · · ·ut0,k−1ut0,k+1 · · ·u0,k+1u0,ku0,k−1(0 ≤ h ≤ k − 1 < k + 1 ≤ m+ h ≤ n− 1), then

|Ct0 | = 2t0 + 3. Put Km,t0 = P (u0,h, u0,m+h) ∪ Ct0 , and call it a structural graph. Put

V (m, t0) = V (Km,t0). We choose the connected subgraph Tm,t0 of T [V (m, t0)] to form the set

of graphs M(3)
n−3, where Tm,t0 satisfies that:

(1) diam(Tm,t0) ≤ n− 3;

(2) V (Tm,t0) = V (m, t0),and E(Km,t0) ⊆ E(Tm,t0);

(3) neither does there exist an odd cycle with length less than 2(t0 + q) − 3 which have

q(1 ≤ q ≤ 3) intersected vertexes with P (u0,h, u0,m+h), nor does there exist an odd cycle Cd

with length d such that 2t+ d < 2t0 + 1 in Tm,t0 , where t = dTm,t0
(P (u0,h, u0,m+h), Cd) > 0;

(4) if there exist an edge ub,k−1ua,k+1 that divides up Ct0 in Tm,t0 − E(Km,t0), where

0 ≤ a, b ≤ t0, then a, b must satisfy that:

a+ b ≡ 1(mod 2), |a− b| ≤ 3;

if there exists an edge vkxa(or vkyb) that divides up Ct0 in Tm,t0−E(Km,t0), where 1 ≤ a ≤ t0(or

1 ≤ b ≤ t0), then a(or b) must satisfy that: a = 2(or b = 2), or a = 1(or b = 1)(iff t0 = 1);

(5) if there exists a vertex x in Tm,t0 such that dTm,t0
(x,Ct0 ) ≥ 1

2m− 2, there must exist

an odd cycle C such that

2dTm,t0
(x,C) + |C| < m+ 2r + 1.

§4. Main results and proofs

Theorem 4.1 G is a graph with order n of the first type with γ(G) = n− 3 iff G ∈ Nn−3.

Proof For the necessity, suppose G is a graph with order n of the first type with γ(G) =

n− 3. Then there must be a vertex u0 and an odd cycle C in G such that

γ(u0) = γ(u0, C) = γ(G) = n− 3.
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We choose u0 and C such that d = |C| is as great as possible, and denote C = Cd. Note that

γ(G) = γ(u0) ≡ dG(u0, u0)(mod 2), dG(u0, u0) = 0,

we set γ(G) = 2r. So we get n = 2r + 3.

Let t = dG(u0, Cd),then

γ(u0) = 2t+ d− 1 = 2r = n− 3.

Thus we get

n = 2t+ d+ 2, t = r − 1

2
(d− 1), 1 ≤ d ≤ 2r + 1.

We put the path Pt = P (u0, Cd) = u0u1 · · ·ut, the cycle Cd = utut+1 · · ·ut+d−1ut, and let

V1(t, d) = V (Pt ∪ Cd), V2(t, d) = V (G) \ V1(t, d),

E1(t, d) = E(Pt ∪ Cd), E2(t, d) = E(G) \ E1(t, d).

Thus

n1 = |V1(t, d)| = t+ d, n2 = |V2(t, d)| = t+ 2.

It suggests above that there is a structural graph K(d) = Pt ∪ Cd in G.To testify that G ∈
N (d)
n−3 ⊂ Nn−3,we shall prove that: (a) G meets the construct qualifications of N (d)

n−3, and (b)

G is a subgraph of K.

(a) Note that diam(G) ≤ γ(G) = n− 3, then the first construct qualification meets.By the

choose of Cd, there doesn’t exist the structural graph K(d′)(d
′ is an odd number with d′ > d)

in G, thus the second qualification meets. Suppose that there exists a vertex x such that

dG(x,Cd) > t, then

γ(x,Cd) = 2dG(x,Cd) + d− 1 > 2t+ d− 1 = n− 3.

If 2dG(x,C) + |C| > n− 2 for any odd cycle C which is different from Cd in G, we can get

γ(x,C) = 2dG(x,C) + |C| − 1 > n− 3.

Thus we get a contradiction

γ(G) ≥ γ(x) > n− 3 = γ(G).

Let ui ∈ V (P (x,Cd)) ∩ Pt(i ≤ t) be the vertex with the smallest subscript. Then P (x, ui)

is a shortest path from C to Pt. Let C be the odd cycle which doesn’t intersect with K(d)

and has at most one intersected vertex with P (x, ui)(The shortest path from C to P (x, ui) is

denoted by P (w, z), where w ∈ V (P (x, ui)) and z ∈ V (C). It suggests that C and P (x, ui) have

only one vertex in common if w = z), and such that 2dN(d)
(w, z) + |C| is as small as possible.

Note that

γ(x, u0, C) ≤ dG(u, u0) + 2dG(w, z) + |C| − 1,

γ(x, u0, Cd) ≤ dG(u, u0) + 2dG(ui, ut) + d− 1,
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we then have

γ(x, u0, C) + γ(x, u0, Cd)

= 2(dG(u, u0) + dG(ui, ut) + dG(w, z) + |C| + d− 1) − (d+ |C|).

(1) Suppose that |C| + d = 4. If dG(x, ui) + dG(w, z) + |C| = t+ 3 and 2dG(w, z) + |C| =

2(t− i) + d, then we have

γ(x, u0, C) = γ(x, u0, Cd)

and

dG(x, ui) + dG(w, z) + |C| − 1 = t+ 2 = |V2(d)|.

Therefore,

dG(x, u0) + dG(w, z) + dG(ui, ut) + |C| + d− 1 = n.

Thus we get

γ(x, u0, C) + γ(x, u0, Cd) = 2n− 4 = 2(n− 2)

and

γ(x, u0, C) = γ(x, u0, Cd) = n− 2.

(2) Suppose that |C| = d = 1. If dG(x, ui) + dG(w, z) = t + 1 and dG(w, z) = t− i. Then

we have

γ(x, u0, C) = γ(x, u0, Cd)

and

dG(x, ui) + dG(w, z) + |C| − 1 = t+ 1 = |V2(d)| − 1.

Therefore,

dG(x, u0) + dG(w, z) + dG(ui, ut) + |C| + d− 1 = n− 1.

Thus we get

γ(x, u0, C) + γ(x, u0, Cd) = 2(n− 1) − 2 = 2(n− 2)

and

γ(x, u0, C) = γ(x, u0, Cd) = n− 2.

(3) Suppose that |C| = d = 1.If dG(x, ui) + dG(w, z) = t + 2 and |dG(w, z) − t− i| < 6.

Then we have

|γ(x, u0, C) − γ(x, u0, Cd)| < 6,

and

dG(x, ui) + dG(w, z) + |C| − 1 = t+ 2 = |V2(d)|.

Therefore,

dG(x, u0) + dG(w, z) + dG(ui, ut) + |C| + d− 1 = n.

Thus we get

γ(x, u0, C) + γ(x, u0, Cd) = 2n− 2 = 2(n− 1).
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Note that

γ(x, u0, C) ≡ γ(x, u0, Cd)(mod 2).

Hence we get

min{γ(x, u0, C), γ(x, u0, Cd)} ≥ n− 2.

The three cases lead to a common contradiction

γ(x, u0) = min{γ(x, u0, C), γ(x, u0, Cd)} ≥ n− 2.

So the third qualification meets.

(b) Let

V (G) = U0 ∪ U1 ∪ · · · ∪ Ur−1 ∪ Ur,

where

Ui = {u | dG(u0, u) = i, u ∈ V (G)},
Ur = {u | dG(u0, u) ≥ r, u ∈ V (G)},

(i = 0, 1, · · · , r − 1).

Then G[Ui](i = 0, 1, · · · , r− 1) must be a null graph. Otherwise, there must be some odd cycle

in G′ = G[U0 ∪ U1 ∪ · · · ∪Ur−1]. Let C be the odd cycle such that dG(u0, C) + 1
2 (|C| − 1) is as

small as possible in G′. Then we have

dG(u0, C) +
1

2
(|C| − 1) < r.

This implies a contradiction

γ(u0) ≤ γ(u0, C) = 2dG(u0, C) + |C| − 1 < 2r = n− 3 = γ(u0).

Note that |Ui| ≥ 1(i = 0, 1, · · · , r). Then we have

|Ui| ≤ 2r + 3 − r = r + 3.

So we can assert that G is a subgraph of K. Therefore, G ∈ N (d)
n−3 ⊂ Nn−3.

For the sufficiency, without loss of generality, we let G ∈ N (d)
n−3 with 1 ≤ d ≤ n− 2 and

d ≡ 1(mod 2). It is obvious that G is connected and has K(d) = Pt ∪Cd as its structural graph.

In the following argument, we shall prove two results:

(1) γ(u0) = n− 3

Clearly, we have

γ(u0, Cd) = 2dG(u0, Cd) + |Cd| − 1 = 2t+ d− 1 = n− 3.

Hence we have n = 2t+ d+ 2. Put

n1 = |V1(d)| = |V (Pt ∪ Cd)| = t+ d,

and

n2 = |V2(d)| = |V (G) \ V1| = t+ 2.
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If there is an odd cycle C in G such that γ(u0, C) < n − 3 = 2r, then 2dG(u0, C) +

|C| − 1 < 2r, i.e. dG(u0, C) + 1
2 (|C| − 1) < r. This implies that G[U ′] contains the odd cycle

C,where U ′ = {u‖ dG(u0, u) < r, u ∈ V (G)}. Because the induced subgraph K[V ′] of K about

V ′ = {u‖ dK(u0, u) < r, u ∈ V (K)} is bipartite, its subgraph G[U ′] doesn’t contain any odd

cycles,a contradiction. So we have γ(u0) = n− 3.

(2) ∀ u, v ∈ V (G), γ(u, v) ≤ n− 3

It is obvious that γ(u) ≤ n− 3 for any vertex in G. In what follows, it suffices to prove

γ(u, v) ≤ n− 3 for any two distinct vertexes u and v in V (G).

If dG(u,Cd) + dG(v, Cd) ≤ 2t, We can easily get γ(u, v) ≤ n− 3. So we put dG(u,Cd) +

dG(v, Cd) > 2t, and without loss of generality we let dG(u,Cd) > t,then there must be an odd

cycle C in G such that 2dG(u,C)+ |C| ≤ n− 2. Suppose that V (P (u,C))∩V (Pt) 6= φ, let w ∈
V (P (u,C)) ∩ V (Pt) be the first vertex along P (u,C) from u to C, then dG(u,w) > dG(u0, w).

We then have

γ(u0) ≤ γ(u0, C) ≤ 2(dG(u0, w) + dG(w,C)) + |C| − 1

< 2(dG(u,w) + dG(w,C)) + |C| − 1

= 2dG(u,C) + |C| − 1 ≤ n− 3 = γ(u0),

a contradiction. Therefore P (u,C) doesn’t intersect with Pt.

Let M be the component with u of G[V2(d)] in G, we shall complete our arguments in the

following three cases:

(I) V (C) ∩ V (Cd) 6= φ

By the connectivity of G and |V2| = t + 2, we have dG(u,Cd) = t + 1 or t + 2 which

correspond to the following six cases.

(a) dG(u,Cd) = t+ 2, dG(v, Cd) = t− 1

If v ∈ V (Pt), we have

γ(u, v) ≤ γ(u, v, Cd) ≤ dG(u,Cd) + dG(v, Cd) + |Cd| − 2

= (t+ 2) + (t− 1) + d− 2 = 2t+ d− 1 = n− 3.

If v ∈ V (P (u,C)), we have

γ(u, v) ≤ γ(u, v, C) = dG(u,C) + dG(v, C) + |C| − 1

< 2dG(u,C) + |C| − 1 ≤ n− 3.

(b) dG(u,Cd) = t+ 2, dG(v, Cd) = t

If v ∈ V (Pt),note that P (u,C) has no intersected vertex with Pt, we then have

|V (P (u, v) ∪ V (Cd)| = 2t+ d+ 2 = n.

Hence the odd cycle C such that 2dG(u,C)+ |C| ≤ n− 2 must be a loop on P (u, v), this means

|C| = 1. So we get

γ(u, v) ≤ γ(u, v, C) = dG(u, v) + |C| − 1

= dG(u, v) ≤ diam(G) ≤ γ(G).
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If v ∈ V (P (u,C)), we have

γ(u, v) ≤ γ(u, v, C) = dG(u,C) + dG(v, C) + |C| − 1

< 2dG(u,C) + |C| − 1 ≤ n− 3.

(c) dG(u,Cd) = t+ 2, dG(v, Cd) = t+ 1

This suggests that v ∈ V (P (u,C)), i.e. uv ∈ E(P (u,C)), hence we have

γ(u, v) ≤ γ(u, v, C) = dG(u,C) + dG(v, C) + |C| − 1

< 2dG(u,C) + |C| − 1 ≤ n− 3.

(d) dG(u,Cd) = t+ 1, dG(v, Cd) = t

The argument is similar to (a).

(e) dG(u,Cd) = t+ 1, dG(v, Cd) = t+ 1

Let uw ∈ E(P (u,C)),there must be vw ∈ E(G) \ (E(Kd) ∪E(P (u,C))). Hence we have

γ(u, v) ≤ γ(u, v, C) ≤ dG(u,C) + dG(v, C) + |C| − 1

= 2dG(u,C) + |C| − 1 ≤ n− 3.

(f) dG(u,Cd) = t+ 1, dG(v, Cd) = t+ 2

The argument is similar to (c).

(II) V (C) ∩ V (Cd) = φ, V (C) ∩ V (Pt) 6= φ

Let ui, uj ∈ V (C)∩ V (Pt) be the vertexes with the smallest and biggest subscripts respec-

tively, where i ≤ j ≤ t− 1. By the construct qualification (2), we have

2d(u0, ui) + |C| > 2d(u0, ut) + d,

i.e.
1

2
(|C| − 1) ≥ t− i+

1

2
(d+ 1).

By d(u,Cd) ≥ t+ 1, we have

d(u,C) +
1

2
(|C| − 1) + (t− j) ≥ t+ 1,

i.e.

d(u,C) +
1

2
(|C| − 1) ≥ j + 1.

Hence,

d(u, c) + |C| − (j − i+ 1) ≥ t+ 1 +
1

2
(d+ 1).

In addition, notice that |V2(d)| = t+ 2. We have

d(u,C) + |C| − (j − i+ 1) ≤ t+ 2.

So we have

t+ 1 +
1

2
(d+ 1) ≤ d(u, c) + |C| − (j − i+ 1) ≤ t+ 2.
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This means

d = 1, |C| = 2t− 2i+ 3,

and

d(u,C) = i+ j − t(i+ j ≥ t).

If v ∈ V (M), it is obvious that

γ(u, v) < γ(u,C) ≤ γ(G).

If v /∈ V (M), clearly we have

γ(u, v) ≤ γ(u, u0) ≤ γ(u, u0, C) ≤ d(u,C) + d(u0, C) +
1

2
(|C| − 1)

= (i+ j − t) + i+ (t− i+ 1) = i+ j + 1 < γ(G).

(III) V (C) ∩ V (Cd) = φ, V (C) ∩ V (Pt) = φ

Let ui ∈ V (P (u,Cd))∩V (Pt)(i ≤ t) be the vertex with the smallest subscript, then P (u, ui)

is the shortest path from u to Pt. We shall discuss in the two following cases.

(a) Suppose C and P (u, ui) have at least two intersected vertexes. Then |C| ≥ 3.

Let v ∈ V (M).If P (u,C) intersects with P (v, C), then we have

γ(u, v) ≤ γ(u, v, C)

≤ 2 max{d(u,C), d(v, C)} + |C| − 1

≤ 2(|V2(d)| − |C|) + |C| − 1

= 2t− |C| + 3 ≤ 2t ≤ γ(G).

If P (u,C) doesn’t intersect with P (v, C), then we have

γ(u, v) ≤ γ(u, v, C) ≤ |V2(d)| − 1 = t+ 1 ≤ γ(G).

Let v /∈ V (M) and |V ′

1 | = |V1(d) \ V (P (u0, ui))| ≥ 2. Then we have

γ(u, v) ≤ γ(u, v, C) ≤ n− |V ′

1 | − 1 ≤ n− 3 = γ(G).

If |V ′

1 | = 1, it means that i = t − 1 and d = 1. Note that d(u,Cd) ≥ t+ 1, we have

d(u, ui) ≥ i+ 1 = t. Note that |V2(d)| = t + 2, |C| ≥ 3,we have |C| ≤ 5: if |C| = 3, there

must be only two intersected vertexes of C and P (u, ui); if |C| = 5, there must be just three

intersected vertexes of C and P (u, ui). Thus we can easily have

γ(u, v) ≤ γ(u, u0, C) ≤ 2t ≤ γ(G).

(b) Suppose that there is at most one intersected vertex of C and P (u, ui). Let P (w, z)

be the shortest path from C to P (u, ui), where w ∈ V (P (u, ui)) and z ∈ V (C)(w = z suggests

that there is only one intersected vertex of C and P (u, ui)).

Let v ∈ V (M). If P (u,C) doesn’t intersect with P (v, C), we have

γ(u, v) ≤ γ(u, v, C) ≤ |V2(d)| − 1 = t+ 1 ≤ γ(G).
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If P (u,C) intersects with P (v, C), note that 2d(u,C) + |C| ≤ 2t+ d, we then have

d(u,C) ≤ t+
1

2
(d− |C|).

If d(v, C) < t+ 2 − |C|, i.e. d(v, C) + |C| − 1 ≤ t, we have

γ(u, v) ≤ γ(u, v, C) ≤ d(u,C) + d(v, C) + |C| − 1

≤ (t+
1

2
(d− |C|)) + t ≤ 2t+ d− 1 = γ(G).

If d(v, C) ≥ t+ 2 − |C|, note that d(v, C) + |C| ≤ |V2(d)| = t+ 2, we then have

d(v, C) = t+ 2 − |C|.

Now it is clear that u is just on P (v, C) and d(v, Cd) ≥ t + 1. So there must be an odd cycle

C′ such that

2d(v, C′) + |C′| ≤ 2t+ d.

If C′ is a loop on P (u, v), we then have

γ(u, v) ≤ d(u, v) ≤ diam(G) ≤ γ(G).

Otherwise, C′ doesn’t intersect with P (u, v). This suggests that d(u,C′) ≤ d(v, C′). Hence we

have

γ(u, v) ≤ γ(v, C′) ≤ γ(G).

If |C′| ≥ 3,then C′ must intersects with C. Similarly, d(u,C′) ≤ d(v, C′). So we have

γ(u, v) ≤ γ(v, C′) ≤ γ(G).

Let v /∈ V (M). Note that

γ(u, u0, C) = d(u, u0) + 2d(w, z) + |C| − 1,

γ(u, u0, Cd) = d(u, u0) + 2d(ui, ut) + d− 1,

we have

γ(u, u0, C) + γ(u, u0, Cd)

= 2(d(u, u0) + d(ui, ut) + d(w, z) + |C| + d− 1) − (d+ |C|).

If d+ |C| ≥ 6, we have

γ(u, u0) = min{γ(u, u0, C), γ(u, u0, Cd)} ≤ n− 3.

Therefore, we get

γ(u, v) ≤ γ(u, u0) ≤ γ(G).

In what follows, it suffices to discuss the case such that |C| + d ≤ 4.

Suppose that |C| + d = 4 and d(u, ui) + d(w, z) + |C| ≤ t+ 2, we have

d(u, ui) + d(w, z) + |C| − 1 ≤ t+ 1 = |V2(d)| − 1,
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i.e.

d(u, u0) + d(ui, ut) + d(w, z) + |C| + d− 1 ≤ n− 1.

Hence we have

γ(u, u0, C) + γ(u, u0, Cd) ≤ 2(n− 1) − 4 = 2(n− 3).

This suggests that

min{γ(u, u0, C), γ(u, u0, Cd)} ≤ n− 3.

Suppose that d(u, ui) + d(w, z) + |C| ≥ t+ 3, note that

d(u, ui) + d(w, z) + |C| − 1 ≤ |V2(d)| = t+ 2,

we then have

d(u, ui) + d(w, z) + |C| − 1 = |V2(d)|,

i.e.

d(u, u0) + d(ui, ut) + d(w, z) + |C| + d− 1 = n.

Hence

γ(u, u0, C) + γ(u, u0, Cd) ≤ 2n− 4 = 2(n− 2).

By the construction of the G, we have

2d(w, z) + |C| 6= 2(t− i) + d,

i.e.

γ(u, u0, C) 6= γ(u, u0, Cd).

This suggests that

min{γ(u, u0, C), γ(u, u0, Cd)} ≤ n− 3.

Suppose that |C| = d = 1 and d(u, ui) + d(w, z) ≤ t, we then have

d(u, ui) + d(w, z) + |C| − 1 = t = |V2(d)| − 2,

i.e.

d(u, u0) + d(ui, ut) + d(w, z) + |C| + d− 1 ≤ n− 2.

We then have

γ(u, u0, C) + γ(u, u0, Cd) ≤ 2(n− 2) − 2 = 2(n− 3).

Thus we have

min{γ(u, u0, C), γ(u, u0, Cd)} ≤ n− 3.

Suppose that d(u, ui) + d(w, z) ≥ t+ 1. Note that

d(u, ui) + d(w, z) + |C| − 1 ≤ |V2(d)| = t+ 2,
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we then have

t+ 1 ≤ d(u, ui) + d(w, z) ≤ t+ 2.

If d(u, ui) + d(w, z) = t+ 1, we thus get

d(u, u0) + d(ui, ut) + d(w, z) + |C| + d− 1 = n− 1.

It means that

γ(u, u0, C) + γ(u, u0, Cd) = 2(n− 1) − 2 = 2(n− 2).

Note that d(w, z) 6= t− i, we have

γ(u, u0, C) 6= γ(u, u0, Cd).

We therefore get

min{γ(u, u0, C), γ(u, u0, Cd)} ≤ n− 3.

Suppose that d(u, ui) + d(w, z) = t+ 2, then we have

d(u, u0) + d(ui, ut) + d(w, z) + |C| + d− 1 = n.

Hence

γ(u, u0, C) + γ(u, u0, Cd) = 2n.

If |d(w, z) − t− i| > 6, we then get

|γ(u, u0, C) − γ(u, u0, Cd)| > 6.

This suggests that

min{γ(u, u0, C), γ(u, u0, Cd)} ≤ n− 3.

From those as above, we can easily get

γ(u, v) ≤ γ(u, u0) ≤ γ(G).

Hence, ∀ u, v ∈ V (G), we have γ(u, v) ≤ n− 3. �

Theorem 4.2 G is a graph with order n of the second type with γ(G) = n− 3 iff G ∈ Mn−3.

Proof For the sufficiency, ∀ G ∈ Mn−3, we have γ(G) = n − 3 and γ(w) < γ(G) for all

w ∈ V (G) by a direct verification.

Now for the necessity, suppose G is a graph of order n of the second type with γ(G) = n−3.

Then there must be two distinct vertexes u and v and an odd cycle C0 such that

γ(u, v) = γ(u, v, C0) = γ(G) = n− 3.

We put the path P (u, v) = v0v1 · · · vm, where v0 = u and vm = v with n − 3 ≡ m(mod 2).

Without loss of generality,we set

n− 3 = m+ 2r, d0 = |C0| ≡ 1(mod 2).
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Suppose that C is an odd cycle in G, then we have

|V (P (u, v)) ∩ V (C)| ≤ n− γ(G) = 3.

In the following, we shall complete our arguments in four cases.

(I) Suppose that any odd cycle doesn’t intersect with any (u, v)-shortest path in G, then we

have

t0 = dG(P (u, v), C0) > 0.

By the equation γ(u, v) = γ(u, v, C0), we can easily get

n = m+ 2t0 + d0 + 2.

We put the path P0 = P (P (u, v), C0) = x0x1 · · ·xt0 , where x0 = vj and xt0 ∈ V (C0). Set

V1 = V (P (u, v)) ∪ V (C0) ∪ V (P0), V2 = V (G) \ V1,

then we have

|V1| = m+ t0 + d0, |V2| = t0 + 2.

Suppose that the odd cycles C1 and C2 satisfy the following qualifications respectively.

γ(u) = γ(u,C1), γ(v) = γ(v, C2).

If V (P (u,C1)) ∩ V (P0) 6= φ and V (P (v, C2)) ∩ V (P0) 6= φ, it is clear that

γ(u,C1) = γ(u,C0), γ(v, C2) = γ(v, C0).

Hence

γ(u) = γ(u,C0) = 2dG(u,C0) + d0 − 1 = 2dG(u, xt0) + d0 − 1 < n− 3,

γ(v) = γ(v, C0) = 2dG(v, C0) + d0 − 1 = 2dG(v, xt0) + d0 − 1 < n− 3.

Thus we get

γ(G) = γ(u, v) = γ(u, v, C0) = dG(u, xt0) + dG(v, xt0 ) + d0 − 1

< n− 3 = γ(G),

a contradiction. So we assume V (P (u,C1)) ∩ V (P0) = φ without loss of generality. Suppose

vi ∈ V (P (u,C1))∩V (P (u, v)) is the intersected vertex with the biggest subscript, put the path

P1 = P (P (u, v), C1) = y0y1 · · · yt1 with d1 = |C1| and t1 = dG(vi, C1), where y0 = vi and

yt1 ∈ V (C1). Then we have V (P0) ∩ V (P1) = φ(i < j) and

t1 ≤ t1 + d1 − 1 ≤ |V2| ≤ t0 + 2.

By the choose of P (u, v) and C0, we have

2t0 + d0 ≤ 2t1 + d1.
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Hence

2t1 + 2d1 − 6 + d0 ≤ 2t0 + d0 ≤ 2t1 + d1 ≤ 2t0 + 5.

So we get

2 ≤ d0 + d1 ≤ 6, |t0 − t1| ≤ 2.

Set Kd0,d1 = P (u, v) ∪ P0 ∪ P1 ∪ C0 ∪ C1, then we have

|V (Kd0,d1)| = m+ t0 + t1 + d0 + d1 − 1 ≤ n,

and

|V (G) \ V (Kd0,d1)| = t0 + 3 − t1 − d1 ≤ 2.

It is easy to verify that G meets the first three construct qualifications (1),(2) and (3) of Td0,d1 .

We shall prove that G meets the other qualifications:

Suppose there exists a (xa, yb)-path with length p which connects P0 ∪ C0 to P1 ∪ C1 in

G−E(Kd0,d1), where 0 ≤ a ≤ t0 and 0 ≤ b ≤ t1. Clearly,p = t0 + 4− t1 − d1 ≤ 3. Because any

odd cycle doesn’t intersect with the (u, v)-shortest path P (u, v), then we have

a+ b+ p > j − i, a+ b + i+ j ≡ p(mod 2),

and

dG(v0, vi) + dG(vi, yb) + p + dG(xa, vj) + dG(vj , vm) + 2dG(xa, xt0) + |C0| − 1

≥ γ(u, v),

and

dG(v0, vi) + dG(vi, yb) + p + dG(xa, vj) + dG(vj , vm) + 2dG(yb, yt1) + |C1| − 1

≥ γ(u, v).

Hence we have

i+ b+ p+ a+m− j + 2(t0 − a) + d0 − 1 ≥ m+ 2t0 + d0 − 1,

and

i+ b+ p+ a+m− j + 2(t1 − b) + d1 − 1 ≥ m+ 2t0 + d0 − 1.

Therefore,we get

(2t0 + d0) − (2t1 + d1) − (p+ i− j) ≤ a− b ≤ p+ i− j.

The qualification (4) thus meets.

Suppose that there exists a vertex x in G such that dG(x,C0) ≥ t0 and dG(x,C1) ≥
t0 + 1

2 (d0 − d1), then we can conclude that

γ(x,C0) ≤ γ(G), γ(x,C1) ≤ γ(G).

Hence there must be an odd cycle C in G such that

γ(x) = γ(x,C) < γ(G),
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i.e.

2dG(x,C) + |C| − 1 < n− 3 = m+ 2r.

The fifth qualification (5) meets.

Clearly, G ⊆ T , then we have G ∈ M(0)
n−3.

(II) Suppose that there exists an odd cycle C and a path P (u, v) in G such that |V (P (u, v))∩
V (C)| = 1, but for any odd cycle C′ and any (u, v)-shortest path P ′(u, v), |V (P ′(u, v)) ∩
V (C′)| ≥ 2 doesn’t come into existence. Without loss of generality, we assume that C is the

smallest odd cycle which meets the above qualifications, and V (P (u, v))∩ V (C) = {vi}. Hence

n− 3 = γ(u, v) ≤ γ(u, v, C) = m+ |C| − 1 = |V (P (u, v) ∪C)| − 1 ≤ n− 1.

Note that n − 3 ≡ m(mod 2), we have m + |C| = n − 2 or m + |C| = n. Suppose

that m + |C| = n, then we can assert that C isn’t a primitive cycle of P (u, v), and V (G) =

V (P (u, v)) ∪ V (C). Note that

m = dG(u, v) ≤ γ(u, v) = n− 3,

then we have |C| ≥ 3. Suppose that the odd cycles C1 and C2 satisfy the following equations

respectively:

γ(u) = γ(u,C1), γ(v) = γ(v, C2).

If both C1 and C2 intersect with C, clearly we have

γ(u,C1) = γ(u,C), γ(v, C2) = γ(u,C).

It is easy to verify

max{γ(u,C), γ(v, C)} ≥ γ(G),

a contradiction. Hence, we assume that C1 doesn’t intersect with C without loss of generality.

Therefore, C1 must intersect with P (u, v), and C1 is a loop on vi of P (u, v)(without loss of

generality,we set i < j). This contradicts the choose of C.Hence,m+ |C| 6= n. Therefore,we set

m+ |C| = n− 2. We then have

n− 3 = γ(u, v) = γ(u, v, C).

We might as well put the cycle C = C0 = y0 · · · yt0xt0 · · ·x1y0, where y0 = vi. Thus, we have

|C| = 2t0 + 1, n = m+ 2t0 + 3.

We put the graph Km,t0 = P (u, v)∪C0. It is obvious that its order is n− 2. It is easy to verify

that G meets the first three construct qualifications (1), (2) and (3) of Tm,t0 . We shall prove

that G meets the other qualifications:

Suppose that there is a (xa, yb)-path with length p which divides up C0 in G− E(Km,t0),

where 0 ≤ a, b ≤ t0.Clearly,p ≤ 3. Note that any odd cycle in G has only one intersected vertex

with the (u, v)-shortest path, and C0 is the smallest odd cycle which has only one intersected

vertex with P (u, v):
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If a+ b + 1 ≡ p(mod 2), then we have

dG(vi, xa) + dG(vi, yb) + p ≥ |C0|,

i.e.

a+ b+ p ≥ 2t0 + 1.

If a+ b ≡ p(mod 2), then we have

dG(v0, vm) + 2dG(xa, vi) + |C0| − dG(xa, vi) − dG(vi, yb) + p− 1 ≥ γ(u, v)

and

dG(v0, vm) + 2dG(vi, yb) + |C0| − dG(xa, vi) − dG(vi, yb) + p− 1 ≥ γ(u, v),

i.e.

m+ a+ 2t0 − b+ p ≥ m+ 2t0

and

m+ b+ 2t0 − a+ p ≥ m+ 2t0.

Hence, |a− b| ≤ p, and the fourth qualification (4) comes into existence.

Suppose there exists a vertex x in G such that dG(x,C0) ≥ 1
2m, then we have γ(x,C0) ≥

γ(G). Therefore, there must be an odd cycle C such that

γ(x) = γ(x,C) < γ(G),

i.e.

2dG(x,C) + |C| − 1 < n− 3 = m+ 2r.

The fifth qualification (5) comes into existence.

Clearly, G ⊆ T , then we have G ∈ M(1)
n−3.

(III) Suppose that there exists an odd cycle C and a path P (u, v) in G such that |V (P (u, v))∩
V (C)| = 2, but for any odd cycle C′ and any (u, v)-shortest path P ′(u, v), |V (P ′(u, v)) ∩
V (C′)| ≥ 3 doesn’t come into existence. Without loss of generality, we assume that C is the

smallest odd cycle satisfying the above qualifications, and V (P (u, v))∩ V (C) = {vi, vj(i < j)}.
Clearly, j = i+ 1. Hence, we have

n− 3 = γ(u, v) ≤ γ(u, v, C) = i+ (m− j) + |C| − 2

= m+ |C| − 3 = |V (P (u, v) ∪ C)| − 2 ≤ n− 2.

Note that n− 3 ≡ m(mod 2). We have γ(u, v) = γ(u, v, C). Hence, C is a (u, v)-primitive

cycle, where n = m+ |C|. We might as well put the cycle C = C0 = y0 · · · yt0zxt0 · · ·x0y0,where

y0 = vi and x0 = vi+1. Hence, we have

|C0| = 2t0 + 3, n = m+ 2t0 + 3.

We put the graph Km,t0 = P (u, v)∪C0. It is obvious that its order is n− 1. It is easy to verify

that G meets the first three construct qualifications (1),(2) and (3) of Tm,t0 . We shall prove

that G meets the other qualifications:
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Suppose that there exists a (xa, yb)-path with length p which divides up C0 in G−E(Km,t0),

where 0 ≤ a, b ≤ t0.Clearly,p ≤ 2. Note that any odd cycle has at most two intersected

vertexes with any (u, v)-shortest path in G, and C0 is the smallest odd cycle which has just two

intersected vertexes with P (u, v).

(a) If a+ b+ 1 ≡ p(mod 2), then we have

dG(v0, vm) + 2dG(vj , xa) + |C0| − dG(vj , xa) − dG(vi, yb) − dG(vi, vj) + p− 1

≥ γ(u, v)

and

dG(v0, vm) + 2dG(vi, yb) + |C0| − dG(vj , xa) − dG(vi, yb) − dG(vi, vj) + p− 1

≥ γ(u, v).

Hence, we have

m+ a+ 2t0 − b+ p+ 1 ≥ m+ 2t0

and

m+ b+ 2t0 − a+ p+ 1 ≥ m+ 2t0.

Therefore, we have

|a− b| ≤ p+ 1.

(b) If a + b ≡ p(mod 2), because C0 is the the smallest odd cycle which has just two

intersected vertexes with P (u, v), we have

dG(vj , xa) + dG(vi, yb) + dG(vi, vj) + p ≥ |C0|.

We thus get

a+ b+ p ≥ 2t0 + 2.

Suppose that there exists a (z, xa)-path(or (z, yb)-path) with length p in G − E(Km,t0)

which divides up C0, where 0 ≤ a, b ≤ t0. Clearly, p ≤ 2. If a+ t0 + 1 ≡ p(mod 2), note that

C0 is the smallest odd cycle which has just two intersected vertexes with P (u, v), then we have

dG(vj , xa) + p+ dG(z, yt0) + dG(yt0 , vi) + dG(vi, vj) ≥ |C0|.

We thus get

a+ p ≥ t0 + 1.

If a+ t0 ≡ p(mod 2), then we have

dG(v0, vm) + 2dG(xa, vj) + (p+ dG(xa, xt0) + dG(z, xt0)) − 1 ≥ γ(u, v),

i.e.

m+ 2a+ (p+ t0 − a+ 1) − 1 ≥ m+ 2t0.

We then get

a+ p ≥ t0.
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Using analogous argument, we can get the corresponding restrained qualifications for b. Hence

the fourth construct qualification (4) comes into existence.

Suppose that there exists a vertex x in G such that dG(x,C0) ≥ 1
2m − 1, then we have

γ(x,C0) ≥ γ(G). Hence, there must exist some odd cycle C such that

γ(x) = γ(x,C) < γ(G),

i.e.

2dG(x,C) + |C| − 1 < n− 3 = m+ 2r.

The fifth qualification (5) thus comes into existence.

Clearly, G ⊆ T , then we have G ∈ M(2)
n−3.

(IV) Suppose that there exists an odd cycle C and a path P (u, v) in G such that |V (P (u, v))∩
V (C)| = 3. Without loss of generality,we assume that C is the smallest odd cycle which

meets the above qualifications, where V (P (u, v)) ∩ V (C) = {vi, vk, vj(i < k < j)}. Clearly,

j = k + 1, i = k − 1. Hence,we have

n− 3 = γ(u, v) ≤ γ(u, v, C) = i+ (m− j) + |C| − 3

= m+ |C| − 5 = |V (P (u, v) ∪ C)| − 3 ≤ n− 3.

Therefore, we have

γ(u, v) = γ(u, v, C), |V (P (u, v)) ∪ V (C)| = |V (G)| = n.

We might as well put the cycle C = C0 = y0y1 · · · yt0xt0 · · ·x1x0wy0, where y0 = vk−1, w = vk

and x0 = vk+1. Hence, we have

|C0| = 2t0 + 3, n = m+ 2t0 + 1.

We put the graphKm,t0 = P (u, v)∪C0. It is easy to verify that G meets the first three construct

qualifications (1), (2) and (3) of Tm,t0 . We shall prove that G meets the other qualifications:

Suppose that there exists an edge xayb in G−E(Km,t0) which divides C0, where 0 ≤ a, b ≤
t0. Note that C0 is the smallest odd cycle which has just three intersected vertexes with the

(u, v)-shortest path P (u, v), then we have a+ b ≡ 1(mod 2). In addition, we have

dG(v0, vm) + 2dG(xa, vj) + |C0| − dG(xa, vj) − dG(vi, vj) − dG(vi, yb)

≥ γ(u, v)

and

dG(v0, vm) + 2dG(vi, yb) + |C0| − dG(xa, vj) − dG(vi, vj) − dG(vi, yb)

≥ γ(u, v).

Hence, we have

m+ a+ 2t0 − b+ 1 ≥ m+ 2t0 − 2

and

m+ b+ 2t0 − a+ 1 ≥ m+ 2t0 − 2.
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We thus get |a− b| ≤ 3.

Suppose that there exists an edge vkxa in G − E(Km,t0) which divides up C0, where

1 ≤ a ≤ t0.

If a is an odd number, then we have

dG(v0, vm) − dG(vk, vj) + 1 + dG(vj , xa) − 1 ≥ γ(u, v),

i.e.

m− 1 + 1 + a− 1 ≥ m+ 2t0 − 2.

Thus, we have a ≥ 2t0 − 1. Therefore, we have t0 = 1, a = 1.

If a is an even number, then we have

dG(v0, vm) − dG(vi, vk) + |C0| − dG(vj , xa) − dG(vi, vj) + dG(vk, xa) − 1

≥ γ(u, v),

i.e.

m− 1 + (2t0 + 3) − a− 2 + 1 − 1 ≥ m+ 2t0 − 2,

We thus get a ≤ 2. Hence, we have a = 2.

Suppose that there is an edge vkyb in G − E(Km,t0) which divides C0, where 1 ≤ b ≤ t0.

Using an analogous argument, we have b = 2, or b = 1 (iff t0 = 1). Hence, the fourth

qualification (4) comes into existence.

Suppose that there is a vertex x in G such that dG(x,C) ≥ 1
2m−2, then we have γ(x,C) ≥

γ(G). Therefore, there must be an odd cycle C such that

γ(x) = γ(x,C) < γ(G),

i.e.

2dG(x,C) + |C| − 1 < n− 3 = m+ 2r.

Hence, the fifth qualification (5) comes into existence.

Clearly,G ⊆ T , then we have G ∈ M(3)
n−3. �

Using the connection between the exponent of a matrix and the exponent of a graph stated

above, we have get the following result by combining Theorems 4.1 with 4.2.

Theorem 4.3 Let A be a symmetric primitive matrix with order n, then γ(A) = n − 3 iff

G(A) ∈ Nn−3 ∪Mn−3.
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