The Characterization of Symmetric Primitive Matrices with exponent $n-3$

Lichao Huangfu¹ and Junliang Cai^2

1. Beijing NO.4 High School, Beijing, P.R.China

2. School of Mathematical Sciences of Beijing Normal University, Beijing, 100875, P.R.China.

Email: caijunliang@bnu.edu.cn

Abstract: An $n \times n$ nonnegative matrix $A = (a_{ij})$ is said to be *Smarandachely primitive* if $A^k > 0$ for at least two integers $k > 0$ and primitive if for some integers $k > 0$. The least such integers k is called the *Smarandache exponent* or *exponent* of A and denoted by $\gamma^{S}(A)$ and $\gamma(A)$, respectively. The symmetric primitive matrices with exponent $\geq n-2$ has been described in articles [4]-[9]. In this paper the complete characterization of symmetric primitive matrices with exponent $n-3$ is obtained.

Key words: Smarandachely primitive matrix, Primitive matrix, Smarandache exponent, exponent, primitive graph.

AMS(2000): 05C10.

§1. Introduction

An $n \times n$ nonnegative matrix $A = (a_{ij})$ is said to be *Smarandachely primitive* if $A^k > 0$ for at least two integers $k > 0$ and *primitive* if for some integers $k > 0$. The least such integer k is called the *Smarandache exponent* or *exponent* of A and denoted by $\gamma^{S}(A)$ and $\gamma(A)$, respectively. The associated graph of *symmetric matrix A*, denoted by $G(A)$, is the graph with a vertex set $V(G(A)) = \{1, 2, \dots, n\}$ such that there is an edge from i to j in $G(A)$ if and only if $a_{ij} > 0$. A graph G is called to be *primitive* if there exists an integer $k > 0$ such that for all ordered pairs of vertices $i, j \in V(G)$ (not necessarily distinct), there is a walk from i to j with length k. The least such k is called the *exponent* of G, denoted by $\gamma(G)$. Clearly, a symmetric matrix A is primitive if and only if its associated graph $G(A)$ is primitive. And in this case, we have $\gamma(A) = \gamma(G(A))$. By this reason as above, we shall employ graph theory as a major tool and consider $\gamma(G(A))$ to prove our results.

Let SE_n be the exponent set of $n \times n$ symmetric primitive matrices. In 1986,Shao^[4] proved $SE_n = \{1, 2, \dots, 2n-2\} \setminus S$, where S is the set of all odd numbers among [n,2n-2] and gave the characterization of the matrix with exponent $2n-2$. In 1990, Wang^[5] gave the characterization of the matrix with exponent $2n-4$. In 1991, Li^[6] obtained the characterization with exponent

¹Supported by the Priority Discipline of Beijing Normal University and NNSFC (10271017).

²Received July 16, 2008. Accepted September 6, 2008.

 $2n-6$. In 1995, Cai and Zhang^[7] derived the complete characterization of symmetric primitive matrices with exponent $2n - 2r \geq n$). In 2003, Cai and Wang^[8] got the characterization with exponent $n-1$. In 2004,Cai^[9] characterized the matrix with exponent $n-2$. The purpose of this paper is to go further into the problem and give the complete characterization of symmetric primitive matrices with exponent $n-3$.

§2. Some lemmas on $\gamma(G)$

For convenience, We will narrate the lemmas with graph theory below.

Lemma 2.1^[4] G is a primitive graph iff G is connected and has odd cycles.

The local exponent from vertex u to v, denoted by $\gamma(u, v)$, is the least integer k such that there exists a walk of length l from u to v for all $l \geq k$. We denote $\gamma(u, u)$ by $\gamma(u)$ for short.

Lemma 2.2^[4] If G is a primitive graph, then

$$
\gamma(G) = \max_{u,v \in V(G)} \gamma(u,v).
$$

We denote by $P(u, v)$ the shortest walk from u to v in G. The length of $P(u, v)$ is called the *distance* between u and v, denoted by $d_G(u, v)$. The *diameter* of G is defined as

$$
diam(G) = \max_{u,v \in V(G)} d_G(u,v).
$$

Let G_1 and G_2 be two subgraphs of $G.P(G_1, G_2)$ denotes the shortest walk between G_1 and G_2 . Its length

$$
d_G(G_1, G_2) = \min\{d_G(u, v) \mid u \in V(G_1), v \in V(G_2)\}.
$$

Lemma 2.3^[9] Let G be a primitive graph, and let $u, v \in V(G)$. If there are two walks from u to v with length k_1 and k_2 , respectively, where $k_1 + k_2 \equiv 1 \pmod{1}$, then

$$
\gamma(u,v) \leq \max\{k_1,k_2\} - 1.
$$

Let $u, v \in V(G)$, we name the walk from u to v with different parity length to $d_G(u, v)$ a dissimilar walk, denoted by $W(u, v)$. The shortest (u, v) -dissimilar walk is called the *primitive* walk between u and v, denoted by $W_r(u, v)$, its length is denoted by $b(u, v)$ [9].

Lemma 2.4^[8] If G is a primitive graph, then

$$
\gamma(u,v) = b(u,v) - 1.
$$

Therefore,

$$
\gamma(G) = \max_{u,v \in V(G)} b(u,v) - 1.
$$

Lemma 2.5^[8] Let G be a primitive graph, then

(i) $\gamma(u, v) \geq d_G(u, v);$ (ii) $\gamma(u, v) \equiv d_G(u, v) \pmod{2}$; (iii) $\gamma(G) > diam(G)$, and $\gamma(G) \equiv diam(G)$ (mod 2).

Lemma 2.6^[8] Suppose G is the primitive graph with order n. If there are $u, v \in V(G)$ such that $\gamma(u, v) = \gamma(G)$, then for any odd cycle C in G we have

$$
|V(P(u,v)) \cap V(C)| \leq n - \gamma(G).
$$

Apparently, any (u, v) -dissimilar walk is inevitably correlative with some odd cycle. And for any odd cycle C, there is a (u, v) -dissimilar walk correlative with C, we denote it by $W(u, v, C)$. Therefore, there must be some smallest odd cycle C_0 such that $W_r(u, v) = W(u, v, C_0)$. We call C_0 a (u, v) -primitive cycle or the primitive cycle of $P(u, v)$. If there exists a (u, v) -shortest path which intersects with its primitive cycle C_0 , then we can choose some (u, v) -shortest path, denoted by $P(u, v)$ might as well, such that their intersected vertexes can be arranged on a path.Set $p = |V(P(u, v)) \cap V(C_0)|$, then $p \le \min\{n - \gamma(G), \left[\frac{n}{2}\right], \frac{1}{2}(|C_0| - 1)\}$. Ulteriorly, we have

$$
\gamma(u, v) = \gamma(u, v, C_0)
$$

= $d_G(u, C_0) + |P(C_0)| + d_G(v, C_0) - 1$
= $d_G(u, v) + |C_0| - 2(p - 1) - 1$,

where $P(C_0)$ denotes the left part of C_0 which deletes the part in common with $P(u, v)$. If the (u, v) -shortest path has at most one intersected vertex with its primitive cycle C_0 , there must be $w \in V(C_0)$ such that $d_G(u, C_0) = d_G(u, w)$ and $d_G(v, C_0) = d_G(v, w)$. Further we have

$$
\gamma(u, v) = \gamma(u, v, C_0)
$$

= $d_G(u, C_0) + |C_0| + d_G(v, C_0) - 1$
= $d_G(u, w) + |C_0| + d_G(v, w) - 1$.

§3. Constructions of graphs

Let G be a primitive graph with order n. If there exists a vertex $w \in V(G)$ such that $\gamma(w)$ $\gamma(G)$, we call G a graph of the first type, otherwise a graph of the second type. Firstly, we define a class of graphs \mathcal{N}_{n-3} as follows:

Denote the set $\mathcal{N}_{n-3} = \mathcal{N}_{n-3}^{(1)} \cup \mathcal{N}_{n-3}^{(3)} \cup \cdots \cup \mathcal{N}_{n-3}^{(n-2)}$, where $\mathcal{N}_{n-3}^{(d)}(1 \le d \le n-2, d \equiv$ $1(\text{mod } 2), n \equiv 1(\text{mod } 2))$ are defined as follows.

Let $n = 2r + 3$ and $K = (V, E)$ be a graph, where the vertex set $V = \bigcup$ $\bigcup_{0 \leq i \leq r} V_i$ with $V_i \cap V_j = \phi(0 \leq i < j \leq r)$ and $V_k = \{u_{l,k} | l = 1, 2, \cdots, r+3\}$ $(k = 0, 1, \cdots, r)$, the edge set $E = E_1 \cup E_2$ with $E_1 = \{uv \mid u \in V_i, v \in V_{i+1}, 0 \le i \le r-1\}$ and $E_2 = \{uv \mid u, v \in V_r\}$. For any odd number d such that $1 \leq d \leq n-2$, let $t = r-\frac{1}{2}(d-1)$. We put the path $P_t = u_{1,0}u_{1,1} \cdots u_{1,t}$ and the cycle $C_d = u_{1,t}u_{1,t+1}\cdots u_{1,r}u_{2,r}\cdots u_{2,t+1}u_{1,t}$, and set $K_{(d)} = P_t \cup C_d$ which we call it a structural graph. Let the set of induced subgraphs with order n of K which contain $K_{(d)}$ be $K^{(d)}$. For any $N \in K^{(d)}$, we denote the spanning subgraph of N which contains subgraph $K_{(d)}$ by $N_{(d)}$, and define the set of graphs $\mathcal{N}^{(d)}$ as:

$$
\mathcal{N}^{(d)} = \{ N_{(d)} \mid N \in K^{(d)}, 1 \le d \le n-2, d \equiv 1 \pmod{2} \}.
$$

We mark the graphs of $\mathcal{N}^{(d)}$ with $\mathcal{N}^{(d)}_{n-3}$ which satisfy the following qualifications:

- (1) $diam(N_{(d)}) \leq n-3;$
- (2) For any odd number $d' > d$, there doesn't exist the graph $K_{(d')}$ in $N_{(d)}$;

(3) Let x be the vertex of $N_{(d)}$ such that $d_{N_{(d)}}(x, C_d) > t$, then there must exist a odd cycle C such that:

$$
2d_{N_{(d)}}(x, C) + |C| \le n - 2.
$$

Let $u_i \in V(P(x, C_d)) \cap P_t(i \leq t)$ be the vertex with the smallest subscript. If C is the odd cycle which doesn't intersect with $K_{(d)}$ and has at most one intersected vertex with $P(x, u_i)$ (The shortest path from C to $P(x, u_i)$ is denoted by $P(w, z)$, where $w \in V(P(x, u_i))$ and $z \in V(C)$. And it suggests that C and $P(x, u_i)$ has only one vertex in common if $w = z$), and such that $2d_{N_{(d)}}(w, z) + |C|$ is as small as possible, then

(*i*) if $|C| + d = 4$ and $d_{N_{(d)}}(x, u_i) + d_{N_{(d)}}(w, z) + |C| = t + 3$, then we must have

$$
2d_{N_{(d)}}(w, z) + |C| \neq 2(t - i) + d.
$$

(*ii*) if $|C| = d = 1$ and $d_{N_{(d)}}(x, u_i) + d_{N_{(d)}}(w, z) = t + 1$, then we must have

$$
d_{N_{(d)}}(w, z) \neq t - i.
$$

(*iii*) if $|C| = d = 1$ and $d_{N_{(d)}}(x, u_i) + d_{N_{(d)}}(w, z) = t + 2$, then we must have

$$
|d_{N_{(d)}}(w,z) - (t - i)| \ge 6.
$$

Another class of graphs \mathcal{M}_{n-3} is defined as follows:

Let $n-3 = m + 2r$, then $n-3 \equiv m \pmod{2}$. Let $T = (U, F)$ be a graph, where the vertex set $U = \bigcup$ $\bigcup_{0 \leq i \leq r} U_i$ with $U_i \cap U_j = \phi(0 \leq i < j \leq r)$ and $U_i = \{u_{i,k} \mid k = 0, 1, \cdots, n - 1\}$ $1\{(i = 0, 1, 2, \dots, r)$, the edge set $F = F_1 \cup F_2 \cup F_3$ with $F_1 = \{u_{i,j}u_{k,l} \mid j+l+i+k \equiv 1\}$ $1(\text{mod }2)$, $F_2 = \{uv \mid u, v \in U_r\}$ and $F_3 = \{uv \mid u \in U_{r-1}, v \in U_r\}$. We defined the set of graphs $\mathcal{M}_{n-3} = \mathcal{M}_{n-3}^{(0)} \cup \mathcal{M}_{n-3}^{(1)} \cup \mathcal{M}_{n-3}^{(2)} \cup \mathcal{M}_{n-3}^{(3)}$ as follows:

(i) Construction of $\mathcal{M}_{n-3}^{(0)}$: Let d_0, d_1 be the odd numbers such that $1 \leq d_0, d_1 \leq 5$ and $2 \le d_0 + d_1 \le 6$, and t_0, t_1 be the positive numbers such that $2r + 1 = 2t_0 + d_0 \le 2t_1 + d_1$ and $m + t_0 + t_1 + d_0 + d_1 \leq n + 1$. We put the path $P_0 = u_{0,j}u_{1,j} \cdots u_{t_0,j}$ and the path $P_1 = u_{0,i}u_{1,i} \cdots u_{t_1,i}$ $(0 \leq h \leq i \leq j \leq m+h \leq n-1)$. Let C_{d_0} be the cycle with length d_0 which has only one intersected vertex $u_{t_0,j}$ with P_0 , while C_{d_1} be the cycle with length d_1 which has only one intersected vertex $u_{t_1,i}$ with P_1 and doesn't intersect with C_{d_0} . Put $K_{d_0,d_1} = P(u_{0,h}, u_{0,m+h}) \cup P_0 \cup P_1 \cup C_0 \cup C_1$, and call it a *structural graph*. Let $V(d_0, d_1) =$ $V_1(d_0, d_1) \cup V_2(d_0, d_1)$, where $V_1(d_0, d_1) = V(K_{d_0, d_1})$ with $|V_1(d_0, d_1)| = m + t_0 + t_1 + d_0 + d_1 - 1 \le$ n,and $V_2(d_0, d_1) \subseteq U \setminus V_1(d_0, d_1)$ with $|V_2(d_0, d_1)| = t_0 + 3 - t_1 - d_1 \leq 2$. Therefore, we have $|V(d_0, d_1)| = n$. We choose the connected subgraph T_{d_0, d_1} of $T[V(d_0, d_1)]$ to form the set of graphs $\mathcal{M}_{n-3}^{(0)}$, where T_{d_0,d_1} satisfies that:

- $(1) diam(T_{d_0,d_1}) \leq n-3;$
- $(2) V(T_{d_0,d_1}) = V(d_0,d_1),$ and $E(K_{d_0,d_1}) \subseteq E(T_{d_0,d_1});$

(3) there doesn't exist a path P_2 and an cycle C_{d_2} such that $2t_2 + d_2 < 2t_0 + d_0$ and they have only one common vertex $u_{t_2,l}$, where $P_2 = u_{0,l} u_{1,l} \cdots u_{t_2,l}$ with length $t_2 > 0$ and C_{d_2} is an odd cycle with length d_2 ;

(4) if there exist a $(x_{a,j}, y_{b,i})$ -path with length $p = t_0 + 4 - t_1 - d_1 \leq 3$ which connects $P_0 \cup C_0$ to $P_1 \cup C_1$ in $T_{d_0,d_1} - E(K_{d_0,d_1})$, where $0 \le a \le t_0$ and $0 \le b \le t_1$, then we have

$$
a + b + p > j - i, a + b + i + j \equiv p \pmod{2},
$$

and

$$
(2t0 + d0) - (2t1 + d1) - (p + i - j) \le a - b \le p + i - j;
$$

(5) if there exists a vertex x in T_{d_0,d_1} such that $d_{T_{d_0,d_1}}(x,C_0) \ge t_0$ and $d_{T_{d_0,d_1}}(x,C_1) \ge$ $t_0 + \frac{1}{2}(d_0 - d_1)$, there must exist an odd cycle C such that

$$
2d_{T_{d_0,d_1}}(x,C) + |C| < m + 2r + 1.
$$

(*ii*) Construction of $\mathcal{M}_{n-3}^{(1)}$: Let $m + 2t_0 + 3 = n, t_0 \ge 0$. Let $C_{t_0} = u_{0,i} \cdots u_{t_0,i} u_{t_0,i+2} \cdots$ $u_{1,i+2}u_{0,i}$ $(0 \leq h \leq i \leq m+h \leq n-1)$, then $|C_{t_0}| = 2t_0 + 1(C_{t_0}$ is a loop on $u_{0,i}$ if $t_0 = 0$). Put the graph $K_{m,t_0} = P(u_{0,h}, u_{0,m+h}) \cup C_{t_0}$, and call it a *structural graph*. Let $V(m, t_0) = V_1(m, t_0) \cup V_2(m, t_0)$, where $V_1(m, t_0) = V(K_{m, t_0})$ and $V_2(m, t_0) \subseteq U \setminus V_1(m, t_0)$ with $|V_2(m, t_0)| = 2$. We choose the connected subgraph T_{m,t_0} of $T[V(m, t_0)]$ to form the set of graphs $\mathcal{M}_{n-3}^{(1)}$, where T_{m,t_0} satisfies that:

- (1) $diam(T_{m,t_0}) \leq n-3;$
- (2) $V(T_{m,t_0}) = V(m,t_0)$, and $E(K_{m,t_0}) \subseteq E(T_{m,t_0})$;

(3) neither does there exist an odd cycle with length $2t_0 + 1$ that has only one intersected vertex with $P(u_{0,h}, u_{0,m+h})$, nor does there exist an odd cycle C_d with length d such that $2t + d < 2t_0 + 1$ in T_{m,t_0} , where $t = d_{T_{m,t_0}}(P(u_{0,h}, u_{0,m+h}), C_d) > 0;$

(4) if there exists a $(u_{b,i}, u_{a,i+2})$ -path with length $p \leq 3$ which divides up C_{t_0} in T_{m,t_0} – $E(K_{m,t_0})$, where $0 \le a, b \le t_0$, then a, b must satisfy that:if $a + b \equiv p \pmod{2}$, then $|a - b| \le p$; if $a + b + 1 \equiv p \pmod{2}$, then $a + b + p \geq 2t_0 + 1$;

(5) if there exists a vertex x in T_{m,t_0} such that $d_{T_{m,t_0}}(x, C_{t_0}) \geq \frac{1}{2}m$, there must be an odd cycle C such that

$$
2d_{T_{m,t_0}}(x, C) + |C| < m + 2r + 1;
$$

(*iii*) Construction of $\mathcal{M}_{n-3}^{(2)}$: Let $m+2t_0+3=n, t_0\geq 0$. We put the cycle C_{t_0} = $u_{0,i} \cdots u_{t_0,i} z u_{t_0,i+1} \cdots u_{0,i+1} u_{0,i} (0 \leq h \leq i < i+1 \leq m+h \leq n-1)$, where $z = u_{t_0+1,i}$ or $u_{t_0+1,i+1}$, then $|C_{t_0}| = 2t_0 + 3$. Put $K_{m,t_0} = P(u_{0,h}, u_{0,m+h}) \cup C_{t_0}$, and we call it a structural graph. Let $V(m, t_0) = V_1(m, t_0) \cup V_2(m, t_0)$, where $V_1(m, t_0) = V(K_{m, t_0})$ and $V_2(m, t_0) \subseteq$ $U \setminus V_1(m, t_0)$ with $|V_2(m, t_0)| = 1$. We choose the connected subgraph T_{m,t_0} of $T[V(m, t_0)]$ to form the set of graphs $\mathcal{M}_{n-3}^{(2)}$, where T_{m,t_0} satisfies that:

- (1) $diam(T_{m,t_0}) \leq n-3;$
- $(2) V(T_{m,t_0}) = V(m,t_0),$ and $E(K_{m,t_0}) \subseteq E(T_{m,t_0});$

(3) neither does there exist an odd cycle with length less than $2(t_0 + q) - 1$ which have $q(1 \le q \le 2)$ intersected vertexes with $P(u_{0,h}, u_{0,m+h})$, nor does there exist an odd cycle C_d with length d such that $2t + d < 2t_0 + 1$ in T_{m,t_0} , where $t = d_{T_{m,t_0}}(P(u_{0,h}, u_{0,m+h}), C_d) > 0;$

(4) if there exists a $(u_{b,i}, u_{a,i+1})$ -path with length $p \leq 2$ that divides up C_{t_0} in T_{m,t_0} – $E(K_{m,t_0})$, where $0 \le a, b \le t_0 + 1$, then a, b must satisfy that: if $a + b \equiv p \pmod{2}$, then $a + b + p \ge 2t_0 + 2$; if $a + b + 1 \equiv p \pmod{2}$, then $|a - b| \le p + 1$;

(5) if there exists a vertex x in T_{m,t_0} such that $d_{T_{m,t_0}}(x, C_{t_0}) \geq \frac{1}{2}m - 1$, there must be an odd cycle C such that

$$
2d_{T_{m,t_0}}(x, C) + |C| < m + 2r + 1.
$$

(iv) Construction of $\mathcal{M}_{n-3}^{(3)}$: Let $m+2t_0+1=n,t_0\geq 0$. We put the cycle C_{t_0} = $u_{0,k-1} \cdots u_{t_0,k-1} u_{t_0,k+1} \cdots u_{0,k+1} u_{0,k} u_{0,k-1} (0 \leq h \leq k-1 \leq k+1 \leq m+h \leq n-1)$, then $|C_{t_0}| = 2t_0 + 3$. Put $K_{m,t_0} = P(u_{0,h}, u_{0,m+h}) \cup C_{t_0}$, and call it a *structural graph*. Put $V(m, t_0) = V(K_{m,t_0})$. We choose the connected subgraph T_{m,t_0} of $T[V(m, t_0)]$ to form the set of graphs $\mathcal{M}_{n-3}^{(3)}$, where T_{m,t_0} satisfies that:

- (1) $diam(T_{m,t_0}) \leq n-3;$
- (2) $V(T_{m,t_0}) = V(m,t_0)$, and $E(K_{m,t_0}) \subseteq E(T_{m,t_0})$;

(3) neither does there exist an odd cycle with length less than $2(t_0 + q) - 3$ which have $q(1 \leq q \leq 3)$ intersected vertexes with $P(u_{0,h}, u_{0,m+h})$, nor does there exist an odd cycle C_d with length d such that $2t + d < 2t_0 + 1$ in T_{m,t_0} , where $t = d_{T_{m,t_0}}(P(u_{0,h}, u_{0,m+h}), C_d) > 0;$

(4) if there exist an edge $u_{b,k-1}u_{a,k+1}$ that divides up C_{t_0} in $T_{m,t_0} - E(K_{m,t_0})$, where $0 \leq a, b \leq t_0$, then a, b must satisfy that:

$$
a+b \equiv 1 \pmod{2}, |a-b| \le 3;
$$

if there exists an edge $v_k x_a$ (or $v_k y_b$) that divides up C_{t_0} in $T_{m,t_0} - E(K_{m,t_0})$, where $1 \le a \le t_0$ (or $1 \leq b \leq t_0$, then a (or b) must satisfy that: $a = 2$ (or $b = 2$), or $a = 1$ (or $b = 1$)(iff $t_0 = 1$);

(5) if there exists a vertex x in T_{m,t_0} such that $d_{T_{m,t_0}}(x, C_{t_0}) \geq \frac{1}{2}m-2$, there must exist an odd cycle C such that

$$
2d_{T_{m,t_0}}(x, C) + |C| < m + 2r + 1.
$$

§4. Main results and proofs

Theorem 4.1 G is a graph with order n of the first type with $\gamma(G) = n - 3$ iff $G \in \mathcal{N}_{n-3}$.

Proof For the necessity, suppose G is a graph with order n of the first type with $\gamma(G)$ = $n-3$. Then there must be a vertex u_0 and an odd cycle C in G such that

$$
\gamma(u_0) = \gamma(u_0, C) = \gamma(G) = n - 3.
$$

We choose u_0 and C such that $d = |C|$ is as great as possible, and denote $C = C_d$. Note that

$$
\gamma(G) = \gamma(u_0) \equiv d_G(u_0, u_0) \pmod{2}, d_G(u_0, u_0) = 0,
$$

we set $\gamma(G) = 2r$. So we get $n = 2r + 3$.

Let $t = d_G(u_0, C_d)$, then

$$
\gamma(u_0) = 2t + d - 1 = 2r = n - 3.
$$

Thus we get

$$
n = 2t + d + 2, t = r - \frac{1}{2}(d - 1), 1 \le d \le 2r + 1.
$$

We put the path $P_t = P(u_0, C_d) = u_0u_1 \cdots u_t$, the cycle $C_d = u_tu_{t+1} \cdots u_{t+d-1}u_t$, and let

$$
V_1(t, d) = V(P_t \cup C_d), V_2(t, d) = V(G) \setminus V_1(t, d),
$$

\n
$$
E_1(t, d) = E(P_t \cup C_d), E_2(t, d) = E(G) \setminus E_1(t, d).
$$

Thus

$$
n_1 = |V_1(t, d)| = t + d, n_2 = |V_2(t, d)| = t + 2.
$$

It suggests above that there is a structural graph $K_{(d)} = P_t \cup C_d$ in G.To testify that $G \in$ $\mathcal{N}_{n-3}^{(d)}$ ⊂ \mathcal{N}_{n-3} , we shall prove that: (a) G meets the construct qualifications of $\mathcal{N}_{n-3}^{(d)}$, and (b) G is a subgraph of K .

(a) Note that $diam(G) \leq \gamma(G) = n-3$, then the first construct qualification meets. By the choose of C_d , there doesn't exist the structural graph $K_{(d')}(d'$ is an odd number with $d' > d$) in G , thus the second qualification meets. Suppose that there exists a vertex x such that $d_G(x, C_d) > t$, then

$$
\gamma(x, C_d) = 2d_G(x, C_d) + d - 1 > 2t + d - 1 = n - 3.
$$

If $2d_G(x, C) + |C| > n - 2$ for any odd cycle C which is different from C_d in G, we can get

$$
\gamma(x, C) = 2d_G(x, C) + |C| - 1 > n - 3.
$$

Thus we get a contradiction

$$
\gamma(G) \ge \gamma(x) > n - 3 = \gamma(G).
$$

Let $u_i \in V(P(x, C_d)) \cap P_t(i \leq t)$ be the vertex with the smallest subscript. Then $P(x, u_i)$ is a shortest path from C to P_t . Let C be the odd cycle which doesn't intersect with $K_{(d)}$ and has at most one intersected vertex with $P(x, u_i)$ (The shortest path from C to $P(x, u_i)$ is denoted by $P(w, z)$, where $w \in V(P(x, u_i))$ and $z \in V(C)$. It suggests that C and $P(x, u_i)$ have only one vertex in common if $w = z$), and such that $2d_{N_{(d)}}(w, z) + |C|$ is as small as possible. Note that

$$
\gamma(x, u_0, C) \leq d_G(u, u_0) + 2d_G(w, z) + |C| - 1,\n\gamma(x, u_0, C_d) \leq d_G(u, u_0) + 2d_G(u_i, u_t) + d - 1,
$$

we then have

$$
\gamma(x, u_0, C) + \gamma(x, u_0, C_d)
$$

= 2(d_G(u, u₀) + d_G(u_i, u_t) + d_G(w, z) + |C| + d - 1) - (d + |C|).

(1) Suppose that $|C| + d = 4$. If $d_G(x, u_i) + d_G(w, z) + |C| = t + 3$ and $2d_G(w, z) + |C| =$ $2(t - i) + d$, then we have

$$
\gamma(x, u_0, C) = \gamma(x, u_0, C_d)
$$

and

$$
d_G(x, u_i) + d_G(w, z) + |C| - 1 = t + 2 = |V_2(d)|.
$$

Therefore,

$$
d_G(x, u_0) + d_G(w, z) + d_G(u_i, u_t) + |C| + d - 1 = n.
$$

Thus we get

$$
\gamma(x, u_0, C) + \gamma(x, u_0, C_d) = 2n - 4 = 2(n - 2)
$$

and

$$
\gamma(x, u_0, C) = \gamma(x, u_0, C_d) = n - 2.
$$

(2) Suppose that $|C| = d = 1$. If $d_G(x, u_i) + d_G(w, z) = t + 1$ and $d_G(w, z) = t - i$. Then we have

$$
\gamma(x, u_0, C) = \gamma(x, u_0, C_d)
$$

and

$$
d_G(x, u_i) + d_G(w, z) + |C| - 1 = t + 1 = |V_2(d)| - 1.
$$

Therefore,

$$
d_G(x, u_0) + d_G(w, z) + d_G(u_i, u_t) + |C| + d - 1 = n - 1.
$$

Thus we get

$$
\gamma(x, u_0, C) + \gamma(x, u_0, C_d) = 2(n - 1) - 2 = 2(n - 2)
$$

and

$$
\gamma(x, u_0, C) = \gamma(x, u_0, C_d) = n - 2.
$$

(3) Suppose that $|C| = d = 1$. If $d_G(x, u_i) + d_G(w, z) = t + 2$ and $|d_G(w, z) - t - i| < 6$. Then we have

$$
|\gamma(x, u_0, C) - \gamma(x, u_0, C_d)| < 6,
$$

and

$$
d_G(x, u_i) + d_G(w, z) + |C| - 1 = t + 2 = |V_2(d)|.
$$

Therefore,

$$
d_G(x, u_0) + d_G(w, z) + d_G(u_i, u_t) + |C| + d - 1 = n.
$$

Thus we get

$$
\gamma(x, u_0, C) + \gamma(x, u_0, C_d) = 2n - 2 = 2(n - 1).
$$

Note that

$$
\gamma(x, u_0, C) \equiv \gamma(x, u_0, C_d) \pmod{2}.
$$

Hence we get

$$
\min\{\gamma(x, u_0, C), \gamma(x, u_0, C_d)\} \ge n-2.
$$

The three cases lead to a common contradiction

$$
\gamma(x, u_0) = \min\{\gamma(x, u_0, C), \gamma(x, u_0, C_d)\} \ge n - 2.
$$

So the third qualification meets.

(b) Let

$$
V(G) = U_0 \cup U_1 \cup \cdots \cup U_{r-1} \cup U_r,
$$

where

$$
U_i = \{u \mid d_G(u_0, u) = i, u \in V(G)\},
$$

\n
$$
U_r = \{u \mid d_G(u_0, u) \ge r, u \in V(G)\},
$$

\n
$$
(i = 0, 1, \dots, r - 1).
$$

Then $G[U_i](i = 0, 1, \dots, r-1)$ must be a null graph. Otherwise, there must be some odd cycle in $G' = G[U_0 \cup U_1 \cup \cdots \cup U_{r-1}]$. Let C be the odd cycle such that $d_G(u_0, C) + \frac{1}{2}(|C| - 1)$ is as small as possible in G' . Then we have

$$
d_G(u_0, C) + \frac{1}{2}(|C| - 1) < r.
$$

This implies a contradiction

$$
\gamma(u_0) \le \gamma(u_0, C) = 2d_G(u_0, C) + |C| - 1 < 2r = n - 3 = \gamma(u_0).
$$

Note that $|U_i| \geq 1(i=0,1,\dots, r)$. Then we have

$$
|U_i| \le 2r + 3 - r = r + 3.
$$

So we can assert that G is a subgraph of K. Therefore, $G \in \mathcal{N}_{n-3}^{(d)} \subset \mathcal{N}_{n-3}$.

For the sufficiency, without loss of generality, we let $G \in \mathcal{N}_{n-3}^{(d)}$ with $1 \leq d \leq n-2$ and $d \equiv 1 \pmod{2}$. It is obvious that G is connected and has $K_{(d)} = P_t \cup C_d$ as its structural graph. In the following argument, we shall prove two results:

(1) $\gamma(u_0) = n - 3$

Clearly, we have

$$
\gamma(u_0, C_d) = 2d_G(u_0, C_d) + |C_d| - 1 = 2t + d - 1 = n - 3.
$$

Hence we have $n = 2t + d + 2$. Put

$$
n_1 = |V_1(d)| = |V(P_t \cup C_d)| = t + d,
$$

and

$$
n_2 = |V_2(d)| = |V(G) \setminus V_1| = t + 2.
$$

If there is an odd cycle C in G such that $\gamma(u_0, C) < n-3 = 2r$, then $2d_G(u_0, C)$ + $|C| - 1 < 2r$, i.e. $d_G(u_0, C) + \frac{1}{2}(|C| - 1) < r$. This implies that $G[U']$ contains the odd cycle C, where $U' = \{u \mid d_G(u_0, u) < r, u \in V(G)\}$. Because the induced subgraph $K[V']$ of K about $V' = \{u \mid d_K(u_0, u) < r, u \in V(K)\}\$ is bipartite, its subgraph $G[U']$ doesn't contain any odd cycles,a contradiction. So we have $\gamma(u_0) = n - 3$.

 $(2) \forall u, v \in V(G), \gamma(u, v) \leq n-3$

It is obvious that $\gamma(u) \leq n-3$ for any vertex in G. In what follows, it suffices to prove $\gamma(u, v) \leq n-3$ for any two distinct vertexes u and v in $V(G)$.

If $d_G(u, C_d) + d_G(v, C_d) \leq 2t$, We can easily get $\gamma(u, v) \leq n-3$. So we put $d_G(u, C_d)$ + $d_G(v, C_d) > 2t$, and without loss of generality we let $d_G(u, C_d) > t$, then there must be an odd cycle C in G such that $2d_G(u, C) + |C| \leq n-2$. Suppose that $V(P(u, C)) \cap V(P_t) \neq \emptyset$, let $w \in$ $V(P(u, C)) \cap V(P_t)$ be the first vertex along $P(u, C)$ from u to C, then $d_G(u, w) > d_G(u_0, w)$. We then have

$$
\gamma(u_0) \leq \gamma(u_0, C) \leq 2(d_G(u_0, w) + d_G(w, C)) + |C| - 1
$$

$$
< 2(d_G(u, w) + d_G(w, C)) + |C| - 1
$$

$$
= 2d_G(u, C) + |C| - 1 \leq n - 3 = \gamma(u_0),
$$

a contradiction. Therefore $P(u, C)$ doesn't intersect with P_t .

Let M be the component with u of $G[V_2(d)]$ in G, we shall complete our arguments in the following three cases:

(I) $V(C) \cap V(C_d) \neq \phi$

By the connectivity of G and $|V_2| = t + 2$, we have $d_G(u, C_d) = t + 1$ or $t + 2$ which correspond to the following six cases.

(a) $d_G(u, C_d) = t + 2, d_G(v, C_d) = t - 1$ If $v \in V(P_t)$, we have

$$
\gamma(u, v) \leq \gamma(u, v, C_d) \leq d_G(u, C_d) + d_G(v, C_d) + |C_d| - 2
$$

=
$$
(t + 2) + (t - 1) + d - 2 = 2t + d - 1 = n - 3.
$$

If $v \in V(P(u, C))$, we have

$$
\gamma(u, v) \leq \gamma(u, v, C) = d_G(u, C) + d_G(v, C) + |C| - 1
$$

<
$$
< 2d_G(u, C) + |C| - 1 \leq n - 3.
$$

(b) $d_G(u, C_d) = t + 2, d_G(v, C_d) = t$

If $v \in V(P_t)$, note that $P(u, C)$ has no intersected vertex with P_t , we then have

$$
|V(P(u, v) \cup V(C_d)| = 2t + d + 2 = n.
$$

Hence the odd cycle C such that $2d_G(u, C) + |C| \leq n-2$ must be a loop on $P(u, v)$, this means $|C| = 1$. So we get

$$
\gamma(u, v) \leq \gamma(u, v, C) = d_G(u, v) + |C| - 1
$$

=
$$
d_G(u, v) \leq diam(G) \leq \gamma(G).
$$

If $v \in V(P(u, C))$, we have

$$
\gamma(u, v) \leq \gamma(u, v, C) = d_G(u, C) + d_G(v, C) + |C| - 1
$$

<
$$
< 2d_G(u, C) + |C| - 1 \leq n - 3.
$$

(c) $d_G(u, C_d) = t + 2, d_G(v, C_d) = t + 1$

This suggests that $v \in V(P(u, C))$, i.e. $uv \in E(P(u, C))$, hence we have

$$
\gamma(u, v) \leq \gamma(u, v, C) = d_G(u, C) + d_G(v, C) + |C| - 1
$$

<
$$
< 2d_G(u, C) + |C| - 1 \leq n - 3.
$$

(d) $d_G(u, C_d) = t + 1, d_G(v, C_d) = t$

The argument is similar to (a).

(e) $d_G(u, C_d) = t + 1, d_G(v, C_d) = t + 1$

Let $uw \in E(P(u, C))$, there must be $vw \in E(G) \setminus (E(K_d) \cup E(P(u, C)))$. Hence we have

$$
\gamma(u, v) \leq \gamma(u, v, C) \leq d_G(u, C) + d_G(v, C) + |C| - 1
$$

= $2d_G(u, C) + |C| - 1 \leq n - 3$.

(f) $d_G(u, C_d) = t + 1, d_G(v, C_d) = t + 2$

The argument is similar to (c).

(II) $V(C) \cap V(C_d) = \phi, V(C) \cap V(P_t) \neq \phi$

Let $u_i, u_j \in V(C) \cap V(P_t)$ be the vertexes with the smallest and biggest subscripts respectively, where $i \leq j \leq t-1$. By the construct qualification (2), we have

$$
2d(u_0, u_i) + |C| > 2d(u_0, u_t) + d,
$$

i.e.

$$
\frac{1}{2}(|C|-1) \ge t - i + \frac{1}{2}(d+1).
$$

By $d(u, C_d) \geq t + 1$, we have

$$
d(u, C) + \frac{1}{2}(|C| - 1) + (t - j) \ge t + 1,
$$

i.e.

$$
d(u, C) + \frac{1}{2}(|C| - 1) \ge j + 1.
$$

Hence,

$$
d(u, c) + |C| - (j - i + 1) \ge t + 1 + \frac{1}{2}(d + 1).
$$

In addition, notice that $|V_2(d)| = t + 2$. We have

$$
d(u, C) + |C| - (j - i + 1) \le t + 2.
$$

So we have

$$
t + 1 + \frac{1}{2}(d+1) \le d(u, c) + |C| - (j - i + 1) \le t + 2.
$$

This means

$$
d = 1, |C| = 2t - 2i + 3,
$$

and

$$
d(u, C) = i + j - t(i + j \ge t).
$$

If $v \in V(M)$, it is obvious that

$$
\gamma(u, v) < \gamma(u, C) \le \gamma(G).
$$

If $v \notin V(M)$, clearly we have

$$
\gamma(u,v) \leq \gamma(u,u_0) \leq \gamma(u,u_0,C) \leq d(u,C) + d(u_0,C) + \frac{1}{2}(|C|-1)
$$

= $(i+j-t) + i + (t-i+1) = i+j+1 < \gamma(G).$

(III) $V(C) \cap V(C_d) = \phi, V(C) \cap V(P_t) = \phi$

Let $u_i \in V(P(u, C_d)) \cap V(P_t)(i \leq t)$ be the vertex with the smallest subscript, then $P(u, u_i)$ is the shortest path from u to P_t . We shall discuss in the two following cases.

(a) Suppose C and $P(u, u_i)$ have at least two intersected vertexes. Then $|C| \geq 3$. Let $v \in V(M)$. If $P(u, C)$ intersects with $P(v, C)$, then we have

$$
\gamma(u, v) \leq \gamma(u, v, C)
$$

\n
$$
\leq 2 \max\{d(u, C), d(v, C)\} + |C| - 1
$$

\n
$$
\leq 2(|V_2(d)| - |C|) + |C| - 1
$$

\n
$$
= 2t - |C| + 3 \leq 2t \leq \gamma(G).
$$

If $P(u, C)$ doesn't intersect with $P(v, C)$, then we have

$$
\gamma(u, v) \le \gamma(u, v, C) \le |V_2(d)| - 1 = t + 1 \le \gamma(G).
$$

Let $v \notin V(M)$ and $|V'_1| = |V_1(d) \setminus V(P(u_0, u_i))| \geq 2$. Then we have

$$
\gamma(u, v) \le \gamma(u, v, C) \le n - |V_1| - 1 \le n - 3 = \gamma(G).
$$

If $|V'_1| = 1$, it means that $i = t - 1$ and $d = 1$. Note that $d(u, C_d) \geq t + 1$, we have $d(u, u_i) \geq i + 1 = t$. Note that $|V_2(d)| = t + 2, |C| \geq 3$, we have $|C| \leq 5$: if $|C| = 3$, there must be only two intersected vertexes of C and $P(u, u_i)$; if $|C| = 5$, there must be just three intersected vertexes of C and $P(u, u_i)$. Thus we can easily have

$$
\gamma(u, v) \le \gamma(u, u_0, C) \le 2t \le \gamma(G).
$$

(b) Suppose that there is at most one intersected vertex of C and $P(u, u_i)$. Let $P(w, z)$ be the shortest path from C to $P(u, u_i)$, where $w \in V(P(u, u_i))$ and $z \in V(C)(w = z$ suggests that there is only one intersected vertex of C and $P(u, u_i)$.

Let $v \in V(M)$. If $P(u, C)$ doesn't intersect with $P(v, C)$, we have

$$
\gamma(u, v) \le \gamma(u, v, C) \le |V_2(d)| - 1 = t + 1 \le \gamma(G).
$$

If $P(u, C)$ intersects with $P(v, C)$, note that $2d(u, C) + |C| \leq 2t + d$, we then have

$$
d(u, C) \le t + \frac{1}{2}(d - |C|).
$$

If $d(v, C) < t + 2 - |C|$, i.e. $d(v, C) + |C| - 1 \le t$, we have

$$
\gamma(u, v) \leq \gamma(u, v, C) \leq d(u, C) + d(v, C) + |C| - 1
$$

$$
\leq (t + \frac{1}{2}(d - |C|)) + t \leq 2t + d - 1 = \gamma(G).
$$

If $d(v, C) \ge t + 2 - |C|$, note that $d(v, C) + |C| \le |V_2(d)| = t + 2$, we then have

$$
d(v, C) = t + 2 - |C|.
$$

Now it is clear that u is just on $P(v, C)$ and $d(v, C_d) \ge t + 1$. So there must be an odd cycle C^{\prime} such that

$$
2d(v, C') + |C'| \le 2t + d.
$$

If C' is a loop on $P(u, v)$, we then have

$$
\gamma(u, v) \le d(u, v) \le diam(G) \le \gamma(G).
$$

Otherwise, C' doesn't intersect with $P(u, v)$. This suggests that $d(u, C') \leq d(v, C')$. Hence we have

$$
\gamma(u, v) \le \gamma(v, C') \le \gamma(G).
$$

If $|C'| \geq 3$, then C' must intersects with C. Similarly, $d(u, C') \leq d(v, C')$. So we have

$$
\gamma(u, v) \le \gamma(v, C') \le \gamma(G).
$$

Let $v \notin V(M)$. Note that

$$
\gamma(u, u_0, C) = d(u, u_0) + 2d(w, z) + |C| - 1,
$$

$$
\gamma(u, u_0, C_d) = d(u, u_0) + 2d(u_i, u_t) + d - 1,
$$

we have

$$
\gamma(u, u_0, C) + \gamma(u, u_0, C_d)
$$

= 2(d(u, u_0) + d(u_i, u_t) + d(w, z) + |C| + d - 1) - (d + |C|).

If $d + |C| \geq 6$, we have

$$
\gamma(u, u_0) = \min\{\gamma(u, u_0, C), \gamma(u, u_0, C_d)\} \le n - 3.
$$

Therefore, we get

$$
\gamma(u, v) \le \gamma(u, u_0) \le \gamma(G).
$$

In what follows, it suffices to discuss the case such that $|C| + d \leq 4$. Suppose that $|C| + d = 4$ and $d(u, u_i) + d(w, z) + |C| \le t + 2$, we have

$$
d(u, u_i) + d(w, z) + |C| - 1 \le t + 1 = |V_2(d)| - 1,
$$

i.e.

$$
d(u, u_0) + d(u_i, u_t) + d(w, z) + |C| + d - 1 \le n - 1.
$$

Hence we have

$$
\gamma(u, u_0, C) + \gamma(u, u_0, C_d) \le 2(n - 1) - 4 = 2(n - 3).
$$

This suggests that

$$
\min\{\gamma(u, u_0, C), \gamma(u, u_0, C_d)\} \le n-3.
$$

Suppose that $d(u, u_i) + d(w, z) + |C| \ge t + 3$, note that

$$
d(u, u_i) + d(w, z) + |C| - 1 \le |V_2(d)| = t + 2,
$$

we then have

$$
d(u, u_i) + d(w, z) + |C| - 1 = |V_2(d)|,
$$

i.e.

$$
d(u, u_0) + d(u_i, u_t) + d(w, z) + |C| + d - 1 = n.
$$

Hence

$$
\gamma(u, u_0, C) + \gamma(u, u_0, C_d) \le 2n - 4 = 2(n - 2).
$$

By the construction of the G , we have

$$
2d(w, z) + |C| \neq 2(t - i) + d,
$$

i.e.

$$
\gamma(u, u_0, C) \neq \gamma(u, u_0, C_d).
$$

This suggests that

$$
\min\{\gamma(u, u_0, C), \gamma(u, u_0, C_d)\} \le n-3.
$$

Suppose that $|C| = d = 1$ and $d(u, u_i) + d(w, z) \le t$, we then have

$$
d(u, u_i) + d(w, z) + |C| - 1 = t = |V_2(d)| - 2,
$$

i.e.

$$
d(u, u_0) + d(u_i, u_t) + d(w, z) + |C| + d - 1 \le n - 2.
$$

We then have

$$
\gamma(u, u_0, C) + \gamma(u, u_0, C_d) \le 2(n-2) - 2 = 2(n-3).
$$

Thus we have

$$
\min\{\gamma(u, u_0, C), \gamma(u, u_0, C_d)\} \le n-3.
$$

Suppose that $d(u, u_i) + d(w, z) \ge t + 1$. Note that

$$
d(u, u_i) + d(w, z) + |C| - 1 \leq |V_2(d)| = t + 2,
$$

we then have

$$
t + 1 \le d(u, u_i) + d(w, z) \le t + 2.
$$

If $d(u, u_i) + d(w, z) = t + 1$, we thus get

$$
d(u, u_0) + d(u_i, u_t) + d(w, z) + |C| + d - 1 = n - 1.
$$

It means that

$$
\gamma(u, u_0, C) + \gamma(u, u_0, C_d) = 2(n - 1) - 2 = 2(n - 2).
$$

Note that $d(w, z) \neq t - i$, we have

$$
\gamma(u, u_0, C) \neq \gamma(u, u_0, C_d).
$$

We therefore get

$$
\min\{\gamma(u, u_0, C), \gamma(u, u_0, C_d)\} \le n-3.
$$

Suppose that $d(u, u_i) + d(w, z) = t + 2$, then we have

$$
d(u, u_0) + d(u_i, u_t) + d(w, z) + |C| + d - 1 = n.
$$

Hence

$$
\gamma(u, u_0, C) + \gamma(u, u_0, C_d) = 2n.
$$

If $|d(w, z) - t - i| > 6$, we then get

$$
|\gamma(u, u_0, C) - \gamma(u, u_0, C_d)| > 6.
$$

This suggests that

$$
\min\{\gamma(u, u_0, C), \gamma(u, u_0, C_d)\} \le n - 3.
$$

From those as above, we can easily get

$$
\gamma(u, v) \le \gamma(u, u_0) \le \gamma(G).
$$

Hence, $\forall u, v \in V(G)$, we have $\gamma(u, v) \leq n - 3$.

Theorem 4.2 G is a graph with order n of the second type with $\gamma(G) = n - 3$ iff $G \in \mathcal{M}_{n-3}$.

Proof For the sufficiency, $\forall G \in \mathcal{M}_{n-3}$, we have $\gamma(G) = n-3$ and $\gamma(w) < \gamma(G)$ for all $w \in V(G)$ by a direct verification.

Now for the necessity, suppose G is a graph of order n of the second type with $\gamma(G) = n-3$. Then there must be two distinct vertexes u and v and an odd cycle C_0 such that

$$
\gamma(u, v) = \gamma(u, v, C_0) = \gamma(G) = n - 3.
$$

We put the path $P(u, v) = v_0v_1 \cdots v_m$, where $v_0 = u$ and $v_m = v$ with $n - 3 \equiv m \pmod{2}$. Without loss of generality,we set

$$
n-3 = m + 2r, d_0 = |C_0| \equiv 1 \pmod{2}.
$$

Suppose that C is an odd cycle in G , then we have

$$
|V(P(u,v)) \cap V(C)| \le n - \gamma(G) = 3.
$$

In the following, we shall complete our arguments in four cases.

(I) Suppose that any odd cycle doesn't intersect with any (u, v) -shortest path in G, then we have

$$
t_0 = d_G(P(u, v), C_0) > 0.
$$

By the equation $\gamma(u, v) = \gamma(u, v, C_0)$, we can easily get

$$
n = m + 2t_0 + d_0 + 2.
$$

We put the path $P_0 = P(P(u, v), C_0) = x_0 x_1 \cdots x_{t_0}$, where $x_0 = v_j$ and $x_{t_0} \in V(C_0)$. Set

$$
V_1 = V(P(u, v)) \cup V(C_0) \cup V(P_0), V_2 = V(G) \setminus V_1,
$$

then we have

$$
|V_1| = m + t_0 + d_0, |V_2| = t_0 + 2.
$$

Suppose that the odd cycles C_1 and C_2 satisfy the following qualifications respectively.

$$
\gamma(u) = \gamma(u, C_1), \gamma(v) = \gamma(v, C_2).
$$

If $V(P(u, C_1)) \cap V(P_0) \neq \emptyset$ and $V(P(v, C_2)) \cap V(P_0) \neq \emptyset$, it is clear that

$$
\gamma(u, C_1) = \gamma(u, C_0), \gamma(v, C_2) = \gamma(v, C_0).
$$

Hence

$$
\gamma(u) = \gamma(u, C_0) = 2d_G(u, C_0) + d_0 - 1 = 2d_G(u, x_{t_0}) + d_0 - 1 < n - 3,
$$
\n
$$
\gamma(v) = \gamma(v, C_0) = 2d_G(v, C_0) + d_0 - 1 = 2d_G(v, x_{t_0}) + d_0 - 1 < n - 3.
$$

Thus we get

$$
\gamma(G) = \gamma(u, v) = \gamma(u, v, C_0) = d_G(u, x_{t_0}) + d_G(v, x_{t_0}) + d_0 - 1
$$

<
$$
< n - 3 = \gamma(G),
$$

a contradiction. So we assume $V(P(u, C_1)) \cap V(P_0) = \phi$ without loss of generality. Suppose $v_i \in V(P(u, C_1)) \cap V(P(u, v))$ is the intersected vertex with the biggest subscript, put the path $P_1 = P(P(u, v), C_1) = y_0 y_1 \cdots y_{t_1}$ with $d_1 = |C_1|$ and $t_1 = d_G(v_i, C_1)$, where $y_0 = v_i$ and $y_{t_1} \in V(C_1)$. Then we have $V(P_0) \cap V(P_1) = \phi(i < j)$ and

$$
t_1 \le t_1 + d_1 - 1 \le |V_2| \le t_0 + 2.
$$

By the choose of $P(u, v)$ and C_0 , we have

$$
2t_0 + d_0 \le 2t_1 + d_1.
$$

Hence

$$
2t_1 + 2d_1 - 6 + d_0 \le 2t_0 + d_0 \le 2t_1 + d_1 \le 2t_0 + 5.
$$

So we get

$$
2 \le d_0 + d_1 \le 6, |t_0 - t_1| \le 2.
$$

Set $K_{d_0,d_1} = P(u, v) \cup P_0 \cup P_1 \cup C_0 \cup C_1$, then we have

$$
|V(K_{d_0,d_1})| = m + t_0 + t_1 + d_0 + d_1 - 1 \le n,
$$

and

$$
|V(G) \setminus V(K_{d_0,d_1})| = t_0 + 3 - t_1 - d_1 \leq 2.
$$

It is easy to verify that G meets the first three construct qualifications (1),(2) and (3) of T_{d_0,d_1} . We shall prove that G meets the other qualifications:

Suppose there exists a (x_a, y_b) -path with length p which connects $P_0 \cup C_0$ to $P_1 \cup C_1$ in $G - E(K_{d_0,d_1})$, where $0 \le a \le t_0$ and $0 \le b \le t_1$. Clearly, $p = t_0 + 4 - t_1 - d_1 \le 3$. Because any odd cycle doesn't intersect with the (u, v) -shortest path $P(u, v)$, then we have

$$
a + b + p > j - i, a + b + i + j \equiv p \pmod{2},
$$

and

$$
d_G(v_0, v_i) + d_G(v_i, y_b) + p + d_G(x_a, v_j) + d_G(v_j, v_m) + 2d_G(x_a, x_{t_0}) + |C_0| - 1
$$

\n
$$
\geq \gamma(u, v),
$$

and

$$
d_G(v_0, v_i) + d_G(v_i, y_b) + p + d_G(x_a, v_j) + d_G(v_j, v_m) + 2d_G(y_b, y_{t_1}) + |C_1| - 1
$$

\n
$$
\geq \gamma(u, v).
$$

Hence we have

$$
i+b+p+a+m-j+2(t_0-a)+d_0-1\geq m+2t_0+d_0-1,
$$

and

$$
i+b+p+a+m-j+2(t_1-b)+d_1-1\geq m+2t_0+d_0-1.
$$

Therefore,we get

$$
(2t0 + d0) - (2t1 + d1) - (p + i - j) \le a - b \le p + i - j.
$$

The qualification (4) thus meets.

Suppose that there exists a vertex x in G such that $d_G(x, C_0) \ge t_0$ and $d_G(x, C_1) \ge$ $t_0 + \frac{1}{2}(d_0 - d_1)$, then we can conclude that

$$
\gamma(x, C_0) \le \gamma(G), \gamma(x, C_1) \le \gamma(G).
$$

Hence there must be an odd cycle C in G such that

$$
\gamma(x) = \gamma(x, C) < \gamma(G),
$$

i.e.

$$
2d_G(x, C) + |C| - 1 < n - 3 = m + 2r.
$$

The fifth qualification (5) meets.

Clearly, $G \subseteq T$, then we have $G \in \mathcal{M}_{n-3}^{(0)}$.

(II) Suppose that there exists an odd cycle C and a path $P(u, v)$ in G such that $|V(P(u, v)) \cap$ $V(C)$ = 1, but for any odd cycle C' and any (u, v) -shortest path $P'(u, v)$, $|V(P'(u, v)) \cap$ $|V(C')| \geq 2$ doesn't come into existence. Without loss of generality, we assume that C is the smallest odd cycle which meets the above qualifications, and $V(P(u, v)) \cap V(C) = \{v_i\}$. Hence

$$
n-3 = \gamma(u, v) \le \gamma(u, v, C) = m + |C| - 1 = |V(P(u, v) \cup C)| - 1 \le n - 1.
$$

Note that $n-3 \equiv m \pmod{2}$, we have $m + |C| = n-2$ or $m + |C| = n$. Suppose that $m + |C| = n$, then we can assert that C isn't a primitive cycle of $P(u, v)$, and $V(G) =$ $V(P(u, v)) \cup V(C)$. Note that

$$
m = d_G(u, v) \le \gamma(u, v) = n - 3,
$$

then we have $|C| \geq 3$. Suppose that the odd cycles C_1 and C_2 satisfy the following equations respectively:

$$
\gamma(u) = \gamma(u, C_1), \gamma(v) = \gamma(v, C_2).
$$

If both C_1 and C_2 intersect with C, clearly we have

$$
\gamma(u, C_1) = \gamma(u, C), \gamma(v, C_2) = \gamma(u, C).
$$

It is easy to verify

$$
\max\{\gamma(u, C), \gamma(v, C)\} \ge \gamma(G),
$$

a contradiction. Hence, we assume that C_1 doesn't intersect with C without loss of generality. Therefore, C_1 must intersect with $P(u, v)$, and C_1 is a loop on v_i of $P(u, v)$ (without loss of generality, we set $i < j$). This contradicts the choose of C.Hence, $m + |C| \neq n$. Therefore, we set $m + |C| = n - 2$. We then have

$$
n-3 = \gamma(u, v) = \gamma(u, v, C).
$$

We might as well put the cycle $C = C_0 = y_0 \cdots y_{t_0} x_{t_0} \cdots x_1 y_0$, where $y_0 = v_i$. Thus, we have

$$
|C| = 2t_0 + 1, n = m + 2t_0 + 3.
$$

We put the graph $K_{m,t_0} = P(u, v) \cup C_0$. It is obvious that its order is $n-2$. It is easy to verify that G meets the first three construct qualifications (1), (2) and (3) of T_{m,t_0} . We shall prove that G meets the other qualifications:

Suppose that there is a (x_a, y_b) -path with length p which divides up C_0 in $G - E(K_{m,t_0})$, where $0 \le a, b \le t_0$. Clearly, $p \le 3$. Note that any odd cycle in G has only one intersected vertex with the (u, v) -shortest path, and C_0 is the smallest odd cycle which has only one intersected vertex with $P(u, v)$:

If $a + b + 1 \equiv p \pmod{2}$, then we have

$$
d_G(v_i, x_a) + d_G(v_i, y_b) + p \ge |C_0|,
$$

i.e.

$$
a+b+p\geq 2t_0+1.
$$

If $a + b \equiv p \pmod{2}$, then we have

$$
d_G(v_0, v_m) + 2d_G(x_a, v_i) + |C_0| - d_G(x_a, v_i) - d_G(v_i, y_b) + p - 1 \ge \gamma(u, v)
$$

and

$$
d_G(v_0, v_m) + 2d_G(v_i, y_b) + |C_0| - d_G(x_a, v_i) - d_G(v_i, y_b) + p - 1 \ge \gamma(u, v),
$$

i.e.

$$
m + a + 2t_0 - b + p \ge m + 2t_0
$$

and

$$
m + b + 2t_0 - a + p \ge m + 2t_0.
$$

Hence, $|a - b| \leq p$, and the fourth qualification (4) comes into existence.

Suppose there exists a vertex x in G such that $d_G(x, C_0) \geq \frac{1}{2}m$, then we have $\gamma(x, C_0) \geq$ $\gamma(G)$. Therefore, there must be an odd cycle C such that

$$
\gamma(x) = \gamma(x, C) < \gamma(G),
$$

i.e.

$$
2d_G(x, C) + |C| - 1 < n - 3 = m + 2r.
$$

The fifth qualification (5) comes into existence.

Clearly, $G \subseteq T$, then we have $G \in \mathcal{M}_{n-3}^{(1)}$.

(III) Suppose that there exists an odd cycle C and a path $P(u, v)$ in G such that $|V(P(u, v)) \cap$ $V(C)$ = 2, but for any odd cycle C' and any (u, v) -shortest path $P'(u, v)$, $|V(P'(u, v)) \cap$ $|V(C')| \geq 3$ doesn't come into existence. Without loss of generality, we assume that C is the smallest odd cycle satisfying the above qualifications, and $V(P(u, v)) \cap V(C) = \{v_i, v_j (i \le j)\}.$ Clearly, $j = i + 1$. Hence, we have

$$
n-3 = \gamma(u, v) \le \gamma(u, v, C) = i + (m-j) + |C| - 2
$$

= $m + |C| - 3 = |V(P(u, v) \cup C)| - 2 \le n - 2$.

Note that $n-3 \equiv m \pmod{2}$. We have $\gamma(u, v) = \gamma(u, v, C)$. Hence, C is a (u, v) -primitive cycle, where $n = m + |C|$. We might as well put the cycle $C = C_0 = y_0 \cdots y_{t_0} z x_{t_0} \cdots x_0 y_0$, where $y_0 = v_i$ and $x_0 = v_{i+1}$. Hence, we have

$$
|C_0| = 2t_0 + 3, n = m + 2t_0 + 3.
$$

We put the graph $K_{m,t_0} = P(u, v) \cup C_0$. It is obvious that its order is $n-1$. It is easy to verify that G meets the first three construct qualifications (1), (2) and (3) of T_{m,t_0} . We shall prove that G meets the other qualifications:

Suppose that there exists a (x_a, y_b) -path with length p which divides up C_0 in $G - E(K_{m,t_0})$, where $0 \leq a, b \leq t_0$. Clearly, $p \leq 2$. Note that any odd cycle has at most two intersected vertexes with any (u, v) -shortest path in G , and C_0 is the smallest odd cycle which has just two intersected vertexes with $P(u, v)$.

(a) If $a + b + 1 \equiv p \pmod{2}$, then we have

$$
d_G(v_0, v_m) + 2d_G(v_j, x_a) + |C_0| - d_G(v_j, x_a) - d_G(v_i, y_b) - d_G(v_i, v_j) + p - 1
$$

\n
$$
\geq \gamma(u, v)
$$

and

$$
d_G(v_0, v_m) + 2d_G(v_i, y_b) + |C_0| - d_G(v_j, x_a) - d_G(v_i, y_b) - d_G(v_i, v_j) + p - 1
$$

\n
$$
\geq \gamma(u, v).
$$

Hence, we have

$$
m + a + 2t_0 - b + p + 1 \ge m + 2t_0
$$

and

$$
m + b + 2t_0 - a + p + 1 \ge m + 2t_0.
$$

Therefore, we have

$$
|a-b| \le p+1.
$$

(b) If $a + b \equiv p \pmod{2}$, because C_0 is the the smallest odd cycle which has just two intersected vertexes with $P(u, v)$, we have

$$
d_G(v_j, x_a) + d_G(v_i, y_b) + d_G(v_i, v_j) + p \ge |C_0|.
$$

We thus get

$$
a+b+p\geq 2t_0+2.
$$

Suppose that there exists a (z, x_a) -path(or (z, y_b) -path) with length p in $G - E(K_{m,t_0})$ which divides up C_0 , where $0 \le a, b \le t_0$. Clearly, $p \le 2$. If $a + t_0 + 1 \equiv p \pmod{2}$, note that C_0 is the smallest odd cycle which has just two intersected vertexes with $P(u, v)$, then we have

$$
d_G(v_j, x_a) + p + d_G(z, y_{t_0}) + d_G(y_{t_0}, v_i) + d_G(v_i, v_j) \ge |C_0|.
$$

We thus get

$$
a + p \ge t_0 + 1.
$$

If $a + t_0 \equiv p \pmod{2}$, then we have

$$
d_G(v_0, v_m) + 2d_G(x_a, v_j) + (p + d_G(x_a, x_{t_0}) + d_G(z, x_{t_0})) - 1 \ge \gamma(u, v),
$$

i.e.

$$
m + 2a + (p + t_0 - a + 1) - 1 \ge m + 2t_0.
$$

We then get

$$
a+p\geq t_0.
$$

Using analogous argument, we can get the corresponding restrained qualifications for b . Hence the fourth construct qualification (4) comes into existence.

Suppose that there exists a vertex x in G such that $d_G(x, C_0) \geq \frac{1}{2}m - 1$, then we have $\gamma(x, C_0) \geq \gamma(G)$. Hence, there must exist some odd cycle C such that

$$
\gamma(x) = \gamma(x, C) < \gamma(G),
$$

i.e.

$$
2d_G(x, C) + |C| - 1 < n - 3 = m + 2r.
$$

The fifth qualification (5) thus comes into existence.

Clearly, $G \subseteq T$, then we have $G \in \mathcal{M}_{n-3}^{(2)}$.

(IV) Suppose that there exists an odd cycle C and a path $P(u, v)$ in G such that $|V(P(u, v)) \cap$ $V(C)$ = 3. Without loss of generality, we assume that C is the smallest odd cycle which meets the above qualifications, where $V(P(u, v)) \cap V(C) = \{v_i, v_k, v_j (i \le k \le j)\}\.$ Clearly, $j = k + 1, i = k - 1$. Hence, we have

$$
n-3 = \gamma(u, v) \le \gamma(u, v, C) = i + (m-j) + |C| - 3
$$

= $m + |C| - 5 = |V(P(u, v) \cup C)| - 3 \le n - 3.$

Therefore, we have

$$
\gamma(u,v)=\gamma(u,v,C),|V(P(u,v))\cup V(C)|=|V(G)|=n.
$$

We might as well put the cycle $C = C_0 = y_0 y_1 \cdots y_{t_0} x_{t_0} \cdots x_1 x_0 w y_0$, where $y_0 = v_{k-1}$, $w = v_k$ and $x_0 = v_{k+1}$. Hence, we have

$$
|C_0| = 2t_0 + 3, n = m + 2t_0 + 1.
$$

We put the graph $K_{m,t_0} = P(u, v) \cup C_0$. It is easy to verify that G meets the first three construct qualifications (1), (2) and (3) of T_{m,t_0} . We shall prove that G meets the other qualifications:

Suppose that there exists an edge x_ay_b in $G - E(K_{m,t_0})$ which divides C_0 , where $0 \le a, b \le$ t_0 . Note that C_0 is the smallest odd cycle which has just three intersected vertexes with the (u, v) -shortest path $P(u, v)$, then we have $a + b \equiv 1 \pmod{2}$. In addition, we have

$$
d_G(v_0, v_m) + 2d_G(x_a, v_j) + |C_0| - d_G(x_a, v_j) - d_G(v_i, v_j) - d_G(v_i, y_b)
$$

$$
\geq \gamma(u, v)
$$

and

$$
d_G(v_0, v_m) + 2d_G(v_i, y_b) + |C_0| - d_G(x_a, v_j) - d_G(v_i, v_j) - d_G(v_i, y_b)
$$

\n
$$
\geq \gamma(u, v).
$$

Hence, we have

$$
m + a + 2t_0 - b + 1 \ge m + 2t_0 - 2
$$

and

$$
m+b+2t_0-a+1 \ge m+2t_0-2.
$$

We thus get $|a - b| \leq 3$.

Suppose that there exists an edge $v_k x_a$ in $G - E(K_{m,t_0})$ which divides up C_0 , where $1 \leq a \leq t_0$.

If a is an odd number, then we have

$$
d_G(v_0, v_m) - d_G(v_k, v_j) + 1 + d_G(v_j, x_a) - 1 \ge \gamma(u, v),
$$

i.e.

$$
m-1+1+a-1 \ge m+2t_0-2.
$$

Thus, we have $a \geq 2t_0 - 1$. Therefore, we have $t_0 = 1, a = 1$.

If a is an even number, then we have

$$
d_G(v_0, v_m) - d_G(v_i, v_k) + |C_0| - d_G(v_j, x_a) - d_G(v_i, v_j) + d_G(v_k, x_a) - 1
$$

$$
\geq \gamma(u, v),
$$

i.e.

$$
m-1+(2t_0+3)-a-2+1-1\geq m+2t_0-2,
$$

We thus get $a \leq 2$. Hence, we have $a = 2$.

Suppose that there is an edge $v_k y_b$ in $G - E(K_{m,t_0})$ which divides C_0 , where $1 \leq b \leq t_0$. Using an analogous argument, we have $b = 2$, or $b = 1$ (iff $t_0 = 1$). Hence, the fourth qualification (4) comes into existence.

Suppose that there is a vertex x in G such that $d_G(x, C) \geq \frac{1}{2}m-2$, then we have $\gamma(x, C) \geq$ $\gamma(G)$. Therefore, there must be an odd cycle C such that

$$
\gamma(x) = \gamma(x, C) < \gamma(G),
$$

i.e.

$$
2d_G(x, C) + |C| - 1 < n - 3 = m + 2r.
$$

Hence, the fifth qualification (5) comes into existence.

Clearly, $G \subseteq T$, then we have $G \in \mathcal{M}_{n-3}^{(3)}$.

Using the connection between the exponent of a matrix and the exponent of a graph stated above, we have get the following result by combining Theorems 4.1 with 4.2.

Theorem 4.3 Let A be a symmetric primitive matrix with order n, then $\gamma(A) = n - 3$ iff $G(A) \in \mathcal{N}_{n-3} \cup \mathcal{M}_{n-3}.$

References

- [1] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, Macmillan Press, London(1976).
- [2] R.A.Brualdi and H.J.Ryser, Combinatorial Matrix Theory, Cambridge University Press, New York(1991).
- [3] B.L.Liu, Combinatorial Matrix Theory(second edition,in chinese), Sience Press, Beijing(2005).
- [4] J.Y.Shao, The exponent set of symmetric primitive matrices, Scientia Sinica, A, Vol.9 (1986), pp.931-939.
- [5] J.Z.Wang, The character of symmetric primitive matrices with certain exponents, J.Taiyuan Machinery College., (1991)No.2.
- [6] G.R.Li, The characterization of symmetric primitive matrices with exponent 2n−6, J.Nanjing Univ.(Graph Theory), Vol.27(1991),pp.87-92.
- [7] J.L.Cai and K.M.Zhang, The characterization of symmetric primitive matrices with exponent $2n − 2r(≥ n)$, *Linear Multilin.Alg.*, 39(1995), pp.391-396.
- [8] J.L.Cai and B.Y.Wang, The characterization of symmetric primitive matrices with exponent $n-1$, *Linear Alg.Appl.*, 364(2003), pp.135-145.
- [9] B.L.Liu, B.D.McKay, N.C.Wormald and K.M.Zhang, The exponent set of symmetric primitive $(0,1)$ matrices with zero trace, *Linear Alg.Appl.*, 133(1990), pp.121-131.