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Abstract. We introduce a novel class of Reservoir Computing (RC) mod-
els, a family of efficiently trainable Recurrent Neural Networks based on
untrained connections. Aiming to improve the forward propagation of in-
put information through time, we augment standard Echo State Networks
(ESNs) with linear reservoir-skip connections modulated by an untrained
orthogonal weight matrix. We analyze the mathematical properties of the
resulting reservoir systems and show that the dynamical regime of the
proposed class of models is controllably close to the edge of stability. Ex-
periments on several time-series classification tasks highlight the striking
performance advantage of the proposed approach over standard ESNs.

1 Introduction

Reservoir Computing (RC) networks [1] are a class of recurrent neural models
that have become extremely popular over the years due to their efficient train-
ing. Rather than applying end-to-end backpropagation through time training,
RC exploits the properties of asymptotically stable recurrent layers to avoid the
computational burden of training algorithms as much as possible. In fact, the
only trainable component in the architecture is a readout layer. In practice, the
hidden recurrent layer of the architecture, called reservoir, remains untrained
after random initialization, subject to a stability condition known as the echo
state property [2]. On the one hand, this property allows for stable dynamics
and well-behaved state-space organization, which has been successfully exploited
in various application scenarios, especially in pervasive AI environments. On the
other hand, the system is intrinsically biased towards fading memory computa-
tion, which inevitably reduces the ability of the network to effectively propagate
the driving input information across multiple time steps.

In this paper, we address the problem of effective information propagation
in untrained dynamical neural systems. We do so by introducing a new class of
RC models that essentially modify the reservoir architecture by introducing skip
connections that linearly propagate the network state to the next time step (an
idea also supported by biological plausibility [3]). From an architectural point
of view, these connections are introduced in the same spirit as those found in
Residual Neural Networks [4]. However, in our case, the introduction is con-
cerned with the nature of the temporal propagation of the reservoir state rather
than the residual nature of the learning problem. Therefore, in order to maxi-
mize the information content of the time-propagated state memory, the residual
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reservoir connections are modulated by an untrained orthogonal weight matrix,
thus exploiting, in an RC context, the optimal memory properties of this type
of dynamic neural systems [5].

We investigate variants of the proposed residual RC approach, analyze their
stability properties, and provide experimental evidence for the substantial per-
formance advantage that can be achieved in time-series classification tasks over
standard RC methodology.

2 Reservoir Computing

As a fundamental baseline for our proposal, we introduce the Echo State Network
(ESN) model [6], which in its vanilla formulation includes a fixed non-linear
reservoir layer and a trainable readout. We consider, in particular, the general
case with leaky-integrator recurrent neurons [7]. The state transition equation
of the reservoir is given as follows:

h(t) = (1− α) h(t− 1) + α φ(Whh(t− 1) +Wxx(t) + b), (1)

where h(t) ∈ R
Nh and x(t) ∈ R

Nx respectively denote the state and input at
time t, Wh and Wx are the reservoir and the input weight matrices, b is the
bias vector, φ(·) is an element-wise applied non-linearity (we use tanh(·)), and
α ∈ (0, 1] is a leakage hyper-parameter. The reservoir is typically initialized in
the origin, i.e., h(0) = 0. The values in Wh are randomly chosen and then re-
scaled to have a specific value of the spectral radius (i.e., the maximum length of
an eigenvalue), a crucial hyper-parameter denoted as ρ. Wx and b are randomly
initialized from uniform distributions over (−ωx, ωx), and (−ωb, ωb), where ωx

and ωb act respectively as input and bias scaling hyper-parameters. The value
of ρ is important as it practically determines the dynamic regime of the reservoir
layer, and in applications it is often controlled to values not exceeding 1.

The ESN architecture also comprises a tunable readout layer, which is typi-
cally linear and trained in closed-form by ridge regression. For time-series clas-
sification problems, the reservoir is run on each input sequence and the state
calculated for the last time-step is used to feed the readout classifier.

3 Residual Echo State Networks

We introduce a class of RC models based on reservoirs with linear skip connec-
tions in the state processing, and called Residual Echo State Network (ResESN).
The state transition function of the residual reservoir system is given as follows:

h(t) = αO h(t− 1) + φ(Whh(t− 1) +Wxx(t) + b), (2)

whereO is a randomly generated orthogonal matrix, and α is a scaling coefficient
that we treat as hyper-parameter. As we will show later, the value of α can be
used to adjust the dynamic behavior of the reservoir. All other terms in eq. (2)
are the same as in eq. (1). With α = 0 a traditional ESN [6] is obtained.

Intuitively, considering the application of the recurrent layer over time, the
introduction of the skip connections in the additive part of eq. (2) (first term on



Fig. 1: Computation performed by the reservoir of a ResESN unfolded over time.

the right-hand side) allows the creation of a path for the long-term propagation
of the input information. This concept is illustrated graphically in Fig. 1. As
typical for the stability analysis of reservoir systems, we consider bias-free au-
tonomous dynamics linearized around the origin, and study the eigenspectrum
of the resulting Jacobian. The resulting Jacobian is given by:

J = αO+Wh, (3)

from which we can make interesting observations. First, we can notice that
the eigenvalues of the αO term are distributed in the complex plane over a
circle of radius α centered at the origin. Then, by virtue of the Bauer-Fike’s
theorem [8], we can identify the position of the eigenvalues of the complete
Jacobian J as being at maximum distance ‖Wh‖ from those of αO, i.e., within
a ‖Wh‖-tube around the circle of radius α. It is interesting to note that this
characterization results in an architectural bias of the residual reservoir toward
dynamics intrinsically close to the edge of stability [9], represented by eigenvalues
on the circle of radius one. The hyper-parameter α, in this context, makes it
possible to decide how close to be to this boundary, with a value of α = 1 yielding
the boundary condition. At the same time, the magnitude of the weights in Wh

determines perturbations to the eigenvalues of αO, allowing a wider range of
dynamics to be covered.

In the following, we explore two variants to the residual reservoir introduced
in this paper. The first implements as the orthogonal matrix O of eq. (2) a
permutation matrix that implements a circular shift, i.e., a matrix that has ones
in the main sub-diagonal and in the upper right-hand corner, and in which all
other elements are zero. This variant is denoted ResESNC , and it allows us
to simplify the construction of the orthogonal matrix, making it deterministic
(with a fixed topology and a single weight value on all non-zero connections) and
close to the nature of possible neuromorphic and embedded implementations.
The second variant we consider is to replace the orthogonal matrix O in eq. 2
with the identity matrix I. In this case, the state transition function reads as
h(t) = αh(t− 1) + φ(Whh(t− 1) +Wxx(t) + b), which thus has a very similar
form to eq. (1), although the linear and non-linear components do not appear
as a convex combination (as they do in eq. (1)). We will refer to this second
variant hereafter as ResESNI . Note that while the Jacobian eigenspectrums of
a ResESN with a random O orthogonal matrix and a ResESNC share a similar
structure, the case of a ResESNI is different. In this case, the Jacobian has the
form αI+Wh, whose eigenvalues all lie in a ‖Wh‖-neighborhood of α.
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Fig. 2: Eigenvalues of the resulting Jacobian in (autonomous) reservoirs with
Nh = 500 recurrent neurons. Top: Comparison of ESN and variants of ResESN.
Bottom: Examples of configurations in ResESN by varying hyper-parameters.

An illustration of the positioning of the ResESN eigenvalues is given in Fig. 2.
The first row (top) compares configurations obtainable with ESN, ResESN,
ResESNC , and ResESNI . Note in particular how ResESNC , although char-
acterized by simplified residual connections, has a similar eigenvalue placement
as ResESN in the same configuration. The second row (bottom) shows some
examples of configurations that can be obtained by varying the hyperparame-
ters of a ResESN. Note, among other things, how it is possible to reproduce the
configuration of ESN (first column, top row in the figure), and how it is possible
to model different levels of proximity to the circle of radius one.

4 Experiments

We experimentally validate the proposed methodology on a set of diverse time-
series classification benchmarks from the UEA & UCR repository1. We used
the original split in training and test sets, applying a further 67%-33% stratified
splitting of the whole training data into training and validation sets. Table 1
provides a summary of the main properties of the considered datasets.

We ran experiments with ResESN and its introduced variants, considering
a number of reservoir neurons Nh in the range 10-500. We explored values of
α and ρ in [0, 1], values of ωx and ωb in {10−3, 10−2, . . . , 10}. For Wh, we
have used the fast initialization method introduced in [10]. For comparison,
we also ran experiments with the vanilla ESN baseline, with the same range
of configurations. Individually for each model, the hyper-parameters were fine-
tuned by model selection, using random search with 500 iterations. After model

1www.timeseriesclassification.com



selection, the selected configuration was trained on the whole training set, and
assessed on the test set, considering 10 random guesses. The results reported in
the following are averaged over these random guesses. The code was written in
Keras and scikit-learn2, and was run on a system with 2x20 Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz.

Name # Tr # Ts Length Input dim # Classes

Adiac 390 391 176 1 37
Blink 500 450 510 4 2
CinCECGTorso 40 1380 1639 1 4
FordA 3601 1320 500 1 2
FordB 3636 810 500 1 2
KeplerLightCurves 920 399 4767 1 7
Libras 180 180 45 2 15
Lightning2 60 61 637 1 2
OliveOil 30 30 570 1 4
ShapesAll 600 600 512 1 60
StarLightCurves 1000 8236 1024 1 3
UWaveGestureLibraryAll 896 3582 945 1 8
Wafer 1000 6164 152 1 2
Yoga 300 3000 426 1 2

Table 1: Summary of the datasets used.

The achieved results are reported in Table 2. The values shown in the table
clearly highlight the striking advantage of the class of models proposed in this
paper over the traditional ESN approach, surpassing its accuracy in all the cases
analyzed, sometimes by a considerable margin. In particular, we can observe that
the base ResESN achieves the best result in the vast majority of cases. Moreover,
despite architectural simplifications, ResESNC generally achieves an accuracy
close to that of ResESN. Among the variants analyzed, although ResESNI is the
one that generally leads to the worst results, it also succeeds in improving (in
some cases significantly) the performance of ESN. This last observation further
attests to the effective flexibility provided by the absence of convex combinations
in the state transition equation of ResESN.

5 Conclusions

We have introduced Residual Echo State Networks (ResESNs), a novel class of
randomized recurrent neural networks, under the umbrella of Reservoir Comput-
ing. Our proposal extends the vanilla Echo State Network (ESN) architecture,
introducing linear reservoir-skip connections modulated by a random orthogonal
weight matrix. The idea behind our proposal is that these orthogonal residual
connections enable the effective propagation of input information across multiple
time-steps, making the approach particularly suitable for time-series classifica-
tion problems. Our mathematical analysis showed the flexibility of the method
in generating dynamics that are controllably close to the border of stability.

2Each RC architecture is implemented as a custom Keras model, where the readout is a
scikit-learn ridge classifier.



Dataset ESN ResESN ResESNC ResESNI

Adiac 0.278±0.004 0.554±0.028 0.550±0.029 0.609±0.013

Blink 0.622±0.014 0.648±0.038 0.639±0.030 0.764±0.033

CinCECGTorso 0.260±0.001 0.427±0.065 0.294±0.021 0.253±0.010

FordA 0.534±0.012 0.691±0.015 0.713±0.037 0.596±0.041

FordB 0.519±0.002 0.542±0.037 0.564±0.014 0.538±0.005

KeplerLightCurves 0.354±0.025 0.561±0.018 0.522±0.045 0.420±0.036

Libras 0.493±0.018 0.769±0.019 0.801±0.011 0.698±0.024

Lightning2 0.610±0.007 0.644±0.018 0.623±0.007 0.611±0.010

OliveOil 0.400±0.000 0.813±0.054 0.847±0.045 0.633±0.058

ShapesAll 0.499±0.006 0.706±0.009 0.705±0.010 0.590±0.017

StarLightCurves 0.867±0.001 0.931±0.004 0.929±0.002 0.879±0.009

UWaveGestureLibraryAll 0.757±0.006 0.891±0.014 0.874±0.012 0.850±0.013

Wafer 0.977±0.001 0.990±0.002 0.988±0.003 0.981±0.003

Yoga 0.619±0.005 0.725±0.015 0.742±0.019 0.754±0.006

Table 2: Test set accuracy. Best results for each dataset are highlighted in bold.

Experiments confirmed the goodness of the ResESN approach, showing its sur-
prising effectiveness compared to traditional ESNs. Moreover, the analysis of
architectural variants highlighted the good performance obtained by residual
connections corresponding to a simple matrix implementing a circular shift.

Beyond the already excellent results obtained in this work, we believe that
future research deserves to further explore architectures based on residual reser-
voirs, also studying their (possibly local) adaptation algorithms and extensions
to larger domains such as graphs and temporal graphs.

References

[1] K. Nakajima and I. Fischer. Reservoir Computing. Springer, 2021.

[2] I. B Yildiz, H. Jaeger, and S. J Kiebel. Re-visiting the echo state property. Neural

networks, 35:1–9, 2012.

[3] Qianli Liao and Tomaso Poggio. Bridging the gaps between residual learning, recurrent
neural networks and visual cortex. arXiv preprint arXiv:1604.03640, 2016.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[5] Olivia L White, Daniel D Lee, and Haim Sompolinsky. Short-term memory in orthogonal
neural networks. Physical review letters, 92(14):148102, 2004.

[6] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. science, 2004.
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