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Abstract. The Euler State Network (EuSNs) model is a recently pro-
posed Reservoir Computing methodology that provides stable and non-
dissipative untrained dynamics by discretizing an appropriately con-
strained ODE. In this paper, we propose alternative formulations of the
reservoirs for EuSNs, aiming at improving the diversity of the result-
ing dynamics. Our empirical analysis points out the effectiveness of the
proposed approaches on a large pool of time-series classification tasks.
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1 Introduction

Reservoir Computing (RC) [20, 18, 23] is a popular technique for efficiently train-
ing Recurrent Neural Networks (RNNs) by utilizing the stable neural dynamics
of a fixed recurrent reservoir layer and a trainable readout for output compu-
tation. This approach has been successful in various applications, in particular
for implementing distributed learning functionalities in embedded systems [6, 3,
2] and as a reference paradigm for neuromorphic hardware implementations of
recurrent models [22, 21].

The effective operation RC depends largely on the stability of its dynamics,
which can be achieved through a global asymptotic stability property known as
the Echo State Property in the widely used Echo State Network (ESN) model [14,
15]. This property ensures that the dynamics of the reservoir remain stable, while
at the same time limiting its memory and state-space structure, thus preventing
the transmission of input information across multiple time steps.

Recently, a new approach to overcome the limitations of fading memory
in standard ESNs has been proposed, which involves discretizing an Ordinary
Differential Equation (ODE) while ensuring stability and non-dissipative con-
straints. As the approach computes the reservoir dynamics as the forward Euler
solution of an ODE, it is called the Euler State Network (EuSN) [7, 9]. As their
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dynamics are neither unstable nor lossy, EuSNs are capable of preserving input
information over time, making them better suited than ESNs for tasks involv-
ing long-term memorization. The EuSN approach has already been shown to
exceed the accuracy of ESNs and achieve comparable performance levels to fully
trainable state-of-the-art RNN models on time-series classification tasks, while
still maintaining the efficiency advantage of RC [9]. At the same time, the study
of the architectural organization of the EuSN reservoir system is still largely
unexplored.

In this paper, we deepen the analysis of EuSN architectures and propose
ways to improve the diversification of reservoir dynamics. Our first proposal is
to introduce a variability factor by using different integration rates in different
reservoir neurons. The second variability factor is to consider different diffusion
coefficients, which result in different strengths for the self-feedback connections
in the reservoir neurons. We analyze the effects of these factors individually and
in synergy, on the resulting dynamical characterization of the reservoir system
and in a wide range of experiments on time-series classification benchmarks.

The rest of this paper is organized as follows. In Section 2 we summarize
the fundamental aspects of the RC methodology and of the popular ESN model,
while in Section 3 we introduce the crucial concepts behind non-dissipative RC
dynamics and the EuSN model. Then, in Section 4, we illustrate the proposed
approach to enhance the diversification of reservoir dynamics in EuSNs. Our
empirical analysis on several time-series classification benchmarks is given in
Section 5. Finally, Section 6 concludes the paper.

2 Reservoir Computing

Reservoir Computing (RC) [23, 18] refers to a category of efficiently trainable
recurrent neural models in which the internal connections pointing to the hidden
recurrent layer, the reservoir, are left untrained after randomization subject to
asymptotic stability constraints. The neural architecture is then completed by
an output layer, the readout, which is the only trained component of the model.
Within such a class, we introduce the popular Echo State Network (ESN) [16, 14]
model, which employs the tanh non-linearity and operates in discrete time-steps.

To set our notation, let us consider a reservoir that comprises Nh neurons,
and that is stimulated by a driving (external) Nx-dimensional input signal. Ac-
cordingly, we denote the reservoir state and the input at time step t respectively
as h(t) ∈ RNh , and x(t) ∈ RNx . We refer to the general case of leaky integrator
ESNs [17], and describe the dynamical operation of the reservoir by the following
iterated map:

h(t) = (1− α)h(t− 1) + α tanh(Wh h(t) +Wx x(t) + b), (1)

where Wh ∈ RNh×Nh is the reservoir recurrent weight matrix, Wx ∈ RNh×Nx is
the input weight matrix, b ∈ RNh is the bias vector, tanh denotes the element-
wise applied hyperbilic tangent non-linearity. Moreover, α ∈ (0, 1] represents
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the leaking rate hyper-parameter, influencing the relative speed of reservoir dy-
namics with respect to the dynamics of the input. Before being driven by the
external input signal x(t), the reservoir state is typically initialized in the origin,
i.e., h(0) = 0.

After their initialization, the weight values of Wh, Wx, and b are kept fixed
in accordance with the Echo State Property (ESP) [24], which ensures global
asymptotic stability of the reservoir dynamical system. In practice, the recurrent
weights in Wh are typically randomly drawn from a uniform distribution over
(−1, 1) and then adjusted to limit the resulting spectral radius1 ρ(Wh) to values
smaller than 1. The value of ρ(Wh) has a direct influence on the dynamical
properties of the resulting reservoir, and in particular on the extent of its fading
memory. As such, it is a crucial hyper-parameter of the ESN model. As the
spectral radius re-scaling of (a potentially large) matrix Wh can represent a
computational bottleneck, in this paper we resort to an efficient initialization
scheme introduced in [10], which leverages results in random matrix theory to
provide a fast initialization of the recurrent weights in Wh. The input weight
matrix Wx and bias vector b are also randomly initialized, and then re-scaled
to control their magnitude. A widely used approach consists in drawing their
values from uniform distributions over (−ωx, ωx) and (−ωb, ωb), respectively,
where ωx and represents the input scaling hyper-parameter, and ωb is the bias
scaling hyper-parameter.

The ESN architecture also includes a trainable dense readout layer which,
in the case of time-series classification tasks, is fed by the last reservoir state
corresponding to each input time series. As the reservoir parameters are kept
fixed, the readout is often trained in closed form [18], e.g., by pseudo-inversion
or ridge regression.

Finally, it is worth remarking that the ESN model relies on the ESP stability
property to regulate the reservoir dynamics. This property ensures that when
the network is fed with a long input time-series, the initial state conditions
eventually fade away, and the state encoding produced by the reservoir becomes
stable. However, this characterization is linked to the fading memory and suffix-
based Markovian organization of the reservoir state space (see, e.g., [11, 13, 8]).
These properties make it difficult to transfer information across multiple time-
steps, limiting the effectiveness of ESNs for tasks that require long-term memory
retention of the input information.

3 Non-dissipative Reservoir Computing

To overcome the limitations of a fading memory reservoir system, an alternative
approach based on discretizing ODEs subject to stability and non-dissipativity
conditions has recently been proposed [7, 9]. The resulting RC model is derived
from the continuous-time dynamics expressed by the following ODE:

h′(t) = tanh(Whh(t) +Wxx(t) + b), (2)

1 The spectral radius of a matrix A is defined as the maximum length of an eigenvalue
of A.
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requiring that the corresponding Jacobian has eigenvalues with ≈ 0 real parts.
In addition to stability, such a critical condition implies non-dissipative system
dynamics, which can be leveraged to effectively propagate the input information
over multiple time-steps [12, 5]. Crucially, the requested condition on the eigen-
valus of the Jacobian of eq. 3, can be easily met architecturally by the use of
an antisymmetric recurrent weight matrix, i.e. requiring that Wh = −WT

h . In
such a case, indeed, the eigenvalues of both Wh and the Jacobian are on the
imaginary axis (see, e.g., [9, 5] for further details). Interestingly, this property
does not need to be learned from data, rather it can be enforced in the neural
processing system by design. In other words, provided that the antisymmetric
condition holds, the recurrent weight matrix Wh can be initialized with ran-
dom weights and then left untrained, as in standard RC approaches. Finally, the
resulting constrained ODE system is discretized by Euler forward method, yield-
ing the following state transition equation ruling the behavior of a discrete-time
recurrent neural layer:

h(t) = h(t− 1) + ε tanh
(
(Wh − γI)h(t− 1) +Wxx(t) + b

)
, (3)

where Wh = −WT
h is the antisymmetric recurrent weight matrix, while ε and γ

are two (typically small) positive hyper-parameters that represents respectively
the step size of integration, and the diffusion coefficient used to stabilize the
discretization [12]. As in standard ESNs, the weight values in Wh, Wx and b
are left untrained after initialization, and the resulting RC model is named Euler
State Network (EuSN). In particular, the values of Wh in eq. 3 can be obtained
starting from a random matrix W whose weights are drawn from a uniform dis-
tribution in (−ωr, ωr), with ωr representing a recurrent scaling hyper-parameter,
and then setting Wh = W−WT , which grants the antisymmetric property. The
weight values in Wx and b are initialized as described in Section 2 for ESNs.
Moreover, as in standard ESNs, the state is initialized in the origin, i.e., h(0) = 0,
and and the neural network architecture is completed by a readout layer that
is the only trained component of the model. It has already been shown in the
literature that the EuSN model is extremely efficient at propagating input in-
formation across many time steps, providing an exceptional trade-off between
complexity and accuracy in time-series classification tasks. Overall, EuSNs make
it possible to retain the efficiency typical of untrained RC networks while achiev-
ing - and even exceeding - the accuracy of fully trained recurrent models (see
[7, 9] for an extended comparison in this regard). In this paper, starting from
the basic EuSN model, we show how its dynamics can be enriched by simple
architectural modifications that affect the variety of its dynamic behavior.

4 Diversifying dynamics in Euler State Networks
reservoirs

We start our analysis by noting that the reservoir system of an EuSN, as de-
scribed in eq. 3 has an effective spectral radius intrinsically close to unity. In
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fact, using standard arguments in RC area, we can observe how the Jacobian
of the system in eq. 3, analyzed around the origin and for null input, takes the
following form:

J = (1− ε γ) I+ εWh, (4)

whose eigenvalues have a fixed real part, given by 1 − εγ, and imaginary part
given by a small perturbation of one of the eigenvalues of Wh. Using λk(·) to
denote the k-th eigenvalue of its matrix argument, we have that:

λk(J) = 1− εγ + i εβk, (5)

where βk = Im(λk(Wh)). All eigenvalues are thus concentrated (vertically in
the Gaussian plane) in a neighborhood of 1− εγ. Given that both ε and γ take
small positive values, we can notice that all the eigenvalues in eq. 4 are close to
1 by design, and the eigenvalues of Wh have only a minor perturbation impact.
This is illustrated in Figure 1 (top, left). As analyzed in [9], this characterization
can be interpreted as an architectural bias of the EuSN model towards critical
dynamics. Notice that this bias is fundamentally different from the suffix-based
Markovian nature of reservoir dynamics typical of the conventional ESN [8].

Despite the application success of the EuSN model already in its original
form (as evidenced by the results in [7, 9]), the dynamic characterization of the
model seems to be improvable. In particular, while one of the keys to the success
of RC is that it can cover a wide range of dynamic behaviour by randomizing
the reservoir parameters, in the case of EuSNs randomization does not seem to
be fully exploited. This can be seen firstly from the squeezing of the Jacobian
eigenvalues on a line, and secondly from the observation that the reservoir state
transition function in eq. 1 contains a self-loop term modulated by the same γ
value for all neurons. Accordingly, in the following we introduce variants of the
basic EuSN model in which different neurons can have different values of the
step size parameter ε and the diffusion parameter γ.

Step size variability.We consider EuSN reservoir neurons with different values
of the step size. The resulting state transition function is given by:

h(t) = h(t− 1) + εεε⊙ tanh
(
(Wh − γI)h(t− 1) +Wxx(t) + b

)
, (6)

where εεε ∈ RNh is a vector containing the step size of integration of the different
neurons, and ⊙ denotes component-wise (Hadamard) multiplication. As an effect
of this modification, the neurons in the EuSN reservoir exhibit dynamics with
variable integration speed, potentially offering greater richness to the encoding
produced by the system. Moreover, the resulting Jacobian is given by:

J = diag(1− γεεε) + diag(εεε)Wh, (7)

where diag(·) indicates a diagonal matrix with specified diagonal elements, and
1 ∈ RNh is a vector of ones. The resulting eigenvalues are no longer character-
ized by the same real part, and present a more a more varied configuration, as
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illustrated in Figure 1 (top, right). In the following, we use EuSN-ε to refer to
an EuSN network whose reservoir is ruled by eq. 6.

Diffusion variability.We consider EuSN reservoir neurons with different values
of the diffusion coefficient. In this case, the state transition function is given by:

h(t) = h(t− 1) + ε tanh
(
(Wh − diag(γγγ))h(t− 1) +Wxx(t) + b

)
, (8)

where γγγ ∈ RNh is a vector containing the diffusion term of the different neurons.
Differently from the previous case of EuSN-ε, all the reservoir neurons operate
at the same integration speed, but the reservoir topology is enriched by different
strengths of the self-loops. The resulting Jacobian is given by:

J = diag(1− εγγγ) + εWh, (9)

whose eigenvalues variability is illustrated in Figure 1 (bottom, left). In the fol-
lowing, EuSN-γ is used to refer to an EuSN network whose reservoir is described
by eq. 8.

Full variability. We finally introduce an EuSN in which each reservoir neuron
presents its own step size of integration and diffusion coefficient. This configura-
tion includes both variability factors introduced by EuSN-γ and EuSN-γ, and is
denoted by EuSN-ε, γ. In this case, the reservoir state transition function reads
as follows:

h(t) = h(t− 1) + εεε⊙ tanh
(
(Wh − diag(γγγ))h(t− 1) +Wxx(t) + b

)
, (10)

and the resulting Jacobian is given by:

J = diag(1− εεε⊙ γγγ) + diag(εεε)Wh, (11)

The reservoir exhibits both dynamics with multiple scales of integration speed
and diverse self-loops. Moreover, while preserving the architectural bias toward
eigenvalues of the Jacobian near 1, these show wider variability, as illustrated in
Figure 1 (bottom, right).

5 Experiments

We have experimentally evaluated the performance of the proposed EuSN vari-
ants (introduced in Section 4), in comparison to the base EuSN setup (described
Section 3) and the conventional ESN model (described Section 2).

Datasets. The analysis involved experiments on a large pool of diverse time-
series classification benchmarks. The first 20 datasets have been taken from the
UEA & UCR time-series classification repository [4], namely: Adiac,Blink, Char-
acterTrajectories Computers, Cricket, ECG5000, Epilepsy, FordA, FordB, Hand-
Outlines, HandMovementDirection, Handwriting, Hearthbeat, KeplerLightCurves,
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Fig. 1. Eigenvalues of the Jacobian for a 500-dimensional reservoir in EuSN (top left),
EuSN-ε (top right), EuSN-γ (bottom left), and EuSN-ε, γ (bottom right). The plots
correspond to a system with ωr = 1, ε = 0.01, γ = 0.01. Variable values of the step
size were randomly sampled from a uniform distribution on [ε, ε+0.1]. Variable values
of the diffusion were randomly sampled from a uniform distribution on [γ, γ + 0.1].

Libras, Lightning2, Mallat, MotionSenseHAR, ShapesAll, Trace, UWaveGesture-
LibraryAll, Wafer, and Yoga. We have also run experiments on the IMDB movie
review sentiment classification dataset [19], and on the Reuters newswire classi-
fication dataset from UCI [1], which were used in the publicly online available
forms 2. For these two tasks, we applied a preprocessing step in order to rep-
resent each sentence by a time series of 32-dimensional word embeddings3. For
all datasets, we used the original splits into trainig and test, applying a fur-

2 IMDB: https://keras.io/api/datasets/imdb/
Reuters: https://keras.io/api/datasets/reuters/

3 For each dataset individually, every sentence was represented by a sequence of words
from the 10k most frequent ones in the corresponding database, with a truncation
to a maximum length of 200. To obtain the word embeddings, we trained an MLP
network with a preliminary embedding layer of 32 units, followed by a hidden layer
of 128 units with ReLU activation, and finally by a dense output layer. The MLP
architecture was trained on the training set using the RMSProp optimizer for 100
epochs and early stopping with patience= 10 (on a validation set containing the 33%
of the original training data). After this, the output of the embedding layer for each
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Table 1. Information on the time-series classification benchmarks used in our exper-
iments, including the number of sequences in the training set (# Seq Tr) and in the
test set (# Seq Ts), the maximum length of a sequence in the dataset (Length), the
nuber of input features (Feat.), and the number of output classes (Classes).

Name # Seq Tr # Seq Ts Length Feat. Classes

Adiac 390 391 176 1 37
Blink 500 450 510 4 2
CharacterTrajectories 1422 1436 182 3 20
Computers 250 250 720 1 2
Cricket 108 72 1197 6 12
ECG5000 500 4500 140 1 5
FordA 3601 1320 500 1 2
FordB 3636 810 500 1 2
HandOutlines 1000 370 2709 1 2
HandMovementDirection 160 74 400 10 4
Handwriting 150 850 152 3 26
Heartbeat 204 205 405 61 2
IMDB 25000 25000 200 32 2
KeplerLightCurves 920 399 4767 1 7
Libras 180 180 45 2 15
Lightning2 60 61 637 1 2
Mallat 55 2345 1024 1 8
MotionSenseHAR 966 265 1000 12 6
Reuters 8982 2246 200 32 46
ShapesAll 600 600 512 1 60
Trace 100 100 275 1 4
UWaveGestureLibraryAll 896 3582 945 1 8
Wafer 1000 6164 152 1 2
Yoga 300 3000 426 1 2

ther 67% - 33% stratified splitting of the original training data into training and
validation sets. Relevant information on each used dataset is reported in Table 1.

Experimental settings. In our experiments we considered EuSN with a num-
ber of recurrent units Nh ranging between 10 and 500. We explored values of ωr,
ωx and ωb in {10−3, 10−2, . . . , 10}, ε and γ in {10−5, 10−4, . . . , 1}. For EuSN set-
tings with step size variability, we explored values of ∆ε in {10−5, 10−4, . . . , 1},
and generated values of εεε from a uniform distribution in [ε, ε + ∆ε]. A similar
setting was used for exploring the case with diffusion variability. For compar-
ison, we ran experiments with standard ESNs, exploring values of ρ(Wh) in
{0.3, 0.6, 0.9, 1.2}, α in {10−5, 10−4, . . . , 1}, ωx and ωb as for the EuSN models.
In all the cases, the readout was trained by ridge regression (with regularization
coefficient equal to 1).
For each model individually, the values of the hyper-parameters were fine-tuned

sentence in the dataset was used as input feature in our experiments with the RC
models.
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by model selection, by means of a random search with 1000 iterations. After the
model selection process, for each model the selected configuration was instan-
tiated 10 times (generating random reservoir guesses). These 10 instances were
trained on the entire training set and then evaluated on the test set. Our code
was written in Keras4, and was run on a system with 2x20 Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz.

Results. The achieved results are given in Table 2, which reports the test ac-
curacy of each tested model, averaged over the 10 repetitions. The results in
the table show the practical effectiveness of the architectural variants proposed
in this paper, which overall achieve the best result in the vast majority of the
cases examined. In particular, the variant comprising the maximum variability
explored in the paper, i.e., EuSN-ε, γ is the one that is found to be superior
in most cases. Taken individually, the variability on the step size (EuSN-ε) is
slightly less effective than the full variability, while the variability on the diffu-
sion term (EuSN-γ) is the one that individually results in less effectiveness. It
is interesting to note that although in some cases the difference in performace
between the best proposed variance and the baseline EuSN model is minimal,
in many cases (including Blink, Computers, Cricket, HandMovementDirection,
Handwriting, Heartbeat, Lightning2, Mallat, MotionSenseHAR, and Yoga) the
improvement achieved is definitely relevant. Furthermore, the results show clear
confirmation of the accuracy advantage of the EuSN approach over traditional
ESNs. In the few cases where ESNs exceed the accuracy of standard EuSNs
(Computers, Cricket, MotionSenseHAR), the proposed EuSN variants achieve
even higher accuracy.

Our analysis is further supported by the ranking values given in Table 3,
which indicate that on average on the considered datasets, EuSN-ε, γ and EuSN-
ε models perform the best, followed by EuSN-γ and standard EuSN, while ESN
has the worst performance.

6 Conclusions

In this paper we have empirically explored the effects of introducing dynamical
variability in the behavior of Euler State Networks (EuSN), a recently introduced
Reservoir Computing (RC) methodology featured by non-dissipative dynamics.
Diversity has been enforced by using reservoir neurons with variable step size
of integration (EuSN-ε), and with different diffusion coefficient (EuSN-γ). Both
the approaches impact on the organization of the diversification of the dynam-
ical behavior of the model, as pointed out by analyzing the eigenvalues of the
resulting Jacobian. Moreover, results on several time-series classification bench-
marks showed the efficacy of the proposed variants, and of their synergy, as the
EuSN model with both the introduced variability factors (EuSN-ε, γ) resulted
in the highest accuracy in a larger number of cases. Notwithstanding the clear

4 Source code will be made available after acceptance.
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Table 2. Results on the time-series classification benchmarks. For every task, it is
reported the accuracy on the test set achieved by ESN, EuSN, EuSN with variable step
size (EuSN-ε), EuSN with variable diffusion (EuSN-γ), and EuSN with both variable
step size and diffusion (EuSN-ε, γ). Results are averaged (and std are given) over 10
random guesses. Best results for each task are highlighted in bold.

Task ESN EuSN EuSN-ε EuSN-γ EuSN-ε, γ

Adiac 0.307±0.07 0.690±0.01 0.691±0.01 0.634±0.01 0.649±0.01

Blink 0.620±0.02 0.943±0.01 0.934±0.01 0.946±0.01 0.969±0.01

CharacterTrajectories 0.964±0.00 0.993±0.00 0.989±0.00 0.989±0.00 0.985±0.00

Computers 0.652±0.00 0.638±0.02 0.707±0.01 0.716±0.01 0.607±0.02

Cricket 0.976±0.01 0.933±0.02 0.993±0.01 1.000±0.00 1.000±0.00

ECG5000 0.921±0.00 0.938±0.00 0.932±0.00 0.937±0.00 0.938±0.00

FordA 0.591±0.02 0.691±0.01 0.656±0.01 0.677±0.01 0.700±0.02

FordB 0.519±0.00 0.652±0.01 0.639±0.01 0.555±0.02 0.645±0.01

HandOutlines 0.690±0.02 0.912±0.01 0.908±0.00 0.919±0.00 0.911±0.00

HandMovementDirection 0.551±0.03 0.585±0.03 0.664±0.01 0.612±0.02 0.641±0.04

Handwriting 0.297±0.01 0.312±0.01 0.447±0.01 0.390±0.01 0.365±0.01

Heartbeat 0.660±0.01 0.719±0.01 0.738±0.01 0.738±0.02 0.762±0.01

IMDB 0.874±0.00 0.876±0.00 0.877±0.00 0.873±0.00 0.876±0.00

KeplerLightCurves 0.321±0.07 0.452±0.07 0.489±0.04 0.452±0.02 0.459±0.05

Libras 0.669±0.05 0.845±0.01 0.835±0.01 0.765±0.01 0.781±0.01

Lightning2 0.607±0.00 0.623±0.00 0.720±0.04 0.605±0.02 0.772±0.03

Mallat 0.649±0.01 0.842±0.04 0.883±0.01 0.905±0.01 0.913±0.01

MotionSenseHAR 0.870±0.02 0.864±0.01 0.883±0.03 0.863±0.02 0.956±0.01

Reuters 0.739±0.00 0.777±0.00 0.779±0.00 0.776±0.00 0.780±0.00

ShapesAll 0.592±0.02 0.806±0.01 0.822±0.01 0.804±0.01 0.803±0.01

Trace 0.648±0.07 0.980±0.00 0.991±0.01 0.986±0.01 0.999±0.00

UWaveGestureLibraryAll 0.833±0.01 0.952±0.00 0.962±0.00 0.963±0.00 0.957±0.00

Wafer 0.984±0.00 0.989±0.00 0.994±0.00 0.992±0.00 0.988±0.00

Yoga 0.702±0.03 0.755±0.02 0.834±0.01 0.846±0.01 0.783±0.01

advantage of basic EuSNs over conventional Echo State Networks in the ex-
plored tasks, from a practical point of view, the results suggest the convenience
in exploring EuSNs in conjunction with at least the EuSN-ε, γ variant.

Future work will focus on theoretical analysis of the effects of the dynamic
variability factors introduced in this paper, and their application in pervasive
artificial intelligence contexts.
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13. Hammer, B., Tiňo, P.: Recurrent neural networks with small weights implement
definite memory machines. Neural Computation 15(8), 1897–1929 (2003)

14. Jaeger, H.: The ”echo state” approach to analysing and training recurrent neural
networks - with an erratum note. Tech. rep., GMD - German National Research
Institute for Computer Science (2001)

15. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. Science 304(5667), 78–80 (2004)

16. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. science 304(5667), 78–80 (2004)
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