
How High can you Detect? Improved accuracy and
efficiency at varying altitudes for Aerial Vehicle

Detection
Rafael Makrigiorgis∗, Christos Kyrkou∗, Panayiotis Kolios∗

Abstract—Object detection in aerial images is a challenging
task mainly because of two factors, the objects of interest being
really small, e.g. people or vehicles, making them indistinguish-
able from the background; and the features of objects being
quite different at various altitudes. Especially, when utilizing
Unmanned Aerial Vehicles (UAVs) to capture footage, the need
for increased altitude to capture a larger field of view is quite
high. In this paper, we investigate how to find the best solution
for detecting vehicles in various altitudes, while utilizing a single
CNN model. The conditions for choosing the best solution are
the following; higher accuracy for most of the altitudes and real-
time processing (> 20 Frames per second (FPS)) on an Nvidia
Jetson Xavier NX embedded device. We collected footage of
moving vehicles from altitudes of 50-500 meters with a 50-meter
interval, including a roundabout and rooftop objects as noise for
high altitude challenges. Then, a YoloV7 model was trained on
each dataset of each altitude along with a dataset including
all the images from all the altitudes, and several training
and evaluation experiments were conducted. Overall, the best
method for achieving optimal trade-off between accuracy and
inference speed is to training on a mixed dataset of multiple
altitudes and tune the inference speed to the smaller image size.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been increasingly
used in a variety of applications, such as power infrastructure
inspection [1], search and rescue [2], traffic monitoring [3],
and emergency monitoring [4]. One of the key tasks in these
applications is real-time object detection, which involves
identifying and classifying objects in images or video streams
captured by UAVs. Real-time object detection is essential for
many UAV applications, as it enables the UAV to perform
tasks such as tracking targets, avoiding obstacles, monitoring,
and making decisions based on the environment.

However, real-time object detection using UAVs poses sev-
eral challenges, particularly when it comes to small objects,
such as vehicles, in aerial images. In addition, the motion
of UAVs and the high-resolution aerial images can further
complicate the object detection task. One major challenge
is the limited resolution of the images, which can make it
difficult to distinguish small objects or to identify fine details.
This can be especially problematic at higher altitudes, where
objects may appear even smaller due to the increased distance
from the camera.

∗KIOS Research and Innovation Center of Excellence (KIOS
CoE) E-mail:{makrigiorgis.rafael, kyrkou.christos,
kolios.panayiotis} @ucy.ac.cy

Another challenge is the presence of noise and distractions
in the images, such as reflections, shadows, and occlusions.
These can interfere with the object detection algorithms
and make it difficult to accurately identify and classify the
objects. In addition, the quality of the images can vary widely
depending on factors such as the weather, lighting conditions,
and the stability of the UAV. This can also impact the
performance of the object detection algorithms. Furthermore,
all these issues are amplified if the resolution is not optimal.

To address these challenges, it may be necessary to use
advanced image processing techniques to enhance the reso-
lution and clarity of the images, or to use machine learning
algorithms to filter out noise and distractions. Additionally,
it may be necessary to develop new object detection algo-
rithms that are specifically designed to handle the unique
characteristics of aerial image datasets obtained from UAVs.
Therefore, there is a pressing need for effective and efficient
algorithms that can reliably detect and classify small objects
in aerial images captured by UAVs.

In this paper, we investigate the best strategy for aerial
object detection that addresses the challenge of detecting
vehicles at various altitudes in real-time on embedded de-
vices. We collected a comprehensive dataset of aerial images
capturing moving vehicles at altitudes ranging from 50 to
500 meters, and trained a state-of-the-art YOLO model,
YoloV7 [5], on each altitude dataset as well as a mixed-
altitude dataset. Our key contribution is a training strategy
that involves training the mixed-altitude dataset on a higher
input size resolution to learn a larger set of features, and then
performing inference detection using a smaller resolution
size to increase inference performance while maintaining
high accuracy. Our experimental results demonstrate that this
approach achieves over 95% mAP@50% at 21 FPS on an
Nvidia Xavier NX, making it highly suitable for real-time
aerial object detection in diverse altitude scenarios. Moreover,
we provide publicly available datasets used in this paper for
further research. Our findings contribute to the field of aerial
object detection by providing insights into the best strategy
for detecting vehicles at different altitudes while maintaining
real-time processing on embedded devices, and highlight the
potential of using a single CNN model for accurate and
efficient object detection in aerial images.

II. RELATED WORK

Aerial image object detection has been an active area of
research in the computer vision community in recent years.
There have been numerous approaches proposed to tackle this
problem, ranging from traditional machine learning methods
to more recent deep learning approaches.

One of the early works in this field is the approach of
Ajmera et al. [6], which presents a survey of object detection
techniques in aerial images, including both traditional ma-
chine learning methods and deep learning approaches. With
the advent of deep learning, several approaches have been
proposed that leverage convolutional neural networks (CNNs)
for object detection in aerial images. One such approach is
the work of Tayara et al. [7], which proposes a CNN-based
method for object detection in high-resolution aerial images.
Another approach is the work of Chalavadi et al. [8], which
proposes a multi-scale CNN for object detection in aerial
imagery. Zhao et al. [9] provide a review of deep learning
approaches for object detection in aerial images, including a
discussion of the challenges and limitations of these methods.
Unfortunately, all of these either focus on satellite imagery
or do not focus on real-time performance on an embedded
device.

Recently, there has been a lot of interest in using unmanned
aerial vehicles (UAVs) for vehicle detection, with many
approaches based on deep learning [10], [11]. However,
this task presents some challenges, such as the need for
computational efficiency and the detection of small-sized
objects, as vehicles in aerial images often appear as small
objects. To address the problem of small object detection in
aerial images, some approaches have employed a two-stage
Faster R-CNN framework with an Inception V2 backbone
[12]. However, this method has shown a decrease in the
balance between accuracy and computational intensity, mak-
ing it unsuitable for video processing applications. To reduce
processing time, other approaches have suggested searching
for subregions in the image [13], [14], [15]. Another work is
the work of Lang et al. [16], which proposes a method for fast
and accurate object detection in high-resolution remote sens-
ing images using a lightweight YOLO-like object detector.
More recent works have used single-shot convolutional neural
networks for better inference time, such as the YOLOv3
[17] network for top-view vehicle detection [18]. There has
also been some effort to develop smaller networks for use
on lightweight, embedded processing platforms [19], [20],
although not all of these are designed for aerial imaging. In
general, the Faster R-CNN and YOLO families of algorithms
are commonly used for vehicle detection, and for real-time
traffic monitoring, the YOLO family of networks [21], [17],
[22] is particularly relevant due to their lower computational
complexity. Hossain et al. [23] proposed a deep learning-
based framework for object detection and segmentation in
aerial images. Their proposed framework achieved state-of-
the-art results on several aerial image datasets.

On the dataset side, previous work has focused on ground-

level datasets for object detection and analysis. Examples
include the KITTI Vision Benchmark [24] and the Microsoft
COCO dataset [25], which contain a wide range of object
categories. While these datasets provide a useful baseline for
evaluation, they are not ideal for UAV-based object detection
and analysis tasks due to the unique characteristics of aerial
imagery. In addition to ground-level datasets, there are a
few existing aerial imagery datasets for object detection and
analysis with UAVs. Examples include the Stanford Drone
Dataset [26], which contains images of cars, pedestrians,
and cyclists, and the UAVid dataset [27], which contains
images of pedestrians, vehicles, and buildings. UAVDT [28]
is a large-scale challenging UAV Detection and Tracking
benchmark which includes different altitudes and angles for
vehicles. For our analysis, we needed datasets that include
various altitudes and all of the above datasets did not include
this requirement. Similarly to our work though, Kouris et.
al in [29] proposed altitude aware approach for detecting
vehicles using UAV while publishing their dataset as well but
unfortunately their dataset consists of only a few samples.

Overall, there has been a significant amount of research
on object detection and analysis for aerial imagery datasets
for embedded devices. However, there is still a need for
research that focuses on the application of deep learning
techniques to aerial imagery datasets on embedded devices.
The goal of this paper is to fill the gap by proposing a training
strategy for object detection in aerial imagery datasets that is
simultaneously robust to different altitudes and also suitable
for embedded devices. With a focus on detecting vehicles at
different altitudes, including both small and large vehicles of
the same class.

Fig. 1: Examples of images in the dataset. Top Left: 50
meters, Bottom Left: 150 meters, Top Right: 300 meters,
Bottom Right: 500 meters.

III. DATASETS AND PROPOSED METHODOLOGY

A. Datasets

In the absence of any other datasets for altitude evaluation,
aside from the one published in [29], it was deemed necessary
to create custom datasets for various altitudes in the same
location to suit our requirements. To have a thorough evalu-
ation as per the detection in various altitudes a location near

the University of Cyprus campus was decided to capture the
footage data in need. The location selected is a roundabout
outside the university campus. Near the roundabout, a lot
of structures can be found which can be seen above 100
meters of altitude due to the field of view of the camera,
and while flying at even higher altitudes even more and
more buildings are visible. These buildings also have solar
panels and water tanks on the rooftops, which makes our
detection task even harder from a higher altitude since they
can be easily confused by the algorithm as vehicles due to
their rectangular shapes. Furthermore, near the roundabout, a
university parking lot can be found which had several parked
vehicles. Figure 1 depicts 4 images taken from the dataset
with altitudes of 50,150,300 and 500 meters. The pictures
emphasize the difference in the field of view and the size
of the objects and the differences on visible features as the
altitude increases.

The data were captured using a small UAV developed by
DJI, the Mavic 2 Enterprise. The videos were obtained by
flying the UAV on top of the region of interest, in a single
day while adjusting the altitude of the UAV. After obtaining
these videos, images were extracted from those videos with
a step rate of 1 image per 5 frames, while all the videos were
captured at a framerate of 30 frames per second. All the data
were captured during a sunny day so the images are bright
and include minimal shadows. Furthermore, upon extracting
the images, all the data were annotated using only a single
class labeled as ’Car’ since there were only a few instances
of heavy vehicles or buses. For each altitude, which varies
from 50 to 500 meters with a 50 meters step as mentioned
above, the data were split into 3 sets, training, validation, and
testing with a split of 75%, 15%, and 15%. Table I depicts
information about each dataset as per the number of images
and a number of annotations that were included in each
dataset. By observing this table, the first thing you notice
is that upon increasing the altitude, the number of vehicles
drastically increases. This is expected since the area of field
of view visible by the UAV’s camera is bigger as the altitude
increases, capturing more vehicles that are moving or being
parked around the selected location. Also, all the datasets
have almost the same amount of images, which makes sense
since the duration for each data collection experiment was
about the same. Furthermore, all the images were kept at
their original resolution of 3840x2160 which makes it even
harder to detect objects due to the high resolution of the
images. The average size of the vehicles in pixels for each
of the datasets can be seen in Table II. As seen in the table,
the average size of the vehicles in pixels in the lower altitude
starts from a percentage of 0.5% of the image and goes down
to 0.008% of the image which is a significant 62.5x decrease
in size.

B. YoloV7

YoloV7 is the latest version of the Yolo series of networks,
which was published in 2022. YoloV7 method claims to
have much better performance than its predecessors achieving

up 161 FPS on a Tesla V100. The main contributions that
make it better than its predecessors are the Extended Efficient
Layer Aggregation (E-ELAN), Model scaling techniques, and
the trainable bag of freebies including re-parameterization
planning and auxiliary head coarse-to-fine head loss. These
all-new features intrigued us to move on and proceed with
YoloV7 as our main training model for this particular evalu-
ation. Following is a brief explanation of these new features.

E-ELAN (Extended efficient layer aggregation networks)
is a method for designing efficient neural network architec-
tures. It builds upon the ELAN (efficient layer aggregation)
architecture by adding expand, shuffle, and merge cardinality
to the computational blocks in the architecture. This allows
for the continuous enhancement of the network’s learning
ability without disrupting the original gradient path. E-ELAN
uses group convolution to expand the channel and cardinality
of the computational blocks and shuffles and concatenates the
feature maps calculated by each block into groups. The goal
of E-ELAN is to improve the inference speed of the network
while maintaining a stable state in the architecture.

Model scaling is a technique used to adjust various aspects
of a model to meet the specific requirements of an applica-
tion. These aspects can include the width (number of chan-
nels), depth (number of stages), and resolution (input image
size) of the model. In traditional concatenation-based archi-
tectures like ResNet or PlainNet, it is difficult to analyze the
effects of different scaling factors independently. YOLOv7
introduces Compound Model Scaling for concatenation-
based models to address this issue. Compound model scaling
allows for the maintenance of the optimal structure of the
model while adjusting its depth and width factors. It does
this by changing the output channel of a computational block
when scaling its depth factor and adjusting the transition
layers with the same level of change for the width factor.

Planned re-parameterized convolution (RepConvN) is a
technique that was developed to improve the performance
of RepConv in VGG architectures. However, when applied
directly to ResNet or DenseNet, it results in a significant
loss of accuracy. In YOLOv7, RepConvN is used in the
architecture to avoid identity connections when replacing
a convolutional layer with residual or concatenation by re-
parameterized convolution.

The YOLO architecture consists of a backbone, neck, and
head. The head contains the predictions made by the model.
YOLOv7 introduces the use of multiple heads, inspired by
the Deep Supervision technique. The head responsible for
the final output is called the lead head, while the head
used to assist in training the middle layers is called the
auxiliary head. YOLOv7 also introduces a Label Assigner
mechanism that generates soft labels by considering the
network’s prediction results and the ground truth together.
Soft labels are more reliable than traditional hard labels,
which are generated solely based on given rules and the
ground truth because they also consider the quality and
distribution of the prediction output.

C. Analysis Process

After capturing and preparing the datasets, we conducted
training, and overall performance analysis. In general, for
any training conducted on all datasets, including the mixed
dataset, was trained using the YOLOv7 network with default
hyperparameters and augmentations. The training augmenta-
tions included mosaic, mixup, HSV enhancements, scaling,
flipping, and rotating translations. All models were trained
for 60 epochs using pretrained weights on COCO dataset.

Our overall process consisted of three steps. The first step
of our process involved training each dataset separately using
an input size of 640x640, which is usually the default input
size for when comparing yolov7 models, in order to evaluate
the performance of each model on each individual dataset. In
the second step, we focused on the mixed altitude dataset and
trained it using various resolution sizes. These new models
were then evaluated on all datasets and more explanation and
results can be found in Section IV-B. Finally, in the perfor-
mance evaluation step, we compared the performance and
accuracy of each model from the second step using various
input sizes. The description and results of this evaluation are
seen in detail in Section IV-C.

TABLE I: Information about the number of images and
annotations per dataset.

Images Labels
Dataset Train Valid Test Total Train Valid Test Total

50m 156 20 19 195 311 48 49 408
100m 296 36 37 369 1126 135 152 1413
150m 293 36 37 366 2026 272 272 2570
200m 296 36 37 369 2112 248 262 2622
250m 294 36 37 367 3978 489 503 4970
300m 296 36 37 369 7514 920 954 9388
350m 296 36 37 369 12826 1590 1603 16019
400m 294 36 37 367 24086 2916 2968 29970
450m 295 36 37 368 38119 4658 4784 47561
500m 324 36 45 405 59819 6662 8268 74749
Mix 2839 344 360 3543 151911 17938 19815 189664

IV. EVALUATION

A. Evaluation for each Dataset

We evaluated each trained model on the test set of all
datasets. The initial results, as shown in Figure 2, reveal
that each model performs better on datasets at altitudes
near to the one on which it was trained. Models trained on
altitudes less than 150 meters perform poorly on datasets
at least 100m higher, and the same pattern is observed for
models trained on higher altitudes when evaluating lower
altitude datasets. Hence, we cannot expect models trained
on particular altitudes to generalize without retraining. The
models trained at 200m and 250m altitudes tend to perform

TABLE II: Average Size of Vehicles in pixels for each of the
datasets

Dataset
AVG Area

(Pixels)
50m 100m 150m 200m 250m 300m 350m 400m 450m 500m mix

Original 43618 13009 5436 3409 2370 1548 1005 770 729 646 7959
640x640 2154 642 268 168 117 76 49 38 36 31 54

1088x1088 6225 1857 776 487 338 221 143 110 104 92 156
1440x1440 10904 3252 1359 852 592 387 251 193 182 161 274
2160x2160 24534 7317 3058 1918 1332 870 565 433 410 363 615

better overall but still struggle with datasets above 350m. The
models trained at 400m, 450m, and 500m altitudes are not
shown in the figure because they had difficulty training even
on their own datasets, resulting in a mAP@.50 below 5% for
each model meaning the default model and hyperparameters
are not sutable for such high altitudes. This occurred because
the annotated vehicles in these datasets were significantly
smaller than those in the datasets at lower altitudes. Table II
shows the average size of vehicles in each dataset and the size
of vehicles in various image sizes that can be trained using
YOLOv7. This table also helps us determine the average
size of pixels that YOLOv7 is able to train. It seems that
YOLOv7 struggles to train objects with a size below 49
pixels after resizing. To test this theory and validate our
findings, we proceed to train the 400-500m datasets using
an image size of 1088x1088. The test was successful, with
the models achieving an accuracy of 88− 95%. For fairness,
we compare in Figure 2 only models trained on the same
640x640 resolution.

B. Mixed Altitude Evaluation

Our mixed altitude dataset features high-resolution im-
agery, with many vehicles occupying small pixel areas. Upon
resizing the Yolov7 network input to 640x640, these areas
become even smaller, as demonstrated by Table. II, second
row. Hence, the areas for different sizes such as 1088x1088,
1440x1440, and 2144x2144 were also calculated and they are
also included in Table II. Furthermore, these results show that
the areas are significantly larger so the next experiment was
to train the mixed altitude dataset with a larger input size
so that the area of the annotated vehicles would retain more
features. Typically, by training a model with a larger input
size, the performance of the detector in terms of accuracy
increases, but the inference time increases as well. Our goal
was to strike a balance between accuracy and performance
during training. To achieve this, we conducted experiments
using the sizes listed in Table II. We then reduced the
inference size to evaluate the impact on both accuracy and
FPS.

TABLE III: Performance in terms of speed on the Jetson
Xavier NX. The model naming consists of the model name,
training size and inference size.

Model Pre-process Inference + nms Post-process Total
yv7 640 416 0.006 0.021 0.001 0.027
yv7 640 512 0.006 0.027 0.013 0.046
yv7 640 640 0.006 0.040 0.003 0.049

yv7 1088 416 0.005 0.022 0.009 0.037
yv7 1088 512 0.0059 0.026 0.009 0.041
yv7 1088 640 0.006 0.04 0.01 0.05
yv7 1088 1088 0.006 0.102 0.00005 0.109
yv7 1440 416 0.06 0.0203 0.0005 0.027
yv7 1440 512 0.0058 0.0264 0.0092 0.041
yv7 1440 640 0.006 0.04 0.0005 0.046
yv7 1440 1088 0.014 0.101 0.011 0.1268

As mentioned in Section III-C, a model was trained using
the mixed dataset on each altitude using the following input
sizes 1088 × 1088, 1440 × 1440, 2144 × 2144 and we also

Fig. 2: mAP@.50 Results comparing each model, trained on specified altitude, on all the altitude datasets. The horizontal
lines represent the highest mAP for the specific altitude color.

1088 1088640 1440 1440640 2144 2144640
Trained @

0

0.2

0.4

0.6

0.8

1

m
A

P
@

0
.5

mAP for each CNN evaluated at all altitudes
50m
100m
150m
200m
250m
300m
350m
400m
450m
500m
0-500m

Fig. 3: mAP@.50 Results comparison of the high-resolution
input models with evaluation on the initial size and 640x640.

used the one trained on 640×640 from the earlier experiment.
Then, the evaluation of each model was performed with all
the datasets to test out whether the accuracy is any better
than the 640 × 640 mixed dataset model. Surprisingly, the
mAP@0.50 for all the models performed significantly high,
achieving scores above 90% as seen in Figure 3. This figure
also depicts the mAP@0.50 of the same models for a resized
inference of 640 × 640. Here is the part where we start to
see a decline in the performance for the higher resolution
such as 1440 and especially for the 2144 model. Also, the
performance drop, as expected, is seen in the higher altitude
datasets since they are the datasets with the least vehicles
average area of pixels. Having these results, we are one step
away from confirming that having a higher training input size
may result in better overall performance, the only thing left
to check is the actual influence of the inference speed.

C. Jetson Performance Evaluation

Accuracy and inference speed are both crucial factors in
evaluating the performance of UAVs in real-time applica-

Fig. 4: mAP@.50 vs FPS. Each line represents the model
trained with the input size mentioned in the legend on top
right. The markers represent the inference input size of
416,512,640 and 1088 represented as a star, a diamond, a
circle, and a rectangle respectively. Input resize of 2144,1440
are not shown as they wouldn’t run due to memory insuffi-
ciency of the Jetson device.

tions. High accuracy is necessary to ensure reliable and trust-
worthy predictions, while fast inference speed is needed to
meet the demands of real-time scenarios where time is of the
essence. Both accuracy and speed must be balanced in order
to achieve optimal performance in real-time applications. To
test the performance of the models we used an Nvidia Jetson
Xavier NX as it is a device commonly used on UAVs. We
tested the performance using a video with around 900 frames
in its original 2k resolution. Detection was performed on
each frame of the video for each model, and we calculated
the average time in milliseconds for the pre-processing of the
frames, the inference and non-maximum suppression (NMS),

Fig. 5: Detection results examples where each row represents a different model. (a) is trained on the 150-meter dataset
with a 640x640 input size, and performed a 640x640 inference. (b),(c),(e) all are trained on the mix-dataset with 640x640,
2144x2144, 1088x1088 input sizes respectively and all performed with 640x640 inference. (d) is trained on the mix-dataset
with 1088x1088 input size and performed 1088x1088 inference size

and the post-processing of the detections. Table III shows the
results of this performance test for the 640×640, 1088×1088,
and 1440 × 1440 models at their original size and resized
to 640x640, 512 × 512, and 416 × 416. The results for the
2144 model are not included in this table because Jetson was
unable to run the model due to insufficient memory. The 1440
model was also unable to run at its original resolution. All
models were converted to TensorRT with floating point 16
(FP16), to achieve the maximum performance possible, as
the Jetson devices come with an embedded CUDA graphical
processing unit with Tensor cores. The inference batch size
was set to 1 for streaming scenarios. As seen in the table, the
pre-processing time is similar and uses the central processing
unit (CPU) to process a frame. The post-processing time may
vary slightly as it depends on how many objects the model
detects, even if they are false positives. The post-processing
time will be more meaningful when we consider the mean
average precision (mAP) of the models, as we do not yet
know if the detections are false or true positives. The main
thing to consider is the inference and NMS time. From the
results, it appears that the inference and NMS time does not
increase when the initial training was performed on a higher
resolution input, indicating that the inference time mostly
depends on the input size of the image.

The final mean average precision (mAP)@0.50 evaluation
test was conducted using the mixed dataset test set to draw a
final conclusion. This test was performed on all four models
trained on the mixed dataset, using a range of input sizes.
The results of this evaluation are depicted in Figure 4, with
the frames per second on the X-axis and the mAP@0.50
on the Y-axis. Each line represents the model trained with
the input size mentioned in the legend on the top right. The
markers represent the inference input size of 416,512,640
and 1088 represented as a star, a diamond, a circle, and
a rectangle respectively. Input resize of 2144,1440 are not
shown as they wouldn’t run due to memory insufficiency of
the Jetson device.

The model that was trained with a 1088×1088 input reso-
lution outperformed the others in this evaluation. It was able
to run at over 20 frames per second for resizing resolutions
of 640, 512, and 416 while maintaining a precision of 75% in
the worst-case scenario and exceeding 90% for 640 and 512
resizing. This indicates that this model is able to maintain
a high level of accuracy and performance even at lower-
resolution inputs.

D. Discussion

Figure 5 displays some examples of detections of various
trained models for 100 and 500 meters altitude images. The
models are as follows, (a) trained on 150 meters dataset with
640x640 input size, inference on 640 × 640, (b) to (e) are
all trained on mix-dataset having (b)(c)(e) with 640 × 640,
2144×2144, 1088×1088 for training input size respectively
and all with 640×640 inference. (d) is trained on 1088×1088
and performed inference on 640× 640. As you can see from
this figure, it demonstrates our results depicted in previous

figures by having the 1088× 1088 model perform excellent
results on both low and high altitudes even after a 640×640
inference size. After conducting multiple evaluation exper-
iments, we found that training a larger input size allows a
model to learn a larger set of features, which enables it to
accurately detect objects of interest even when performing
inference on a smaller resolution. Our strategy delivers high
accuracy in detecting objects of various sizes, including
small objects, without modifying the model or seeking any
other approach during inference. The results showcase our
strategy’s effectiveness and efficiency, as seen in real-time
processing on an embedded device like the Nvidia Jetson
Xavier NX.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a training strategy for aerial
object detection that is capable of detecting vehicles, at
various altitudes while maintaining real-time inference time
on an embedded device like the Nvidia Jetson Xavier NX.
Initially, training was conducted for each altitude dataset, in
order to compare the evaluation results of the trained models
on all the datasets collected. To further analyze the results,
we conducted additional evaluation experiments on a mixed
altitude dataset model. The first experiment involved training
the mixed-altitude dataset on a larger input size in order to
learn a larger set of features, with the intention of performing
inference on a smaller resolution. The results showed a
significant increase in accuracy. The models were able to
detect objects of interest at a variety of altitudes with high
accuracy and maintain real-time processing on the Nvidia
Jetson Xavier NX. The best-performed model was initially
trained on 1088x1088 with the inference size of 640x640 due
to achieving above ¿=95% mAP@50%.

The final evaluation test involved testing all possible input
sizes on the four models trained on the mixed dataset. The
results, shown in Figure 4, revealed that, once again, the
model trained with a 1088x1088 input size performed the
best. It was able to run at over 21 frames per second for
resize resolutions of 640, 512, and 416 while maintaining a
precision of 75% in the worst-case scenario and exceeding
90% for 640 and 512 resizing, as seen on 4. This indicates
that this model is able to maintain a high level of accuracy
and performance even at lower-resolution inputs. Overall, our
conclusion is that the best strategy for detecting vehicles
in various altitudes while maintaining real-time processing
on an embedded device is to have a dataset with various
altitudes, train it on a 1088x088 input size and then perform
inference with an input size of 640x640. As a final contribu-
tion, all the datasets used for this paper are shared publicly
on our website1.

As for future work, we plan to test our approach on more
challenging objects, such as people, for low to high-altitude
detection. People detection from a high altitude can be
difficult due to their features appearing almost invisible in the

1https://www.kios.ucy.ac.cy/evai/datasets/

image, resembling a ”dot”. To further challenge our approach,
we will also consider tiling techniques as demonstrated in
[30].

ACKNOWLEDGEMENTS

The project is co-financed by the European Regional
Development Fund and the Republic of Cyprus through
the Cyprus Research Innovation Foundation (’RESTART
2016-2020’ Program) (Grant No. INTEGRATED/0918/0056)
(RONDA). This work was also supported by the European
Unions Horizon 2020 research and innovation programme
under grant agreement No 739551 (KIOS CoE) and from
the Government of the Republic of Cyprus through the
Directorate General for European Programmes, Coordination
and Development.

Christos Kyrkou would like to acknowledge the support of
NVIDIA with the donation of GPU platforms.

REFERENCES

[1] Antonis Savva, Angelos Zacharia, Rafael Makrigiorgis, Antreas Anas-
tasiou, Christos Kyrkou, Panayiotis Kolios, Christos Panayiotou, and
Theocharis Theocharides. Icarus: automatic autonomous power infras-
tructure inspection with uavs. In 2021 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 918–926. IEEE, 2021.

[2] P Petrides, C Kyrkou, P Kolios, Theocharis Theocharides, and
C Panayiotou. Towards a holistic performance evaluation framework
for drone-based object detection. In 2017 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 1785–1793. IEEE, 2017.

[3] Rafael Makrigiorgis, Nicolas Hadjittoouli, Christos Kyrkou, and
Theocharis Theocharides. Aircamrtm: Enhancing vehicle detection for
efficient aerial camera-based road traffic monitoring. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 2119–2128, 2022.

[4] Christos Kyrkou and Theocharis Theocharides. Emergencynet: Effi-
cient aerial image classification for drone-based emergency monitoring
using atrous convolutional feature fusion. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 13:1687–
1699, 2020.

[5] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-
time object detectors. arXiv preprint arXiv:2207.02696, 2022.

[6] Falguni Ajmera, Sanidhya Meshram, Sangita Nemade, and Varsha
Gaikwad. Survey on object detection in aerial imagery. In 2021 Third
International Conference on Intelligent Communication Technologies
and Virtual Mobile Networks (ICICV), pages 1050–1055, 2021.

[7] Hilal Tayara and Kil To Chong. Object detection in very high-
resolution aerial images using one-stage densely connected feature
pyramid network. Sensors, 18(10):3341, 2018.

[8] Vishnu Chalavadi, Prudviraj Jeripothula, Rajeshreddy Datla, Sob-
han Babu Ch, et al. msodanet: A network for multi-scale object
detection in aerial images using hierarchical dilated convolutions.
Pattern Recognition, 126:108548, 2022.

[9] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object
detection with deep learning: A review. IEEE transactions on neural
networks and learning systems, 30(11):3212–3232, 2019.

[10] X. Chen, S. Xiang, C. L. Liu, and C. H. Pan. Vehicle detection in
satellite images by parallel deep convolutional neural networks. In
2013 2nd IAPR Asian Conference on Pattern Recognition, pages 181–
185, Nov 2013.

[11] Michael Krump, Martin Ruß, and Peter Stütz. Deep learning algo-
rithms for vehicle detection on uav platforms: First investigations on
the effects of synthetic training. In Jan Mazal, Adriano Fagiolini, and
Petr Vasik, editors, Modelling and Simulation for Autonomous Systems,
pages 50–70, Cham, 2020. Springer International Publishing.

[12] A. Mansour, W. M. Hussein, and E. Said. Small objects detection in
satellite images using deep learning. In 2019 Ninth International Con-
ference on Intelligent Computing and Information Systems (ICICIS),
pages 86–91, 2019.

[13] Alexandros Kouris, Christos Kyrkou, and Christos-Savvas Bouganis.
Informed region selection for efficient uav-based object detectors:
Altitude-aware vehicle detection with cycar dataset. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 51–58, 2019.

[14] G. Plastiras, S. Siddiqui, C. Kyrkou, and T. Theocharides. Efficient
embedded deep neural-network-based object detection via joint quan-
tization and tiling. In 2020 2nd IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), pages 6–10, 2020.

[15] Changlin Li, Taojiannan Yang, Sijie Zhu, Chen Chen, and Shanyue
Guan. Density map guided object detection in aerial images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2020.

[16] Lei Lang, Ke Xu, Qian Zhang, and Dong Wang. Fast and accurate
object detection in remote sensing images based on lightweight deep
neural network. Sensors, 21(16):5460, 2021.

[17] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improve-
ment. arXiv, 2018.

[18] Xin Luo, Xiaoyue Tian, Huijie Zhang, Weimin Hou, Geng Leng,
Wenbo Xu, Haitao Jia, Xixu He, Meng Wang, and Jian Zhang. Fast
automatic vehicle detection in uav images using convolutional neural
networks. Remote Sensing, 12(12):1994, Jun 2020.

[19] C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C. Bouga-
nis. Dronet: Efficient convolutional neural network detector for real-
time uav applications. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 967–972, 2018.

[20] A. Womg, M. J. Shafiee, F. Li, and B. Chwyl. Tiny ssd: A tiny
single-shot detection deep convolutional neural network for real-time
embedded object detection. In 2018 15th Conference on Computer
and Robot Vision (CRV), pages 95–101, 2018.

[21] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6517–6525, 2017.

[22] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection, 2020.

[23] Sabir Hossain and Deok-jin Lee. Deep learning-based real-time
multiple-object detection and tracking from aerial imagery via a flying
robot with gpu-based embedded devices. Sensors, 19(15):3371, 2019.

[24] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE
conference on computer vision and pattern recognition, pages 3354–
3361. IEEE, 2012.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Mi-
crosoft coco: Common objects in context. In European conference on
computer vision, pages 740–755. Springer, 2014.

[26] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio
Savarese. Learning social etiquette: Human trajectory understanding
in crowded scenes. In European conference on computer vision, pages
549–565. Springer, 2016.

[27] Ye Lyu, George Vosselman, Gui-Song Xia, Alper Yilmaz, and
Michael Ying Yang. Uavid: A semantic segmentation dataset for
uav imagery. ISPRS Journal of Photogrammetry and Remote Sensing,
165:108–119, 2020.

[28] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan,
Guorong Li, Weigang Zhang, Qingming Huang, and Qi Tian. The
unmanned aerial vehicle benchmark: Object detection and tracking. In
Proceedings of the European conference on computer vision (ECCV),
pages 370–386, 2018.

[29] Alexandros Kouris, Christos Kyrkou, and Christos-Savvas Bouganis.
Informed region selection for efficient uav-based object detectors:
Altitude-aware vehicle detection with cycar dataset. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 51–58, 2019.

[30] George Plastiras, Shahid Siddiqui, Christos Kyrkou, and Theocharis
Theocharides. Efficient embedded deep neural-network-based object
detection via joint quantization and tiling. In 2020 2nd IEEE In-
ternational Conference on Artificial Intelligence Circuits and Systems
(AICAS), pages 6–10, 2020.

