
University of Manchester
School of Computer Science

Third Year Project Report May 2017

Reproducible Research
using Research Objects

Author: Mark Robinson
Degree: BSc Computer Science

Supervisor: Prof Carole Goble

Licensing

This report is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)
license.
You are free to:

• Share - copy and redistribute the material in any medium or format

• Adapt - remix, transform, and build upon the material for any purpose, even commer-
cially

Under the following terms:

• Attribution - You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use

No additional restrictions - You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.
For full information including the legal code of this license, see https://creativecommons.org/
licenses/by/4.0/

The main software component of this project ‘CWL Viewer’ is licensed under the terms of the
Apache License, Version 2.0, see https://www.apache.org/licenses/LICENSE-2.0

The ‘Common Workflow Language’ logo on the title page and example CWL files in listings
1.1 and 1.2 are available under the terms of the Apache License, Version 2.0, see https:
//www.apache.org/licenses/LICENSE-2.0

The ‘Research Object’ logo on the title page is by Stian Soiland-Reyes, Matthew Gamble,
Robert Haines, https://researchobject.github.io/specifications/bundle/, and is avail-
able under the terms of the Creative Commons Attribution License, Version 3.0, see https:
//creativecommons.org/licenses/by/3.0

Figure 1.1 is available under the terms of the Apache License, Version 2.0, see https://
www.apache.org/licenses/LICENSE-2.0

Figure 2.7 is by Yug, https://commons.wikimedia.org/w/index.php?curid=1183592 and
is available under the Creative Commons Attribution-Share Alike 2.5 Generic license, see
https://creativecommons.org/licenses/by-sa/2.5/

2

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://researchobject.github.io/specifications/bundle/
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://commons.wikimedia.org/w/index.php?curid=1183592
https://creativecommons.org/licenses/by-sa/2.5/

Abstract

Reproducible Research
using Research Objects

Author: Mark Robinson

Scientific workflows play a crucial role in conducting large scale scientific experiments and
enabling them to be easily reproducible. However, it is vital that these are specified well with
useful metadata for consumption by applications in order to make sharing them simple and
convenient.
This project focuses on two up-and-coming standards - the Common Workflow Language and
Research Objects - which complement each other to achieve this goal and thus aid in repro-
ducible and transparent research.
In order to unite these standards, this report concerns the planning, development and evaluation
process of a web application, ‘CWL Viewer’, to allow the sharing of workflows written in the
Common Workflow Language. This is accomplished by providing visualisation and summary
of important details as well as a downloadable Research Object Bundle designed to provide
metadata relevant to workflow management and other applications.
CWL Viewer has been developed using an open source agile approach with continuous inte-
gration/deployment and is now the de facto standard for visualising workflows written in the
Common Workflow Language, being used to present and document them in many organisations
across a variety of fields.

Supervisor: Prof Carole Goble

Acknowledgements

I would like to thank my supervisor, Professor Carole Goble, for all of her
exceptional support and feedback throughout the project.

I am also very grateful to Stian Soiland-Reyes, Technical Software Architect
within the eScience Lab, for his valuable assistance during the course of my project
with development and deployment.

Finally, I would like to thank Michael R. Crusoe, Peter Amstutz and everyone
else within the Common Workflow Language community who provided help with
my understanding of the specification and valuable feedback on the evolving state
of the application.

1

Contents

1 Context 6
1.1 Key Concepts . 6

1.1.1 Scientific Workflows . 6
1.1.2 Common Workflow Language . 7
1.1.3 Research Objects . 9

1.2 Expected Outcome . 10
1.2.1 Objectives . 11
1.2.2 Requirements . 12

1.3 Relevant Previous Work . 14
1.3.1 Dockstore . 14
1.3.2 cwltool . 14
1.3.3 myExperiment . 14
1.3.4 Taverna RO Bundle API . 16

2 Design and Development 19
2.1 Licensing . 19
2.2 Methodology . 19
2.3 Structure . 20

2.3.1 Packaging . 20
2.3.2 MVC Pattern . 20

2.4 Functionality . 21
2.4.1 Main Application Flow . 21
2.4.2 Gallery . 24

2.5 Challenges . 24
2.5.1 Input . 24
2.5.2 Visualisation . 26
2.5.3 Download . 28
2.5.4 Reporting . 30

2.6 Technologies Used . 31
2.6.1 Languages and Storage . 31
2.6.2 MongoDB . 31
2.6.3 External Libraries and Frameworks 31

3 Evaluation 33
3.1 Unit Testing . 33
3.2 Integration Testing . 33
3.3 Cross-Browser Testing . 34

2

3.4 Usability Testing . 34
3.5 Performance Testing . 34

4 Reflection and Consideration 36
4.1 Achievements . 36
4.2 Future Enhancements . 36

4.2.1 Alternative Methods for Importing . 36
4.2.2 Command Line Tool Visualisations 38
4.2.3 Support for Linked Data Ontologies 38
4.2.4 Schema.org Support . 38
4.2.5 Improved Research Object Generation 39
4.2.6 myExperiment Integration . 39

4.3 Learnings . 39
4.4 Conclusion . 40

Bibliography 41

A Examples of Workflow Complexity 45
A.1 EBI Sequencing Workflow . 45
A.2 NCI-GDC Sequencing Error Detection Workflow 45

B Example Inputs and Outputs 47
B.1 Inputs . 47

B.1.1 Github URL . 47
B.2 Outputs . 47

B.2.1 Visualisation . 47
B.2.2 Research Object Bundle . 50

3

Figures

1.1 Workflow to retrieve a weather forecast for a specified city 6
1.2 Example Dockstore graph . 15
1.3 Example cwltool graph . 15
1.4 Example myExperiment Workflow Overview Page 17

2.1 Interaction Between Packages of the Application 20
2.2 Basic Application Flow . 21
2.3 Entering a URL into the main page . 22
2.4 Selecting a workflow to view within a directory 22
2.5 Viewing a workflow . 23
2.6 Viewing the paginated list of parsed workflows 25
2.7 Difference between bitmap and vector images 26
2.8 Selecting an output on the graph . 27
2.9 Selecting parents of a selection . 27
2.10 A visualisation of a workflow with nested subworkflow 29
2.11 Linked subworkflow in the ‘Steps’ table . 29

4.1 Presentation using a CWL Viewer visualisation 37
4.2 Table of undocumented steps . 37
4.3 Tweet with a testimonial . 38

A.1 EBI EMG Assembly Workflow . 45
A.2 NCI-GDC BQSR Workflow . 46

4

Listings

1.1 Example Common Workflow Language Workflow Description 7
1.2 Example Common Workflow Language Command-Line Tool Description . . . 8
1.3 Example Research Object Bundle Structure 9
1.4 Example Research Object Bundle Manifest 9
2.1 Database Identifier URL Scheme . 30
2.2 Full Github URL Scheme . 30
2.3 Real World Example of Full Github URL Scheme 30

5

Chapter 1

Context

This chapter introduces the concepts and some of the key technologies used in the project, how
they are relevant to the idea of encouraging reproducible research and what tbe work throughout
the project aims to achieve. Existing work being done within the space is also highlighted.

1.1 Key Concepts

1.1.1 Scientific Workflows
It is common in the scientific domain to require a series of computational/data management
steps which can involve large scale and repetitive processes (especially in data-intensive fields
such as bioinformatics, medical imaging or astronomy) [2].
This means that it would be labour intensive to run each of these steps by hand and manage
conversions of input/output types between them. In addition to this issue, sharing the method-
ology of the experiment and allowing it to be run by others would be very difficult which is a
major barrier to reproducible research [16].
Workflows have come about from a need to tackle excessive complexity in scientific analyses.
They allow complex pipelines of applications to be specified in a high-level declarative way,
allowing them to be easily executed [2]. A very simple example of a workflow can be seen in
figure 1.1.

Figure 1.1: Workflow to retrieve a weather forecast for a specified city [2]

6

Sections or particular steps within the workflows can also be swapped out with others [19] to
experiment with and compare different techniques within an overall pipeline.
However, in real world processes the workflows will be magnitudes higher in complexity such
as the examples seen in appendix A, providing major challenges to execution.
Workflow management systems exist to make setting up, running and monitoring the execution
of these workflows simpler. These systems provide helpful features such as graphical editors,
viewing of intermediate results and setting up the environment necessary to run tools [21].
Because of the popularity of workflows, many competing standards have emerged targeting
different fields. There are currently over 100 different computational data analysis workflow
systems [18] which express their workflows/tooling in different formats.
As a result of this lack of interoperability, the concept of having a workflow which will ‘just
run’ is undermined [25]. Users may need to download multiple different workflow systems in
order to run all the workflows which they encounter. Tooling developed may also need to be
specified in several languages to be used with different systems, wasting resources.
In order to run workflows, three major components are required: a language to describe them;
packaging to allow tools to run in a compatible environment and tools built to aid understanding
and enable execution.

1.1.2 Common Workflow Language
The need for a universal language for expressing workflows utilising open standards is clear,
hence the Common Workflow Language (CWL) project has emerged [10]. This format allows
for the writing of workflows and wrapping of command-line tools as a set of structured text files
(YAML). Various extensions to the format are also allowed to implement extra functionality
while adhering to the standard [10].
The language expresses workflows using a few main elements. These are the overall inputs and
outputs as well as steps between them. In addition to this, requirements and hints provide a
way of expressing the environment required to execute it, accomplishing part of the packaging
goal required to execute the workflows.
An example of this is supporting the use of Docker to create a consistent environment for
computation. This is a container platform used to make programs run on any machine by
packaging libraries and configuration required to make the software work as needed. These
containers do not contain the entire operating system like virtual machines, making for more
lightweight packages which are still OS and system independent [30].
An example of a CWL workflow, grep and count.cwl from the community repository [8]
can be seen in listing 1.1. This searches for a term in a collection of files using the unix
command grep followed by finding a word count using wc. Steps run command line tools or
subworkflows and have their own inputs and outputs to express the whole workflow.

c l a s s : Workflow
c w l V e r s i o n : v1 . 0

r e q u i r e m e n t s :
− c l a s s : S c a t t e r F e a t u r e R e q u i r e m e n t

i n p u t s :
p a t t e r n : s t r i n g
i n f i l e s : F i l e []

7

o u t p u t s :
o u t f i l e :

t y p e : F i l e
o u t p u t S o u r c e : wc / o u t f i l e

s t e p s :
g r ep :

run : g r ep . cwl
i n :

p a t t e r n : p a t t e r n
i n f i l e : i n f i l e s

s c a t t e r : i n f i l e
o u t : [o u t f i l e]

wc :
run : wc . cwl
i n :

i n f i l e s : g r ep / o u t f i l e
o u t : [o u t f i l e]

Listing 1.1: Example Common Workflow Language Workflow Description

One of the command-line tool descriptions within this workflow (for the unix grep command,
usage grep ’searchterm’ filename) can be seen in listing 1.2. This defines the inputs
‘pattern’ being provided as the first command line argument and ‘infile’ as the second.

! / u s r / b i n / env cwl−r u n n e r
c l a s s : CommandLineTool
c w l V e r s i o n : v1 . 0

i n p u t s :
p a t t e r n :

t y p e : s t r i n g
i n p u t B i n d i n g : { p o s i t i o n : 0}

i n f i l e :
t y p e : F i l e
i n p u t B i n d i n g : { p o s i t i o n : 1}

o u t p u t s :
o u t f i l e :

t y p e : s t d o u t

baseCommand : g rep
Listing 1.2: Example Common Workflow Language Command-Line Tool Description

CWL has seen increasing levels of adoption within industry, being mentioned in several Bioin-
formatics Open Source Conference talks [26], having a high profile in the National Cancer
Institute ‘Cancer Cloud’ pilot [28] and being featured in the Netherlands ‘National Plan Open
Science’ [40]. It has also been adopted by BioExcel and ELIXIR [41].

8

1.1.3 Research Objects
Research Objects (RO) are an emerging approach to publishing scholarly information on the
web and support reuse and reproducibility [11]. They consist of a container of files with a
manifest to provide meaningful information about what the those files are, what they mean,
how they relate and provide provenance and versioning information [11].
One format for this container is a Research Object Bundle, which is defined by the specifica-
tion as “a file format for storage and distribution of Research Objects as a ZIP archive” [36].
An example directory structure of a Research Object Bundle can be seen in listing 1.3 and a
matching very simple example of the manifest with basic metadata in listing 1.4.
Research Objects use linked data in the manifest so that metadata can be expressed in a seman-
tically rich way by consuming applications [11]. Linked Data is about using the web to connect
related data using URIs, being able to understand it and allowing the data to be semantically
queried to make it more useful [13]. In this case the manifest is written in JSON-LD [39].
Various helpful ontologies (formal definitions of types, properties and relationships of entities
in a particular domain) already commonly exist for fields which use scientific workflows, such
as the EDAM ontology for Bioinformatics [27]. This means vocabulary terms from the domain
can be used in the manifest if required.

bu nd l e . z i p
mimetype
. ro

m a n i f e s t . j s o n
f i l e s

e x a m p l e f i l e . t x t
e x a m p l e s u b f o l d e r

s u b d i r e c t o r y f i l e . t x t
Listing 1.3: Example Research Object Bundle Structure

{
” @context ” : [” h t t p s : / / w3id . o rg / bun d l e / c o n t e x t ”] ,
” i d ” : ” / ” ,
” m a n i f e s t ” : [” m a n i f e s t . j s o n ”] ,
” c r e a t e d O n ” : ”2017−03−24T11 : 2 0 : 2 4 . 1 2 3 Z” ,
” c r e a t e d B y ” : {

” u r i ” : ” h t t p : / / www. example . com ” ,
”name” : ” Example Tool ”

} ,
” au tho redBy ” : [{

” u r i ” : ” h t t p s : / / g i t h u b . com / MarkRobbo ” ,
”name” : ”Mark Robinson ”

} , {
” u r i ” : ” h t t p s : / / g i t h u b . com / s t a i n ” ,
”name” : ” S t i a n S o i l a n d−Reyes ”

}] ,
” a g g r e g a t e s ” : [{

” u r i ” : ” / f i l e s / e x a m p l e f i l e . t x t ” ,
” med ia type ” : ” t e x t / p l a i n ” ,

9

” c r e a t e d O n ” : ”2017−03−24T11 : 2 0 : 2 5 . 3 7 9 Z” ,
” au tho redBy ” : [{

” u r i ” : ” h t t p s : / / g i t h u b . com / MarkRobbo ” ,
”name” : ”Mark Robinson ”

}] ,
” bundledAs ” : {

” u r i ” : ” u rn : uu id : 5 0 c0773b−b244−4594−8504−5 d 4 6 f 6 f c c 4 7 4 ” ,
” f o l d e r ” : ” / f i l e s / ”

}
} , {

” u r i ” : ” / f i l e s / e x a m p l e s u b f o l d e r / s u b d i r e c t o r y f i l e . t x t ” ,
” med ia type ” : ” t e x t / p l a i n ” ,
” c r e a t e d O n ” : ”2017−03−24T11 : 2 0 : 2 5 . 3 7 9 Z” ,
” au tho redBy ” : [{

” u r i ” : ” h t t p s : / / g i t h u b . com / s t a i n ” ,
”name” : ” S t i a n S o i l a n d−Reyes ”

}] ,
” bundledAs ” : {

” u r i ” : ” u rn : uu id : 5 0 c0773b−b244−4594−8504−5 d 4 6 f 6 f c c 4 7 5 ” ,
” f o l d e r ” : ” / f i l e s / e x a m p l e s u b f o l d e r / ”

}
}]

}
Listing 1.4: Example Research Object Bundle Manifest

Research Objects are very general in their bare implementation. This can be specialised by
using the idea of a Research Object ‘Profile’ which defines the expectation and purpose of the
object in terms of what files and metadata should be expected and what assumptions can safely
be made about the contents [24] [37]. This is helpful to allow the consumption of the container
by an application which may have requirements for the data it is loading.
One such profile could be a specialised workflow object which would contain the Common
Workflow Language files making up the overall workflow with extra metadata specific to the
concept. This could contain information such as an ‘entry point’ to the main workflow within
the collection of files and its corresponding input(s) [12].
This would add information on description, provenance, versioning etc. in the form of a stan-
dard manifest which is something CWL is not designed to capture within a workflow descrip-
tion [10]. Together the two are a natural combination to provide both the language and pack-
aging elements of execution and produce a self-contained packaged workflow which can easily
be run and reasoned about when published online.

1.2 Expected Outcome
It was expected over the course of the project to, within a web application, produce a richly
featured Common Workflow Language visualisation suite, ‘CWL Viewer’. This would graph-
ically present and list the details of CWL workflows with their inputs, outputs and steps.
In addition to this it was important to utilise Research Objects Bundles to package the files and
include attribution, versioning and dependency metadata in the manifest to allow it to be easily

10

shared and consumed by supporting applications.
This tool was required to operate over any CWL workflow in a Github repository and provide
the latest versions of the workflows within it, with a cache for meeting performance require-
ments.
Other planned features of the application included a gallery of previously submitted work-
flows; workflow visualisation download in a range of image formats and support for nested
workflows/private Github repositories.
This allows for the application to have a set of features which are relevant across the entire
lifecycle of interactions with the Common Workflow Language from creation to sharing and
subsequent use.
These features and challenges the various features pose are detailed below within the main
objectives.

1.2.1 Objectives
Visualisations of CWL Workflows

Workflow systems are moving increasingly towards user friendly GUIs and interfaces which
allow comprehension of any complex pipelines involved in a much easier fashion than the user
attempting to map them out in their mind from the source code.
Common Workflow Language files are currently almost exclusively being written by hand and
due to their syntax and expression in multi-file collections are not conducive to easy browsing,
exchange and understanding.
Visualisation can be used to facilitate this, allowing the structure of a workflow to be easily
viewed at a glance for users to quickly understand its purpose and how it works.
Being able to view a simple graph also assists with the sharing and explaining of workflows to
other domain scientists who may not know the CWL syntax but still require an understanding
of how they work in order to use them.
The images can also be downloaded and included in reports, presentations and external docu-
mentation to illustrate and explain their function.
Despite this, visualising workflows also poses significant challenges in implementation:

• Parsing - Before visualisation can be attempted the workflows need to be parsed from
their representation in CWL over multiple files to a single data structure for processing.
This is a challenge with CWL as it is designed to be easily written by hand and there
is a significant amount of ambiguity in the expression of many fields to allow for this,
making consuming them more difficult.

• Versioning - A challenge for providing up-to-date visualisations from workflows parsed
from a Github repository is keeping these continuously updated when the contents change
without fetching the contents every time (which would be a huge performance penalty).

• Nesting - Workflows can be nested within each other to provide layers of abstraction.
This can quickly become very complex with large pipelines which poses challenges for
non-functional performance requirements. It also poses issues for user comprehension
where workflows would be too much to comprehend when viewed all at once - so there
must be a trade-off between information provided and complexity.

11

• Interactivity - Providing this in the browser provides some challenges in being able to
parse the graph from the client and compute useful information such as connectivity of
nodes in an efficient manner in order to add features such as highlighting.

Downloads of CWL Workflows as Research Object Bundles

A download link for the CWL workflow in the form of a Research Object Bundle (discussed
above in section 1.1.3) allows for useful metadata to be provided to users to facilitate the easy
sharing of a self contained object representing the entire workflow.
However, there are also difficulties associated with the construction of this bundle. The first of
which is identifying which metadata would be useful to include in the manifest and which of
these will be added.
The second and most significant challenge is the complexity of calculating or obtaining this
information from just the CWL files and Github metadata - as naturally the values which are
interesting to include are not already easily available from the files themselves.

Gallery of CWL Workflows for Discovery

The sharing of workflows is only beneficial if people can find those which are relevant to them
so this became an important consideration. Although CWL workflows could be shared today
by linking to source code, there is a use case for being able to search for and locate existing
work to increase reuse and avoid repeating it [20].
As a learning resource, it is also helpful for users of CWL to have a bank of workflows to look
at and see different techniques being demonstrated. This is already done to some extent in the
form of a community repository but contributions there must be donated under an Apache open
source license [8]. This is not an appropriate method in all cases as many people may not be
able to distribute or develop their workflow in this fashion.

1.2.2 Requirements
These requirements were gathered and refined over the course of the project by communicating
with members of the CWL community rather than upfront, due to the possibilities of require-
ments change from the changing environment or needs of the user base. More details of the
agile methodology can be viewed in section 2.2.
The MoSCoW method [15] has been used to prioritise requirements below in order to evaluate
their importance to the project. This involves using the following priorities:

1. Must have - Critical to the application in order to make it a success

2. Should have - Important but not absolutely necessary to the functionality of the applica-
tion

3. Could have - Desirable to implement but not necessary to the functionality

4. Won‘t have - Not appropriate to be developed within the time span or are the least critical
pieces of functionality

For “Won‘t have” requirements, see the ‘Future Enhancements’ section in the conclusion (4.2).

12

Functional Requirements

Type Requirement Priority

Input

Retrieval of workflow files from a Github repository M
Robust parsing of Common Workflow Language V1.0 workflow
descriptions

M

Robust parsing of Common Workflow Language draft-3 workflow
descriptions

S

Storage of workflow representations M

Visualisation

Generate a directed acyclic graph of a workflow representation M
Include default values differentiated from regular steps S
Include nested workflows differentiated from regular steps S
Provide the DOT graph description language source code for the
visualisation

S

Download links for the visualisation image in various formats M
Panning and zooming of the visualisation on the workflow page S
Full screen enlargement of the visualisation on the workflow page C
Highlighting of nodes within the graph visualisation C
Selection of parent and child nodes of a selection within the visu-
alisation

C

Download
Provide a download link to a Research Object Bundle containing
the workflow files

M

Add extra relevant metadata for attribution and provenance to the
Research Object manifest

S

Reporting
Provide a unique ID to each workflow to be able to navigate to it
in a URL

M

Details of inputs, outputs, steps and Github origin repository on
the workflow page

M

Details from external files run by steps C

Gallery
Gallery of added workflows displaying visualisation thumbnails
and basic information

S

Paginate the gallery to allow easier browsing of many workflows C

Non-Functional Requirements

Requirement Priority
Display, operate correctly and be usable across a variety of devices (including
touch screens) and screen sizes

M

Take no longer than 15 seconds to retrieve a workflow and display a visualisation
page for it in normal operation

M

Maintain a similar look and feel as the official Common Workflow Language web-
site at http://commonwl.org

M

13

http://commonwl.org

1.3 Relevant Previous Work
Both Research Objects and CWL are relatively new and thus there are not a huge number of
examples of them being used. In particular the massively beneficial interaction between the two
is something for which tooling does not currently exist although the concept has been explored
in preliminary work by the Wf4Ever project [17].
Within CWL the amount of tooling is growing in response to interest from the scientific com-
munity, but is still sparse for some popular languages.
A few examples of relevant tooling, visualisation and sharing within the community are detailed
below. However, these projects differ significantly in their requirements and overall aims to
CWL Viewer. This can be seen in table 1.1.

1.3.1 Dockstore
Dockstore was developed by the Cancer Genome Collaboratory and is an “open platform for
sharing Docker-based tools described with the Common Workflow Language” [45] which is a
specialist application for sharing of CWL workflows and tools.
However, the Dockstore visualisation (figure 1.2) does not currently take a dominant role in
the application and instead gives just the most basic of details about a CWL workflow. For the
purposes of viewing more information Dockstore provides the full source of tooling and the
workflow. This duplicates data already available in the source repository and makes it more
difficult for users to parse relevant details quickly.
The directed acyclic graph lacks inputs and outputs for the workflow. It also requires mousing
over to view details of the file which is run in that step and the type of the node (tool, subwork-
flow etc). This encourages ‘minesweeper’ type behaviour of mousing over every node in order
to comprehend the whole workflow. This is illustrated by figure 1.2b.

1.3.2 cwltool
Cwltool is the reference implementation of the Common Workflow Language, providing vali-
dation and other tools to work with CWL files [10].
As part of its feature set, there is a command line option --print-dot which produces source
code for a graph using Graphviz DOT (a popular graph description language) [22]. This can
then be fed into Graphviz software to produce an image representing the workflow as a graph.
An example of this output is in figure 1.3.
Despite being a feature in the reference implementation, the graph requires an external tool to
render it and lacks a listing of the inputs and outputs along with how they are connected as well
as default values being injected into the tools. These are aspects which are hugely important
for users to understand the aim of the overall workflow.
To illustrate this, figure 1.3 can be compared with the output of the finished application with
the same workflow in appendix B.2.1.

1.3.3 myExperiment
This is a website designed for researchers to share Research Objects such as Scientific Work-
flows [20]. It is the largest public repository of these workflows on the internet and aims to
allow people to download a whole body of work with a single click [1].

14

(a) Default state (b) Mousing over the untar step

Figure 1.2: Example Dockstore graph

Figure 1.3: Example cwltool graph

15

The workflow download pages on myExperiment (figure 1.4) provide an overview, visualisa-
tion, download link and details of how to run it.
Currently CWL workflows are difficult to handle for myExperiment. This is due to it assuming
a workflow is a single file and can provide its own visualisation image. CWL workflows are
packaged as a collection of YAML files as explained in section 1.1.2 so do not fit with this
model.

1.3.4 Taverna RO Bundle API
An API was developed to support Research Object Bundles (see section 1.1.3 above) as part of
work for Apache Taverna, a workflow management system developed here at the University of
Manchester [42], to support data bundles packaged within Research Objects.
This provides functionality to create and modify them as well as providing support for the
basic metadata within the manifest outlined by the specification. Despite this, the functionality
is quite poorly documented as it is designed for internal use within Taverna - with unit tests
providing partial coverage of the intended usage.
Some elements of the specification (support for the RDF predicates retrievedOn, retrievedFrom
and retrievedBy in the manifest) were also missing from the library at the beginning of the
project and were contributed by myself to the Apache Taverna project in order to achieve my
aims [34].

16

Figure 1.4: Example myExperiment Workflow Overview Page

17

Type Requirement Dockstore cwltool myEx API

Input

Retrieval of workflow files from a
Github repository

Yes Yes No No

Robust parsing of Common Work-
flow Language V1.0 workflow de-
scriptions

Yes Yes No No

Robust parsing of Common Work-
flow Language draft-3 workflow de-
scriptions

Yes Yes No No

Storage of workflow representations Yes No No No

Visualisation

Generate a directed acyclic graph of a
workflow representation

Yes Partial No No

Include default values differentiated
from regular steps

No No No No

Include nested workflows differenti-
ated from regular steps

Partial Yes No No

Provide the DOT graph description
language source code for the visual-
isation

No Yes No No

Download links for the visualisation
image in various formats

Yes No No No

Panning and zooming of the visuali-
sation on the workflow page

Yes No No No

Full screen enlargement of the visual-
isation on the workflow page

Yes No No No

Highlighting of nodes within the
graph visualisation

Partial No No No

Selection of parent and child nodes of
a selection within the visualisation

No No No No

Download
Provide a download link to a Re-
search Object Bundle

No No Yes No

Add extra relevant metadata for at-
tribution and provenance to the Re-
search Object manifest

No No Yes Yes

Reporting
Provide a unique ID to each workflow
to be able to navigate to it in a URL

Yes No Yes No

Details of inputs, outputs, steps and
Github origin repository on the work-
flow page

Partial No Partial No

Details from external files run by
steps

Yes No Yes No

Gallery
Gallery of added workflows display-
ing visualisation thumbnails and ba-
sic information

Partial No Yes No

Paginate the gallery to allow easier
browsing of many workflows

Yes No Yes No

Table 1.1: Comparison of Functional Requirements with Capabilities of Some Existing Tools

18

Chapter 2

Design and Development

In this chapter the design and development process are discussed. An overview of the archi-
tecture of the application and some interesting implementation details for complex aspects are
also given.

2.1 Licensing
During the course of development it was important to follow the principles of free and open
source software which are demonstrated in the technologies being utilised.
For this reason, the software portion of this project is licensed under the Apache License
Version 2.0 (a free software license which grants extensive rights to modify and redistribute
it) and is hosted on Github under the official Common-Workflow-Language organisation at
https://github.com/common-workflow-language/cwlviewer.
All dependencies of the application are also free and open source, having similar and compati-
ble licenses.

2.2 Methodology
An agile methodology was embraced when working on the project code, first creating a mini-
mum viable product of a basic visualisation along the lines of what cwltool can already produce
with the added value of being on the web and the link being shareable with others.
Shortly afterwards, continuous integration was set up with Travis-CI, a tool to automatically
build and test projects hosted on Github to prevent regression before merging changes. This
can be seen at https://travis-ci.org/common-workflow-language/cwlviewer.
Finally a Docker image for the project was produced at https://hub.docker.com/r/stain/
cwlviewer with its dependencies and continuous deployment set up to push the master branch
of the project to the production server at https://view.commonwl.org, a subdomain of the
official CWL domain name.
These two steps combined not only allowed quick and efficient changes to the code base, but
also enabled the building up of a user base and method to collect continued feedback as func-
tionality continued to be added and bugs were fixed in an iterative manner. This element of
feedback is critical to an Agile process to ensure that the features which deliver the most value
are being produced by the development process.

19

https://github.com/common-workflow-language/cwlviewer
https://travis-ci.org/common-workflow-language/cwlviewer
https://hub.docker.com/r/stain/cwlviewer
https://hub.docker.com/r/stain/cwlviewer
https://view.commonwl.org

Both the Common Workflow Language Gitter chat room at https://gitter.im/common-
workflow-language/common-workflow-language and issues added to the public Github
repository linked in section 2.1 were primary methods to see which features the community
wanted most so these could be prioritised.

2.3 Structure

2.3.1 Packaging
There are a total number of 24 classes which make up the application itself, packaged by feature
to ensure that it is easy to find the class which corresponds to a particular change regardless of
the layer of the application it belongs to.
These features are:

• Workflow - Handling of overall workflow related functionality

• Graphviz - Generation of graph files and writing of DOT source code

• ResearchObject - Generation of RO Bundles

• CWL - Classes concerning Common Workflow Language representation and parsing

• Docker - Docker related functionality

• Github - Wrappers and data types for the Github API

How these packages interact to complete the application and satisfy the requirements can be
seen in figure 2.1.

Figure 2.1: Interaction Between Packages of the Application

2.3.2 MVC Pattern
CWL Viewer uses a Model-View-Controller pattern to separate concerns of the application
into:

• Model - This is the main component of the pattern and expresses the application’s main
behaviour in the problem domain. In this case it would be the combination of classes
which describe a collection of files and create the workflow and DOT source code for the
visualisation.

20

https://gitter.im/common-workflow-language/common-workflow-language
https://gitter.im/common-workflow-language/common-workflow-language

• View - This is any representation of the output of the application. For this application
views are usually in the form of HTML templates with model information injected into
them, or in the form of a file to download such as the workflow image or Research Object
Bundle.

• Controller - This is the component which can update or retrieve details from the model.
In CWL Viewer the controllers are explicitly named and defined ‘Controller’ classes
which map particular HTTP request patterns to methods.

The overall purpose of this is to reduce model-view dependency by inserting a controller in
the middle. This means the model, and possibly the view, is reusable without modification and
allows for neater and clearer code in each [29].

2.4 Functionality

2.4.1 Main Application Flow
The basic application flow is pictured in figure 2.2 and described below.

1. A link to a Github file or directory is entered into the form on the main page of the
application (figure 2.3).

2. If the link was a directory, a list of workflows within that directory with label and de-
scription pulled from the files is displayed. This allows the user to select the specific
workflow they are interested in (figure 2.4).

3. This workflow is parsed (if it had not been already and is in the cache) and displayed on
the page with a visualisation as well as variety of information about it (figure 2.5).

4. A Research Object Bundle is constructed in the background and added when complete
(see section 2.5.3). Attribution for the tool as well as metadata such as author informa-
tion, mime types and CWL versioning are aggregated from the Github API and included
in the manifest as seen in appendix B.2.2.

Figure 2.2: Basic Application Flow

21

Figure 2.3: Entering a URL into the main page

Figure 2.4: Selecting a workflow to view within a directory

22

Figure 2.5: Viewing a workflow
23

2.4.2 Gallery
Separate to this main flow above, the application is capable of listing workflows which allows
for the gallery based requirements to be met. This can be seen in figure 2.6.
The list provides origin information, top level documentation and thumbnails of the graphs
which is aimed to provide easy recognition of what a workflow is designed to do.
It is also paginated as per the requirements to deal with large numbers of workflows added
which may be too many to load on a single page.

2.5 Challenges
In this section the areas of the requirements (1.2.2) which posed challenges or required signifi-
cant design decisions during the implementation process will be elaborated upon.

2.5.1 Input
CWL Parsing

As mentioned previously in section 1.1.2, CWL workflows exist in multi-file collections which
are commonly written by hand.
With this in mind, the specification is built around making expression of the workflows in a
text format simple and provides various alternative shorthands in order to make writing them
easier.
However, this ambiguity complicates matters for parsing done by external tools such as CWL
Viewer. This meant writing a robust parser which could handle both V1.0 and draft-3 versioned
CWL in order to meet the requirements for this section was a challenge.
Handling multiple files with external tools and particularly nested workflows being involved
was another added complexity to parsing.

Caching Strategy

Finding an effective and efficient caching strategy for the workflows being parsed was a critical
part of developing the application. This was because the Github API has a rate limit when
properly authenticated of 5000 requests per hour [3].
Repeatedly regenerating workflows when they had not changed would mean drastically in-
creasing the number of API calls which were used and could quickly cause the website to hit
that limit.
However, never checking for updates with Github would mean that changes to workflows would
not be reflected in the website. It was important to support this ‘archival’ of a particular state
of a workflow without forcing this on the user.
One solution to this, and the one utilised in the application, is that if the workflow was fetched
from Github by a reference to a branch which could change (e.g. ‘master’), to have a time span
for which it is cached. After this expires, the latest commit ID (an SHA1 hash) of the file is
checked and if changes are found the workflow model is recreated.
If a workflow is fetched originally by a commit ID, the state of it is ‘frozen in time’ under this
scheme as the ID does not change.

24

Figure 2.6: Viewing the paginated list of parsed workflows

25

2.5.2 Visualisation
Styling

The styling of the visualisation was a major consideration for the application. Emulating the
style of an existing workflow management system, Apache Taverna, was considered to be the
best solution.
This was due to their tried and tested styling in the area and to capitalise on any user familiarity
with the system being transferable to CWL Viewer.

Interactivity

Scalable Vector Graphic (SVG) images are XML formatted images which consist of a series of
scalable shapes allowing them to be increased in size without quality loss [32]. The difference
between this and traditional formats is illustrated by figure 2.7

Figure 2.7: Difference between bitmap and vector images

This file format is perfect for enabling panning and zooming and is supported by Graphviz [22].
However, browsers handle the embedding of SVG files in traditional img or object tags by
treating them as separate documents, which began to be an issue with the introduction of the
highlighting feature described below.
This feature came out of a need to easily reference the visualisation from the table with more
details below or vice versa. In addition to this, finding out the origin or resulting values from
a step could be implemented using ‘select parents’ or ‘select children’ functionality after this
was added. This was an important priority and ended up being included in the final application
as seen in figures 2.8 and 2.9.
However it was very difficult to support by using the existing method of using an object tag
due to the inability for jQuery [33], the main front end library used in this project, to access
the SVG DOM (Document Object Model - a programming interface for HTML and XML
documents [44]) [43] in order to change colouring etc.
To add this functionality a plugin had to be introduced, ‘jQuery SVG’, which allows interaction
with the SVG DOM. Further to this the image must be inserted into the page inline by loading
it from the external URL [43].
Graphviz also did not add helpful IDs to steps allowing the addition of colouring in a convenient
manner, which meant it was necessary to scrape the image for information from other tags in
order to understand which boxes represent which steps and how they are connected.

26

Figure 2.8: Selecting an output on the graph

Figure 2.9: Selecting parents of a selection (figure 2.8)

27

This was particularly relevant when designing the selection algorithms for parents and children
mentioned above where efficiency was important due to their recursive nature. For this dy-
namic programming techniques were used to speed up runtime for large workflows, storing the
computed structure above in a helpful graph object before computation rather than attempting
to scrape the DOM for each step in a recursive fashion.

Nested Workflows

Nested workflows allow for the abstraction of large processes by capturing them in a whole
workflow, as a step within a much larger one.
This is a feature which is commonly utilised in the Common Workflow Language due to the
aforementioned complex pipelines involved in many of the fields where people use it [8].
For this reason it was important to include this in some way in the visualisation and information
listed on a workflow page. A few techniques were considered to convey this information:

1. Including subworkflows in the graph as a cluster - Similarly to inputs and outputs, the
steps within these workflows could be represented in the same way and included within
a cluster.

2. Colouring subworkflow steps - This indicates to the user that a particular step is a
separate subworkflow.

3. Linking subworkflows - As the subworkflow is, in itself, a valid workflow by definition,
it can be parsed separately like any other and so can be linked to within the website under
the URL scheme discussed in section 2.5.4.

Method 1, including the subworkflows in the visualisation, seems at first to be a good solution.
However this causes issues with complexity when subworkflows are very large or there are
multiple layers of them. The resulting graph image would become complex to interpret by
defeating the point of the abstraction involved in the technique in the first place.
It also adds additional complexity to the task of generating unique IDs required by the Graphviz
DOT format for each step.
The user interface of Apache Taverna faced this same challenge and ended up having ‘show/hide
nested workflows’ functionality which could be a possible solution. Instead, the second and
third techniques above were combined and steps are coloured in the visualisation (figure 2.10)
while also linking to the subworkflows in the table below on the workflow page (figure 2.11).
Labels and descriptions from the nested file are also pulled in and displayed which allows for
reuse of documentation (also demonstrated by figure 2.11).

2.5.3 Download
Asynchronous Research Object Generation

Page loads when processing large numbers of files associated with real world workflows can
be large and focus turned to where this could be reduced in order to meet the ‘must have’
non-functional performance requirement.
This would only be relevant when the workflow is first processed and added to the database or
when it needed to be updated as per the caching strategy in section 2.5.1 but the high loading
times (up to 25 seconds) were still a point of concern.

28

Figure 2.10: A visualisation of a workflow with nested subworkflow (‘align’, seen in orange)

Figure 2.11: Linked subworkflow in the ‘Steps’ table (‘align’)

29

One of the main contributors to the time taken to process workflows was the production of the
Research Object Bundle (see 1.1.3), as files need to be gathered and information from them
processed in order to populate the manifest with relevant metadata.
This is something which is not necessarily immediately relevant to the user as they are expected
to want to inspect the visualisation and details of a workflow before wanting to download it. It
may not even be relevant at all if the user ends up not wanting to download the bundle.
For this reason and a lack of dependency on the rest of the application, the Research Object
Bundle generation was made asynchronous and a repeated call added from the view to check
when the bundle is generated and add it to the page (with a loading image being shown in the
meantime). This reduced page load times to under half their previous values, resulting in the
current performance metrics in section 3.5.

2.5.4 Reporting
Workflow ID Scheme for URLs

The workflow ID scheme to use in URLs being easily editable was a ‘must have’ requirement
for the application. There were a few possible approaches to this.
The first of these is the simplest: using the MongoDB ‘ObjectID’ from the database (a 12-byte
hex value as seen in listing 2.1).

/ workf lows /507 f 1 f 77 b c f 86 cd 799439011
Listing 2.1: Database Identifier URL Scheme

However, this scheme does not convey any information to the user about where the workflow
was fetched from or details about it just from the URL. It also does not remain the same if for
any reason the database is cleared and the same workflow is added.
Another option was to have the URL contain the full Github URL as illustrated in listing 2.2
and 2.3. This gives information as to the user and repository it is from as well as branch and
path within that repository.

/ workf lows / g i t h u b . com /{ owner } /{ r e p o s i t o r y name } / t r e e /{ b ra nc h
r e f } /{ p a t h / workflow . cwl}

Listing 2.2: Full Github URL Scheme

/ workf lows / g i t h u b . com / NCI−GDC/ gdc−dnaseq−cwl / t r e e / m a s t e r /
workf lows / dnaseq / i n t e g r i t y . cwl

Listing 2.3: Real World Example of Full Github URL Scheme

This allows the URL to be modified by the user directly to browse to a new workflow. Users
can also easily paste in a Github URL they have navigated to in order to view it.
For these reasons this is the design implemented in the final version of the application as it has
clear advantages over the database identifier approach.

30

2.6 Technologies Used

2.6.1 Languages and Storage
Java

Java was chosen as the implementation language due to the maturity of the platform, meaning
there are many available frameworks and libraries available to utilise in order to achieve the
goals of the project (with over 6 million in Maven repositories alone [31]), a few of which are
used and listed below.
In particular, the availability of the Apache Taverna RO Bundle API for Java described in
section 1.3.4 was one of the most important factors for the decision, as it is one of the few
current libraries for generating Research Objects [4].

Thymeleaf

Thymeleaf is a templating engine utilized for the view of the web application. The advantage
of using it over the many alternatives such as JSP is that the completed templates are valid
HTML which can be viewed in a regular web browser [23].
This makes it very easy to make stylistic changes to them without needing to debug it using the
full application. The templates can also be used as static prototypes before the development of
the model or controller are even started.

2.6.2 MongoDB
Storage of the workflows is one of the major requirements of the system, therefore some form
of database is necessary for this task.
MongoDB is an open source document ‘NoSQL’ database which uses JSON-like documents
with a flexible schema [14]. This makes it well suited to this application of storing workflows
which also have a very flexible schema with lots of optional fields.
Another large advantage of this kind of database is that documents can be sharded (separated
into more easily managed parts) based on their key and so the database itself can easily be
‘scaled out’ by adding more server resources [14].

2.6.3 External Libraries and Frameworks
Spring Boot

The Spring Framework is an application framework for Java which contains a feature rich
MVC framework providing very powerful interfaces such as ‘Controller’ and ‘ViewResolver’
with various implementations of each already provided. The methods within these are called by
the framework itself when requests come in - a design principle called ‘inversion of control’ [7].
Spring Boot is a variation of the framework to make stand-alone, production grade Spring
applications easy to set up by taking an opinionated view on configuration. It also includes an
embedded Apache Tomcat web server to easily deploy the finished application [5].

31

Spring Data

Spring Data is a module for the Spring Framework which handles object-relational mapping -
the conversion of data from a domain object to a suitable format to be stored in the database
and vice versa. It also provides powerful abstractions for the database in the form of ‘reposito-
ries’ and queries derived from method names, meaning that no database specific code must be
written [6].
This means the database layer is not tied to the rest of the application and could be swapped
out with another if MongoDB is no longer suitable due to changing requirements.

SnakeYAML

As per the specification of the Common Workflow Language [10], workflow and tooling files
are written in YAML, meaning the use of a parser for these files is essential.
SnakeYAML is a popular open source parser with a high level Java API which makes it well
suited to this application [38].

GitHub Java API (org.eclipse.egit.github.core)

Various features of the Github API were required to gather workflows from Github, get user
information and find details of commits to files. This also required support for authentication
due to limitations on numbers of API calls required and enabling support for private repositories
[3].
Due to this high level of usage for the API and large amount of work involved in implementing
this functionality otherwise, a third party library was used and a wrapper utilised in order to
convert values to those which suit the application.

Taverna RO Bundle API

As described in section 1.3.4.

32

Chapter 3

Evaluation

Throughout the process of development it was essential to continuously test the behaviour of
the application so that issues could be found and rectified as early as possible. The methods
used to do this are described in this chapter.

3.1 Unit Testing
Unit tests were an important part of assessing code quality throughout the process as loosely
coupled and well designed code is naturally easy to test. They also increase confidence when
making changes as a good suite of tests can be relied upon to prevent regression.
JUnit was used to create tests for each component in the system and Mockito (a library designed
for producing mock objects for testing) combined with dependency injection were utilized in
order to isolate the particular class which was under test. This was done to easily narrow down
bugs to one area of the system for debugging.
There are currently 46 automated unit tests with a line coverage of 87%. Most of the uncovered
lines of code are either getters and setters with no logic contained within them (which are
unnecessary to test), are rare exceptions or are part of the Github service class which is just
designed to be a wrapper for the third party API described in section 2.6.3.
The tests are run automatically when building using Travis-CI. This service checks any pull
requests against the Github repository for failures and prevent merging before these tests pass
to aid in continuous integration.

3.2 Integration Testing
As well as the automated tests described above, manual integration tests were used to test the
full capability of the application to parse CWL files correctly and display accurate information
from the workflows there. This is important in order to expose bugs in the interaction between
different modules of code which unit tests would not necessarily discover.
It would also not be realistic to test visualisations automatically as they are graphical images
which only have a purpose to convey information about the workflows to the user.
A mixture of 22 workflows were selected from the official Common Workflow Language con-
formance tests and the community repository [8] to get a representative sample with both real-
world non-trivial examples and an extensive collection written to specifically test the feature
set of tooling.

33

3.3 Cross-Browser Testing
Due to this being a web project, testing needed to be done in all major browsers to ensure
that the application behaved as expected despite differences in rendering and support for tech-
nologies. This was done in the latest versions of Google Chrome, Firefox, Safari and Internet
Explorer.
In addition to this, due to responsive design techniques involved in the project and support for
scaling on all devices, testing was also done using Google Chrome for Android using a Nexus
6P device to ensure proper operation and display on mobile devices as well as Safari Mobile
using an Apple iPad for tablet support. This ensured that the non-functional requirement of
displaying, operating correctly and being usable across a variety of devices and screen sizes
was met.
One important bug which was discovered during this testing was the lack of multi-touch support
when scaling the visualisation, which was fixed by adding a custom event handler to implement
zooming on touch devices.

3.4 Usability Testing
CWL Viewer was heavily used by the community with many workflows from organizations in-
cluding the [US] National Cancer Institute, Netherlands eScience Center, Duke Center for Ge-
nomic and Computational Biology, McDonnell Genome Institute and KnowEnG being added.
This resulted in a very large suite of real world workflows which were handled by the applica-
tion and this was vital in testing the adherence to the Common Workflow Language specifica-
tion as well as the handling of various edge cases which are utilised by people which were not
necessarily thought of when the specification was designed.
In one case, the flaw was not in the application but in the workflow itself, where duplicate IDs
were used. This previously worked in the reference implementation of the workflow runner
‘cwltool’ as they happen to be handled in different contexts1, but is disallowed by the specifi-
cation [10].
Feedback from users was also vitally important to evaluate the effectiveness of the user ex-
perience of the application as this would be very difficult to assess in an objective manner
otherwise. This is especially important for this application due to the primary focal point being
the workflow visualisation.
This method of formative evaluation through continual feedback meant that changes could be
regularly made based on it such as the addition of example workflows to visualise on the main
page and a dropdown for different image formats.
Over 50 different versions of the application were pushed to production over the course of
development as part of this iterative agile approach.

3.5 Performance Testing
One of the non-functional requirements (1.2.2) was that workflow pages should load within 15
seconds in normal operation.

1On 2017-03-27, validation was added to cwltool to check for duplicate IDs [9]

34

This was evaluated by using a selection of 10 real-world workflows which were sufficiently
complex to require significant work to parse, extract information and generate the visualisation.
The results of this performance test with each workflow can be seen in table 3.1. The aver-
age page load time is 7.3 seconds with none being above 15 seconds in the sample, which
successfully meets the requirement.

Workflow Page Load Time (s)
https://github.com/common-workflow-language/workflows/
blob/master/workflows/lobSTR/lobSTR-workflow.cwl

4.75

https://github.com/common-workflow-language/workflows/
blob/master/workflows/scidap/bam-genomecov-bigwig-rna-
dutp.cwl

3.77

https://github.com/bxlab/vision-workflows/blob/master/
chipseq tf align.cwl

7.33

https://github.com/ProteinsWebTeam/ebi-metagenomics-
cwl/tree/ef3c7b2/tools/tRNA selection.cwl

10.1

https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/
workflows/dnaseq/integrity.cwl

9.83

https://github.com/nlesc-sherlock/deeplearning/blob/
master/CWLworkflow/pipeline.cwl

10.7

https://github.com/pitagora-galaxy/cwl/blob/master/
workflows/bowtie/BowtieWorkflow-se.cwl

5.05

https://github.com/NCBI-Hackathons/Virus Detection SRA/
blob/master/cwl/tools/sidearm.cwl

6.46

https://github.com/Jeltje/integrate/blob/master/
Dockstore.cwl

6.00

https://github.com/Duke-GCB/bespin-cwl/blob/master/
workflows/rnaseq-pt1.cwl

8.78

Table 3.1: Performance Testing Results

35

https://github.com/common-workflow-language/workflows/blob/master/workflows/lobSTR/lobSTR-workflow.cwl
https://github.com/common-workflow-language/workflows/blob/master/workflows/lobSTR/lobSTR-workflow.cwl
https://github.com/common-workflow-language/workflows/blob/master/workflows/scidap/bam-genomecov-bigwig-rna-dutp.cwl
https://github.com/common-workflow-language/workflows/blob/master/workflows/scidap/bam-genomecov-bigwig-rna-dutp.cwl
https://github.com/common-workflow-language/workflows/blob/master/workflows/scidap/bam-genomecov-bigwig-rna-dutp.cwl
https://github.com/bxlab/vision-workflows/blob/master/chipseq_tf_align.cwl
https://github.com/bxlab/vision-workflows/blob/master/chipseq_tf_align.cwl
https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl/tree/ef3c7b2/tools/tRNA_selection.cwl
https://github.com/ProteinsWebTeam/ebi-metagenomics-cwl/tree/ef3c7b2/tools/tRNA_selection.cwl
https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/workflows/dnaseq/integrity.cwl
https://github.com/NCI-GDC/gdc-dnaseq-cwl/blob/master/workflows/dnaseq/integrity.cwl
https://github.com/nlesc-sherlock/deeplearning/blob/master/CWLworkflow/pipeline.cwl
https://github.com/nlesc-sherlock/deeplearning/blob/master/CWLworkflow/pipeline.cwl
https://github.com/pitagora-galaxy/cwl/blob/master/workflows/bowtie/BowtieWorkflow-se.cwl
https://github.com/pitagora-galaxy/cwl/blob/master/workflows/bowtie/BowtieWorkflow-se.cwl
https://github.com/NCBI-Hackathons/Virus_Detection_SRA/blob/master/cwl/tools/sidearm.cwl
https://github.com/NCBI-Hackathons/Virus_Detection_SRA/blob/master/cwl/tools/sidearm.cwl
https://github.com/Jeltje/integrate/blob/master/Dockstore.cwl
https://github.com/Jeltje/integrate/blob/master/Dockstore.cwl
https://github.com/Duke-GCB/bespin-cwl/blob/master/workflows/rnaseq-pt1.cwl
https://github.com/Duke-GCB/bespin-cwl/blob/master/workflows/rnaseq-pt1.cwl

Chapter 4

Reflection and Consideration

This chapter reflects on the achievements of my project, what I learned during the process and
future enhancements which could be made to the application to improve it.

4.1 Achievements
All the functional and non-functional requirements set out in section 1.2.2 have been met in-
cluding those with ‘should have’ and ‘could have’ priorities, evaluated thoroughly by multiple
forms of testing in Chapter 3.
This has resulted in a product which has features spanning the entire lifecycle of CWL work-
flow descriptions: allowing for easy understanding and recognition of workflows through visu-
alisation and enabling sharing through providing the Research Object Bundle and gallery.
The application is deployed and actively used across a variety of scientific fields and by users
located across the world. It is now the de facto standard for visualising Common Workflow
Language workflows and is being regularly used to illustrate the contents of them in presenta-
tions and documentation. One such presentation can be seen in figure 4.1 at the Netherlands
eScience Center.
Tools like CWL Viewer are a major driver for uptake and adoption of the Common Workflow
Language standard, as specifications without tooling are useless for real world applications.
The application also accomplished the goal of encouraging documentation from these new
users within their workflows by displaying these details on the page and highlighting the lack
of label and description fields if they do not exist (seen in figure 4.2). The success of this aim
is also reflected in feedback such as in figure 4.3.

4.2 Future Enhancements
With a real-world project like this there is always room for improvement and the addition of
features which would be useful (or improvement and refinement of existing features).
A few of those considered to be the highest priority for the future are listed below.

4.2.1 Alternative Methods for Importing
Currently the functionality relies upon workflows being uploaded to Github. This was chosen
as it is widely used by the CWL community and provides a feature rich API for avoiding

36

Figure 4.1: Workflow for deep learning image classification being presented using a CWL
Viewer visualisation

Figure 4.2: Table of undocumented steps

37

Figure 4.3: Tweet with a testimonial

downloading the entirety of a git repository and collecting metadata for Research Objects [3].
However, many workflows are hosted in alternative locations such as on Gitlab, Bitbucket or
not currently in a public location at all in which case an Research Object Bundle or general
archive could be uploaded.
A generic interface for fetching workflows could be added in future in order to support these
methods.

4.2.2 Command Line Tool Visualisations
So far the application has focused on workflow visualisation and not the underlying tooling
behind some of the steps. However in some situations it could be useful to view details of that
tooling. it is possible to display information from them in a graphical format similarly to the
techniques already used for the workflows.

4.2.3 Support for Linked Data Ontologies
Linked data ontologies can be used within the Common Workflow Language, most commonly
to specify formats for file types [10]. This would be valuable information to display in CWL
Viewer when viewing a workflow.

4.2.4 Schema.org Support
Schema.org is a collaborative effort by some of the largest search engines to create a common
set of schemas to standardise Linked Data on the web [35].
This allows them to extract semantic data from pages which can be displayed in results and
is something which could be utilised by the application to provide standardised data about
workflows.

38

4.2.5 Improved Research Object Generation
Currently, the Research Objects are constructed by including the entire contents of the contain-
ing folder. This can cause problems if tooling is external to the current folder in a repository or
there are unrelated items in the same folder.
There is a difficulty associated with fixing this without imposing limitations on the structure of
workflows when they are written in terms of locations of files.
Files referenced within a workflow could be detected in a ’spidering‘ approach. However,
the directory structure within a Research Object Bundle would be difficult to create without
arbitrarily creating folder structures and changing the content of workflow files in order to
keep links intact. At this point the workflow files are no longer the same and properties in the
manifest related to provenance are made semantically incorrect in many cases.
Another issue with this approach is files which relate to the workflow but are not denoted
as such in any meaningful way which can be detected by the application. This includes any
documentation, example output files and most of the time workflow input files (though it is
possible to define default inputs using the ‘cwl:tool’ field [10]). If these are not included, the
goal of the Research Object, which is to encapsulate everything which is related to the workflow
and necessary to run it, is not accomplished.
Preferably a semi-automatic method of doing this could be implemented, perhaps with the help
of a more rigid framework for the expression of the Research Object in the form of a profile
mentioned in section 1.1.3.

4.2.6 myExperiment Integration
Due to the most popular workflow sharing platform in the space being myExperiment [1],
but the limitation being the lack of container format and visualisation (as discussed in section
1.3.3), my application is a natural fit for integration with the site in order for CWL workflows
to be easily shared there.
This would allow Common Workflow Language workflows to gain exposure with a much wider
community and further encourage adoption of the standard.

4.3 Learnings
I have learnt a huge amount over the process of developing CWL Viewer and have enjoyed
exploring the new technologies as well as exploiting them to most effectively implement the
features of the application.
Prior to this project I had no experience with using Java for a web project or production appli-
cation. I also had not used the Model-View-Controller pattern (section 2.3.2) in any projects
despite it being very widely used and being familiar with the concepts involved.
There was also the normal learning curve associated with learning the functionality of the
libraries and frameworks used, which in the case of very popular software such as the Spring
Framework is highly transferable to other projects.
From an operations point of view I have also learnt a great deal, such as how to set up a
dockerfile and docker compose to deploy an application with its dependencies and how to set
up and use a continuous integration service to run tests for an application (and integrate this
with Github).

39

However, the learning from my project was not only technical but also involved some under-
standing of fields which commonly use scientific workflows, in particular bioinformatics. This
was important to understand the use cases where workflows are used and be able to provide a
product which would be useful in those applications.
In addition to all of the above, working in a research software engineering environment with
the eScience lab has taught me a great deal about the world of academia and the processes
which are involved.

4.4 Conclusion
I have learnt a great deal over the course of my third year project and feel that I have accom-
plished a large amount during the process making a contribution towards assisting research
efforts.
The development of the project was challenging due to the complex and somewhat subjective
nature of the task in regards to the visualisations and tackling of new technologies with limited
existing tooling. However, these difficulties have been overcome in order to develop an appli-
cation which meets the original requirements set out at the start of the project and has users
across the world utilising the application for reproducible research.

40

Bibliography

[1] About myExperiment. https://www.myexperiment.org/about. [Online; accessed 30-
March-2017].

[2] Apache Taverna - why use workflows? https://taverna.incubator.apache.org/
introduction/why-use-workflows. [Online; accessed 24-March-2017].

[3] GitHub API v3 — GitHub Developer Guide. https://developer.github.com/v3/.
[Online; accessed 6-April-2017].

[4] Research Objects: Specifications and tooling. http://www.researchobject.org/
specifications/. [Online; accessed 30-March-2017].

[5] Spring Boot. https://projects.spring.io/spring-boot/. [Online; accessed 6-
April-2017].

[6] Spring Data. https://projects.spring.io/spring-data/. [Online; accessed 6-
April-2017].

[7] Spring Framework. https://projects.spring.io/spring-framework/. [Online; ac-
cessed 6-April-2017].

[8] Common workflow language community workflow repository. https://github.com/
common-workflow-language/workflows, 2015. [Online; accessed 30-March-2017].

[9] Peter Amstutz. Github issue: Validation checks for duplicate ids. https://github.com/
common-workflow-language/schema salad/issues/56. [Online; accessed 3-April-
2017].

[10] Peter Amstutz, Michael R. Crusoe, Neboja Tijani, Brad Chapman, John Chilton, Michael
Heuer, Andrey Kartashov, Dan Leehr, Herv Mnager, Maya Nedeljkovich, Matt Scales,
Stian Soiland-Reyes, and Luka Stojanovic. Common Workflow Language, v1.0. 7 2016.
URL: https://figshare.com/articles/Common Workflow Language draft 3/
3115156, doi:10.6084/m9.figshare.3115156.v2.

[11] Sean Bechhofer, Iain Buchan, David De Roure, Paolo Missier, John Ainsworth, Jiten
Bhagat, Philip Couch, Don Cruickshank, Mark Delderfield, Ian Dunlop, et al. Why linked
data is not enough for scientists. Future Generation Computer Systems, 29(2):599–611,
2013. doi:10.1016/j.future.2011.08.004.

[12] Khalid Belhajjame, Jun Zhao, Daniel Garijo, Matthew Gamble, Kristina Hettne, Raul
Palma, Eleni Mina, Oscar Corcho, José Manuel Gómez-Pérez, Sean Bechhofer, et al.

41

https://www.myexperiment.org/about
https://taverna.incubator.apache.org/introduction/why-use-workflows
https://taverna.incubator.apache.org/introduction/why-use-workflows
https://developer.github.com/v3/
http://www.researchobject.org/specifications/
http://www.researchobject.org/specifications/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-data/
https://projects.spring.io/spring-framework/
https://github.com/common-workflow-language/workflows
https://github.com/common-workflow-language/workflows
https://github.com/common-workflow-language/schema_salad/issues/56
https://github.com/common-workflow-language/schema_salad/issues/56
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.1016/j.future.2011.08.004

Using a suite of ontologies for preserving workflow-centric research objects. Web
Semantics: Science, Services and Agents on the World Wide Web, 32:16–42, 2015.
doi:10.1016/j.websem.2015.01.003.

[13] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - the story so far. Seman-
tic services, interoperability and web applications: emerging concepts, pages 205–227,
2009. doi:10.4018/jswis.2009081901.

[14] Kristina Chodorow. MongoDB: the definitive guide. ” O’Reilly Media, Inc.”, 2013.

[15] Dai Clegg and Richard Barker. Case method fast-track: a RAD approach. Addison-
Wesley Longman Publishing Co., Inc., 1994.

[16] Sarah Cohen-Boulakia, Khalid Belhajjame, Olivier Collin, Jérôme Chopard, Christine
Froidevaux, Alban Gaignard, Konrad Hinsen, Pierre Larmande, Yvan Le Bras, Frédéric
Lemoine, et al. Scientific workflows for computational reproducibility in the life sciences:
Status, challenges and opportunities. Future Generation Computer Systems, 2017.

[17] Oscar Corcho, Daniel Garijo Verdejo, K Belhajjame, Jun Zhao, Paolo Missier, David
Newman, Raul Palma, Sean Bechhofer, Esteban Garcı́a Cuesta, Jose Manuel Gomez-
Perez, et al. Workflow-centric research objects: First class citizens in scholarly discourse.
2012.

[18] Michael R. Crusoe, John Pellman, Peter Amstutz, Niels Drost, R. Burke
Squires, Carlos Roman, Utkarsh Sengar, and Geoff Gentry. Existing workflow
systems. https://github.com/common-workflow-language/common-workflow-
language/wiki/Existing-Workflow-systems. [Online; accessed 24-March-2017].

[19] Bamdad Dashtban. Scientific Workflow Patterns. PhD thesis, Masters thesis, University
of Manchester, 2012.

[20] David De, Roure Carole, and Goble Robert Stevens. The design and realisation of the
myExperiment virtual research environment for social sharing of workflows. 2008. doi:
10.1016/j.future.2008.06.010.

[21] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Workflows
and e-science: An overview of workflow system features and capabilities. Fu-
ture Generation Computer Systems, 25(5):528–540, 2009. doi:doi.org/10.1016/
j.future.2008.06.012.

[22] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon Wood-
hull. Graphvizopen source graph drawing tools. In International Symposium on Graph
Drawing, pages 483–484. Springer, 2001. doi:10.1007/3-540-45848-4 57.

[23] Daniel Fernández, Emanuel Rabina, Joris Kuipers, Michal Kreuzman, sorayasl, Sunil Ku-
mar A, Arne-Christian Blystad, Voicu Pop, Junilu Lacar, Sean Hinkley, Danny Trunk,
Christopher Kluwe, Niels, Rustam Miftakhutdinov, Jose Samper, good92, James Thom-
son, and rynkowsw. Thymeleaf. http://www.thymeleaf.org/. [Online; accessed 6-
April-2017].

42

http://dx.doi.org/10.1016/j.websem.2015.01.003
http://dx.doi.org/10.4018/jswis.2009081901
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems
http://dx.doi.org/10.1016/j.future.2008.06.010
http://dx.doi.org/10.1016/j.future.2008.06.010
http://dx.doi.org/doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1007/3-540-45848-4_57
http://www.thymeleaf.org/

[24] Matthew Gamble, Carole Goble, Graham Klyne, and Jun Zhao. Mim: A minimum in-
formation model vocabulary and framework for scientific linked data. In E-Science (e-
Science), 2012 IEEE 8th International Conference on, pages 1–8. IEEE, 2012. doi:
10.1109/eScience.2012.6404489.

[25] Daniel Garijo, Yolanda Gil, and Oscar Corcho. Towards workflow ecosystems through
semantic and standard representations. In Proceedings of the 9th Workshop on Workflows
in Support of Large-Scale Science, pages 94–104. IEEE Press, 2014. doi:10.1109/
WORKS.2014.13.

[26] Nomi L Harris, Peter JA Cock, Brad Chapman, Christopher J Fields, Karsten Hokamp,
Hilmar Lapp, Monica Muñoz-Torres, and Heather Wiencko. The 2016 Bioinformat-
ics Open Source Conference (BOSC). F1000Research, 5, 2016. doi:10.12688/
f1000research.9663.1.

[27] Jon Ison, Matúš Kalaš, Inge Jonassen, Dan Bolser, Mahmut Uludag, Hamish McWilliam,
James Malone, Rodrigo Lopez, Steve Pettifer, and Peter Rice. EDAM: an ontology of
bioinformatics operations, types of data and identifiers, topics and formats. Bioinformat-
ics, 29(10):1325–1332, 2013. doi:10.1093/bioinformatics/btt113.

[28] Tony Kerlavage. Computational and data challenges in cancer research. https://
sc15compgenome.hpc.mssm.edu/Kerlavagesc15compgenome.pdf#page=24, Novem-
ber 2015. [Online; accessed 24-March-2017].

[29] Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. Journal of object oriented programming,
1(3):26–49, 1988.

[30] Dirk Merkel. Docker: lightweight linux containers for consistent development and de-
ployment. Linux Journal, 2014(239):2, 2014.

[31] Fernando Rodriguez Olivera. Maven repository: Repositories. https://
mvnrepository.com/repos. [Online; accessed 6-April-2017].

[32] Antoine Quint. Scalable vector graphics. IEEE MultiMedia, 10(3):99–102, 2003. doi:
10.1109/MMUL.2003.1218261.

[33] John Resig. jQuery: The Write Less, Do More, JavaScript Library. https://
jquery.com/, 2006. [Online; accessed 6-April-2017].

[34] Mark Robinson. Github pull request: Add retrievedFrom, retrievedOn and re-
trievedBy. https://github.com/apache/incubator-taverna-language/pull/36.
[Online; accessed 30-March-2017].

[35] Jason Ronallo. HTML5 Microdata and Schema. org. Code4Lib Journal, 16, 2012. URL:
http://journal.code4lib.org/articles/6400.

[36] Stian Soiland-Reyes, Matthew Gamble, and Robert Haines. Research Object Bundle
1.0. Specification, researchobject.org, 2014. URL: https://w3id.org/bundle, doi:
10.5281/zenodo.12586.

43

http://dx.doi.org/10.1109/eScience.2012.6404489
http://dx.doi.org/10.1109/eScience.2012.6404489
http://dx.doi.org/10.1109/WORKS.2014.13
http://dx.doi.org/10.1109/WORKS.2014.13
http://dx.doi.org/10.12688/f1000research.9663.1
http://dx.doi.org/10.12688/f1000research.9663.1
http://dx.doi.org/10.1093/bioinformatics/btt113
https://sc15compgenome.hpc.mssm.edu/Kerlavagesc15compgenome.pdf#page=24
https://sc15compgenome.hpc.mssm.edu/Kerlavagesc15compgenome.pdf#page=24
https://mvnrepository.com/repos
https://mvnrepository.com/repos
http://dx.doi.org/10.1109/MMUL.2003.1218261
http://dx.doi.org/10.1109/MMUL.2003.1218261
https://jquery.com/
https://jquery.com/
https://github.com/apache/incubator-taverna-language/pull/36
http://journal.code4lib.org/articles/6400
https://w3id.org/bundle
http://dx.doi.org/10.5281/zenodo.12586
http://dx.doi.org/10.5281/zenodo.12586

[37] Stian Soiland-Reyes and Graham Klyne. Minim model for defining check-
lists. https://github.com/wf4ever/ro-manager/blob/master/Minim/Minim-
description.md. [Online; accessed 30-March-2017].

[38] Andrey Somov. asomov / snakeyaml - Bitbucket. https://bitbucket.org/asomov/
snakeyaml. [Online; accessed 6-April-2017].

[39] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lindström.
JSON-LD 1.0. W3C Recommendation, 16, 2014.

[40] WJSM van Wezenbeek, HJJ Touwen, AMC Versteeg, and AJM van Wesenbeeck. Na-
tionaal plan open science. 2017. doi:10.4233/uuid:9e9fa82e-06c1-4d0d-9e20-
5620259a6c65.

[41] Mirren White. Bioexcel Announces ELIXIR Partnership. http://bioexcel.eu/
bioexcel-announces-elixir-partnership/, March 2017. [Online; accessed 26-
April-2017].

[42] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers,
Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher, et al.
The Taverna workflow suite: designing and executing workflows of web services on the
desktop, web or in the cloud. Nucleic Acids Research, page gkt328, 2013. doi:10.1093/
nar/gkt328.

[43] Keith Wood. jQuery SVG. http://keith-wood.name/svg.html. [Online; accessed
6-April-2017].

[44] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike Champion, Scott
Isaacs, Ian Jacobs, Gavin Nicol, Jonathan Robie, Robert Sutor, et al. Document object
model (DOM) level 1 specification. W3C recommendation, 1, 1998. URL: https://
www.w3.org/TR/REC-DOM-Level-1/.

[45] Denis Yuen, Andrew Duncan, Victor Liu, Brian O’Connor, Janice Patricia, Oicr-vchung,
Peter Amstutz, and The Gitter Badger. ga4gh/dockstore: 1.0, September 2016. doi:
10.5281/zenodo.154185.

44

https://github.com/wf4ever/ro-manager/blob/master/Minim/Minim-description.md
https://github.com/wf4ever/ro-manager/blob/master/Minim/Minim-description.md
https://bitbucket.org/asomov/snakeyaml
https://bitbucket.org/asomov/snakeyaml
http://dx.doi.org/10.4233/uuid:9e9fa82e-06c1-4d0d-9e20-5620259a6c65
http://dx.doi.org/10.4233/uuid:9e9fa82e-06c1-4d0d-9e20-5620259a6c65
http://bioexcel.eu/bioexcel-announces-elixir-partnership/
http://bioexcel.eu/bioexcel-announces-elixir-partnership/
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkt328
http://keith-wood.name/svg.html
https://www.w3.org/TR/REC-DOM-Level-1/
https://www.w3.org/TR/REC-DOM-Level-1/
http://dx.doi.org/10.5281/zenodo.154185
http://dx.doi.org/10.5281/zenodo.154185

Appendix A

Examples of Workflow Complexity

A.1 EBI Sequencing Workflow
This visualisation is a European Bioinformatics Institute Paired-End DNA Sequencing work-
flow generated using CWL Viewer. Note the orange nested workflow which hides further
complexity.

Figure A.1: EBI EMG Assembly Workflow

A.2 NCI-GDC Sequencing Error Detection Workflow
This visualisation is generated from a National Cancer Institute’s Genomic Data Commons
Base Quality Score Recalibration workflow - a data pre-processing step which detects system-
atic errors made by a sequencer.

45

Fi
gu

re
A

.2
:N

C
I-

G
D

C
B

Q
SR

W
or

kfl
ow

46

Appendix B

Example Inputs and Outputs

B.1 Inputs

B.1.1 Github URL
A Github URL to a workflow is entered into the main page to add it, in this case:
https://github.com/common-workflow-language/workflows/tree/master/workflows/
lobSTR/lobSTR-workflow.cwl
This URL contains a workflow involving 4 steps and a single default value.

B.2 Outputs

B.2.1 Visualisation
The following is an example of a visualised workflow from the URL in section B.1.1 above.

Image

47

https://github.com/common-workflow-language/workflows/tree/master/workflows/lobSTR/lobSTR-workflow.cwl
https://github.com/common-workflow-language/workflows/tree/master/workflows/lobSTR/lobSTR-workflow.cwl

Graphviz DOT Source

The source of the above image is listed below

d i g r a p h workflow {
graph [

b g c o l o r = ”# e e e e e e ”
c o l o r = ” b l a c k ”
f o n t s i z e = ”10”
l a b e l j u s t = ” l e f t ”
c l u s t e r r a n k = ” l o c a l ”
r a n k s e p = ” 0 . 2 2 ”
nodesep = ” 0 . 0 5 ”

]
node [

fon tname = ” H e l v e t i c a ”
f o n t s i z e = ”10”
f o n t c o l o r = ” b l a c k ”
shape = ” r e c o r d ”
h e i g h t = ”0”
wid th = ”0”
c o l o r = ” b l a c k ”
f i l l c o l o r = ” l i g h t g o l d e n r o d y e l l o w ”
s t y l e = ” f i l l e d ”

] ;
edge [

fon tname =” H e l v e t i c a ”
f o n t s i z e =”8”
f o n t c o l o r =” b l a c k ”
c o l o r =” b l a c k ”
a r r o w s i z e = ” 0 . 7 ”

] ;
s u b g r a p h c l u s t e r i n p u t s {

r ank = ” same ” ;
s t y l e = ” dashed ” ;
l a b e l = ” Workflow I n p u t s ” ;
” r e f e r e n c e ” [f i l l c o l o r =”#94DDF4 ”] ;
” rg−sample ” [f i l l c o l o r =”#94DDF4 ”] ;
” p1 ” [f i l l c o l o r =”#94DDF4 ”] ;
” p2 ” [f i l l c o l o r =”#94DDF4 ”] ;
” o u t p u t p r e f i x ” [f i l l c o l o r =”#94DDF4 ”] ;
” rg− l i b ” [f i l l c o l o r =”#94DDF4 ”] ;
” s t r i n f o ” [f i l l c o l o r =”#94DDF4 ”] ;
” n o i s e m o d e l ” [f i l l c o l o r =”#94DDF4 ”] ;

}
s u b g r a p h c l u s t e r o u t p u t s {

r ank = ” same ” ;
s t y l e = ” dashed ” ;

48

l a b e l = ” Workflow O u t p u t s ” ;
” v c f ” [f i l l c o l o r =”#94DDF4 ”] ;
” v c f s t a t s ” [f i l l c o l o r =”#94DDF4 ”] ;
” b a m s t a t s ” [f i l l c o l o r =”#94DDF4 ”] ;
”bam” [f i l l c o l o r =”#94DDF4 ”] ;

}
” a l l e l o t y p e ” ;
” s a m s o r t ” ;
” lobSTR ” ;
” samindex ” ;
” a l l e l o t y p e ” −> ” v c f ” ;
” a l l e l o t y p e ” −> ” v c f s t a t s ” ;
” lobSTR ” −> ” b a m s t a t s ” ;
” samindex ” −> ”bam ” ;
” r e f e r e n c e ” −> ” a l l e l o t y p e ” ;
” o u t p u t p r e f i x ” −> ” a l l e l o t y p e ” ;
” s t r i n f o ” −> ” a l l e l o t y p e ” ;
” samindex ” −> ” a l l e l o t y p e ” ;
” n o i s e m o d e l ” −> ” a l l e l o t y p e ” ;
” d e f a u l t 1 ” [l a b e l =”\” a l i g n e d . s o r t e d . bam\” ” , f i l l c o l o r =”#

D5AEFC”]
” d e f a u l t 1 ” −> ” s a m s o r t ” ;
” lobSTR ” −> ” s a m s o r t ” ;
” r e f e r e n c e ” −> ” lobSTR ” ;
” rg−sample ” −> ” lobSTR ” ;
” p1 ” −> ” lobSTR ” ;
” p2 ” −> ” lobSTR ” ;
” o u t p u t p r e f i x ” −> ” lobSTR ” ;
” rg− l i b ” −> ” lobSTR ” ;
” s a m s o r t ” −> ” samindex ” ;

}

49

B.2.2 Research Object Bundle
Directory Structure

bu nd l e . z i p
mimetype
. ro

m a n i f e s t . j s o n
workf low

a l l e l o t y p e . cwl
lobSTR−a rvados−demo . j s o n
lobSTR−demo . j s o n
lobSTR−t o o l . cwl
lobSTR−workflow . cwl
README
samtoo l s−i n d e x . cwl
samtoo l s−s o r t . cwl
tmp 1 . fq
tmp 2 . fq
models

i l l u m i n a v 3 . p c r f r e e . s t e p m o d e l
i l l u m i n a v 3 . p c r f r e e . s t u t t e r m o d e l

Partial Contents of .ro/manifest.json

{
” @context ” : [” h t t p s : / / w3id . o rg / bun d l e / c o n t e x t ”] ,
” i d ” : ” / ” ,
” m a n i f e s t ” : [” m a n i f e s t . j s o n ”] ,
” c r e a t e d O n ” : ”2017−03−24T11 : 2 0 : 2 4 . 1 2 3 Z” ,
” c r e a t e d B y ” : {

” u r i ” : ” h t t p s : / / view . commonwl . o rg ” ,
”name” : ”Common Workflow Language Viewer ”

} ,
” au tho redBy ” : [{

” u r i ” : ” h t t p s : / / g i t h u b . com / mr−c ” ,
”name” : ” Michae l R . Crusoe ”

} , {
” u r i ” : ” h t t p s : / / g i t h u b . com / p o r t a h ” ,
”name” : ” Andrey K a r t a s h o v ”

} , {
” u r i ” : ” h t t p s : / / g i t h u b . com / t e t r o n ” ,
”name” : ” P e t e r Amstutz ”

}] ,
” a g g r e g a t e s ” : [{

” u r i ” : ” / workflow /README” ,
” med ia type ” : ” a p p l i c a t i o n / o c t e t−s t r e a m ” ,
” c r e a t e d O n ” : ”2017−03−24T11 : 2 0 : 2 5 . 3 7 9 Z” ,

50

” au tho redBy ” : [{
” u r i ” : ” h t t p s : / / g i t h u b . com / mr−c ” ,
”name” : ” Michae l R . Crusoe ”

} , {
” u r i ” : ” h t t p s : / / g i t h u b . com / t e t r o n ” ,
”name” : ” P e t e r Amstutz ”

}] ,
” r e t r i e v e d F r o m ” : ” h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com /

common−workflow−l a n g u a g e / workf lows /920
c6be45f08e979e715a0018f22c532b024074f / workf lows / lobSTR /
README” ,

” r e t r i e v e d B y ” : {
” u r i ” : ” h t t p s : / / view . commonwl . o rg ” ,
”name” : ”Common Workflow Language Viewer ”

} ,
” bundledAs ” : {

” u r i ” : ” u rn : uu id : 5 0 c0773b−b244−4594−8504−5 d 4 6 f 6 f c c 4 7 4 ” ,
” f o l d e r ” : ” / workflow / ”

}
}
. . .
{

” u r i ” : ” / workflow / samtoo l s−i n d e x . cwl ” ,
” med ia type ” : ” t e x t / x−yaml ” ,
” c r e a t e d O n ” : ”2017−03−24T11 : 2 0 : 3 1 . 9 9 7 Z” ,
” au tho redBy ” : [{

” u r i ” : ” h t t p s : / / g i t h u b . com / mr−c ” ,
”name” : ” Michae l R . Crusoe ”

} , {
” u r i ” : ” h t t p s : / / g i t h u b . com / p o r t a h ” ,
”name” : ” Andrey K a r t a s h o v ”

} , {
” u r i ” : ” h t t p s : / / g i t h u b . com / t e t r o n ” ,
”name” : ” P e t e r Amstutz ”

}] ,
” r e t r i e v e d F r o m ” : ” h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com /

common−workflow−l a n g u a g e / workf lows /87195224
c 9 3 2 d 6 3 b f a 1 e c 9 2 8 f 2 5 e c d f a f b 1 3 3 7 d 7 / workf lows / lobSTR /
samtoo l s−i n d e x . cwl ” ,

” r e t r i e v e d B y ” : {
” u r i ” : ” h t t p s : / / view . commonwl . o rg ” ,
”name” : ”Common Workflow Language Viewer ”

} ,
” conformsTo ” : ” h t t p s : / / w3id . o rg / cwl / d r a f t −3” ,
” bundledAs ” : {

” u r i ” : ” u rn : uu id : 5 af12e79−f1ed−435e−b370−ee540855b088 ” ,
” f o l d e r ” : ” / workflow / ”

51

}
}
. . .]

}

52

	Context
	Key Concepts
	Scientific Workflows
	Common Workflow Language
	Research Objects

	Expected Outcome
	Objectives
	Requirements

	Relevant Previous Work
	Dockstore
	cwltool
	myExperiment
	Taverna RO Bundle API

	Design and Development
	Licensing
	Methodology
	Structure
	Packaging
	MVC Pattern

	Functionality
	Main Application Flow
	Gallery

	Challenges
	Input
	Visualisation
	Download
	Reporting

	Technologies Used
	Languages and Storage
	MongoDB
	External Libraries and Frameworks

	Evaluation
	Unit Testing
	Integration Testing
	Cross-Browser Testing
	Usability Testing
	Performance Testing

	Reflection and Consideration
	Achievements
	Future Enhancements
	Alternative Methods for Importing
	Command Line Tool Visualisations
	Support for Linked Data Ontologies
	Schema.org Support
	Improved Research Object Generation
	myExperiment Integration

	Learnings
	Conclusion

	Bibliography
	Examples of Workflow Complexity
	EBI Sequencing Workflow
	NCI-GDC Sequencing Error Detection Workflow

	Example Inputs and Outputs
	Inputs
	Github URL

	Outputs
	Visualisation
	Research Object Bundle

