
Lachesis: A Middleware for Customizing OS Scheduling of
Stream ProcessingQueries

Dimitris Palyvos-Giannas

Chalmers University of Technology

Gothenburg, Sweden

palyvos@chalmers.se

Gabriele Mencagli

University of Pisa

Pisa, Italy

mencagli@di.unipi.it

Marina Papatriantafilou

Chalmers University of Technology

ptrianta@chalmers.se

Vincenzo Gulisano

Chalmers University of Technology

vincenzo.gulisano@chalmers.se

ABSTRACT
Data streaming applications in Cyber-Physical Systems enable high-

throughput, low-latency transformations of raw data into value.

The performance of such applications, run by Stream Processing

Engines (SPEs), can be boosted through custom CPU scheduling.

Previous schedulers in the literature require alterations to SPEs to

control the scheduling through user-level threads. While such alter-

ations allow for fine-grained control, they hinder the adoption of

such schedulers due to the high implementation cost and potential

limitations in application semantics (e.g., blocking I/O).

Motivated by the above, we explore the feasibility and benefits

of custom scheduling without alterations to SPEs but, instead, by

orchestrating the OS scheduler (e.g., using nice and cgroup) to
enforce the scheduling goals. We propose Lachesis, a standalone
scheduling middleware, decoupled from any specific SPE, that can

schedule multiple streaming applications, run in one or many nodes,

and possibly multiple SPEs. Our evaluation with real-world and

synthetic workloads, several SPEs and hardware setups, shows

its benefits over default OS scheduling and other state-of-the-art

schedulers: up to 75% higher throughput, and 1130x lower average

latency once such SPEs reach their peak processing capacity.

CCS CONCEPTS
• Information systems → Online analytical processing en-
gines; • Software and its engineering→ Scheduling.

KEYWORDS
Scheduling, Stream processing, Middleware

ACM Reference Format:
Dimitris Palyvos-Giannas, GabrieleMencagli, Marina Papatriantafilou, andVin-

cenzo Gulisano. 2021. Lachesis: A Middleware for Customizing OS Sched-

uling of Stream Processing Queries. In 22nd International Middleware Con-
ference (Middleware ’21), December 6–10, 2021, Virtual Event, Canada. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3464298.3493407

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Middleware ’21, December 6–10, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8534-3/21/12. . . $15.00

https://doi.org/10.1145/3464298.3493407

1 INTRODUCTION
Cyber-Physical Systems (CPSs) like Smart Grids and Vehicular Net-

works are undergoing a data-driven digitization transformation to

meet new societal/business goals (e.g., higher penetration of renew-

able energy or better user experience [30]). This transformation

is enabled by (1) the large amounts of data sensed in CPSs, (2) the

significant computing power spanning from edge devices to higher-

end servers, and (3) analysis paradigms, like data stream processing,

which generate value from raw data with high throughput and low

latency [18]. Stream processing gained popularity thanks to Stream

Processing Engines (SPEs) [3, 9, 32] supporting users with sim-

ple ways of defining and deploying applications (called continuous
queries, or simply queries). Such queries are defined as Directed

Acyclic Graphs (DAG) of streams and operators transforming raw

inputs to rich outputs delivered to the end users.

Motivation and Challenges. SPEs can be distinguished as either

(1) one at a time, when they process individual inputs (called tuples)
as soon as they are available (e.g., Apache Storm [3] and Flink [9]),

or (2) microbatched, when they discretize streams into contiguous

batches, with each batch being processed as a whole (e.g., Apache

Spark [60]). While the latter optimize throughput, with the general

aim of approaching the peak memory bandwidth of the underlying

machines (often high-end servers [21, 54]), the former are oriented

to latency-sensitive applications, and their efficient execution has

been analyzed across the entire spectrum of devices found in CPSs

[15, 20, 42, 45]. In this work, we focus on one-at-a-time SPEs.

One-at-a-time SPEs (or simply SPEs from now on) execute oper-

ators on dedicated per-operator user-level threads, which in most

current systems are mapped directly to kernel-level threads and

4000 5000 6000 7000
Input Rate (tuples/sec)

4000

5000

6000

7000
Average Throughput (tuples/sec)

4000 5000 6000 7000
Input Rate (tuples/sec)

10
−1

10
0

10
1

Average Latency (sec)

Default OS Scheduling Custom Scheduling (Lachesis)

Figure 1: Performance benefits of custom scheduling for a
streaming query from the Linear Road [4] benchmark.

365

https://doi.org/10.1145/3464298.3493407
https://doi.org/10.1145/3464298.3493407
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

are scheduled by the Operating System (OS). While being able to

orchestrate many threads concurrently and in parallel, within and

across processes [23, 53], OS schedulers are unaware of the specific

performance goals of streaming applications. This can lead to sub-

optimal query performance, especially when CPU resources are

scarce, e.g., in resource-constrained edge devices or in multi-tenant

scenarios with servers executing queries of many analysts. Custom
scheduling, i.e., deciding in which order and for how long operators

are executed on the available processors based on SPE-accessible

or application-dependent metrics [18, 43, 44, 50], can in such cases

significantly improve the performance of queries. Figure 1 outlines

the performance benefit of using custom scheduling for a traffic

monitoring application from the Linear Road benchmark [4] de-

ployed on edge devices (studied further in §2 and §6). As the input

rate increases, custom scheduling significantly improves the av-

erage throughput and latency performance of the application in

comparison to standard fair scheduling applied by the OS.

To provide custom scheduling, state-of-the-art (SoA) solutions

[12, 18, 43] alter the core runtime of SPEs. Instead of having a

rigid binding between operators and threads (as in the default

runtime of Storm and Flink), they schedule operators entirely in

user space as user-level threads. The tight coupling of such User-
Level Streaming Schedulers (UL-SS) to the SPE allows them to have

fine-grained control over the scheduling decisions. However, the

same tight coupling and the associated changes to the SPE can bring

implementation and compatibility risks, as evident from the lack

of adoption of UL-SS in mainstream SPEs [3, 9, 32]. Additionally,

UL-SS miss significant advantages offered by the OS scheduler,

such as transparent support for blocking operations (which are not

scheduled at all in [18]) and the ability to schedule operators of

different SPEs in a homogeneous manner.

Contribution. Motivated by the above, we ask: is it beneficial to
implement custom scheduling by assisting the OS instead of altering
the SPE to rely on a user-level scheduler? We answer affirmatively

and introduce Lachesis,1 a middleware for streaming applications

that offers fine-grained control of the scheduling decisions without

altering the implementation of the SPEs or the queries. Lachesis
combines low-level mechanisms of the SPE and the OS to provide

high-level scheduling abstractions. More specifically:

• Lachesis is decoupled from SPEs and runs as a separate process,

orchestrating the OS scheduler through mechanisms like nice
and cgroup.
• Since it does not rely on user-level threads, Lachesis is not affected
negatively by blocking operations (that would require ad-hoc

solutions otherwise [19]).

• Accounting for the spectrum of CPSs’ devices, Lachesis sup-

ports scheduling (1) on low-end devices, scheduling one or more

queries running on one device or even distributed by the SPE

on more devices, and (2) on higher-end servers, allowing cross-

scheduling of multiple different SPEs. To the best of our knowl-

edge, Lachesis is the first middleware with the latter capability.

• We thoroughly evaluate Lachesis with real-world and synthetic

workloads, three SPEs (Apache Flink [9], Apache Storm [3] and

Liebre [52]), and both low- and higher-end devices, showing its

1
In Greek mythology Lachesis was one of the three Moirai (Fates). She measured the

thread of life allotted to each person with her measuring rod.

benefits over default OS scheduling and other state-of-the-art

schedulers: up to 75% higher throughput, and 1130x lower aver-

age latency once such SPEs reach their peak processing capacity.

We describe data streaming and scheduling in §2, our system model

and goals in §3, Lachesis in §4 and §5, our evaluation in §6, related

work in §7 and conclude in §8.

2 PRELIMINARIES
We now overview data streaming, operator scheduling, and some

of the features the OS offers to modify the priorities used to allocate

resources to running processes/threads.

A query is a DAG of operators connected by streams (i.e., se-
quences of tuples sharing a schema). Data Sources, external to
the query (e.g., publish-subscribe systems like Apache Kafka [16])

generate ingress tuples usually at varying rates. These ingress tu-

ples are fed to queries by Ingress operators (also called Sources or
Spouts [3, 9, 32]). Tuples are pushed through the query operators,

possibly resulting in new tuples, and are eventually delivered as

egress tuples to Egress operators (also called Sinks [9]), which for-

ward them to the user or other applications/systems. Each operator

is characterized by its cost, i.e., the average time to process a tu-

ple, and its selectivity, i.e., the average number of output tuples

produced per input tuple. Queries are executed by SPEs [3, 9, 32].

During deployment, SPEs transform the DAG defined by a user,

which is known as a logical DAG (or topology [18]) and compris-

ing of logical operators, to a physical DAG, comprising of physical
operators, applying optimizations such as operator fission and fu-

sion (usually guided by user-defined configuration parameters) [25].

Physical operators (or simply operators, if not otherwise stated) are
the minimum query unit executed on the underlying node.

In which ways can operators be scheduled? Our work studies how

operators are scheduled inside each node, i.e., which operators are

prioritized or given more CPU time.
2
Since physical operators are

the execution units of SPEs, scheduling boils down to deciding

which physical operators are assigned to CPU time. Because SPEs

rely on the OS itself for scheduling, they spawn one thread per

physical operator [3, 9, 56]. Instead, SoA UL-SSs schedule physical

operators as user-level threads which are executed on the hardware

by a small number of kernel-level threads [18, 43].

Example. Figure 2a shows a simplified view of the traffic moni-

toring application of Figure 1, illustrating two branches, one com-

puting variable tolls based on the levels of congestion (Branch 1)

and one computing a fixed toll (Branch 2) for segments of a set of

highways. Assume that branch 1’s operators should have higher

priority than those of branch 2 (e.g., to promptly deliver high tolls,

indicating congestion, to vehicles approaching busy segments). The

logical DAG in Figure 2a could be transformed by the SPE into the

physical DAG of figures 2b/c, with operators 𝐶, 𝐷, 𝐸 being fused

into the same physical operator, and operator 𝐹 replicated twice.

Figures 2b/c show the query when 𝐶/𝐷/𝐸, 𝐺 and 𝐹2 have 1, 1,

and 4 tuples in their input queues, respectively, and 𝐹2 is the opera-

tor that has waited longer to be scheduled. There, the scheduling

2
The term scheduling is also used sometimes in the literature to refer to the process

of deciding where to deploy operators onto distributed nodes [2, 10, 34, 57–59]. Our

work is orthogonal to such job placement techniques.

366

GA B C/D/E

F2

F1SPE

core core

Scheduler

OS

Node

EgressG

IngressA

B Dispatcher

C
Compute segment

congestion

D
Track vehicles’
last segment

E
Filter

notifications

F Compute fixed toll

Branch 1 – Compute congestion-based toll (high priority)

Branch 2 – Compute fixed tool (low priority)

a

b c

core core

OS

Node

GA B C/D/E

F2

F1SPE

Ingress/Egress Logical/Physical operator Thread

TupleConnected/Non-connected thread or core

/
Symbol indicating F2 has not run for the longest time

Figure 2: Simplified overview of the monitoring query from
§1 (a), deployed with/without a custom scheduler (b/c).

decision that prioritizes branch 1 is to schedule 𝐶/𝐷/𝐸 and 𝐺 . A

UL-SS, able to observe the internal state of each queue and aware of

the scheduling goal [18], can dispatch 𝐶/𝐷/𝐸 and 𝐺 ignoring that

𝐹2 has not run for longer (2b). In that case, while the OS chooses the

kernel-level thread that is given access to the CPU (bottom row of

switches in the figure), the UL-SS decides which operator (i.e., user-

level thread) should be executed (top row of switches). On the other

hand, if scheduling is left to the OS, its common fairness goal [35]

and its lack of awareness of the user’s scheduling preferences can

result in higher chances of running 𝐹2 (2c).

How can the OS scheduling be customized? Modern OSs offer mecha-

nisms to customize their internal scheduling but lack easy ways for

users to express arbitrary, fine-grained scheduling policies. Here,

we focus on Linux, whose open-source APIs and widespread use in

edge CPSs’ devices and higher-end servers make it an ideal candi-

date for scheduling customizations. While not aiming at providing

an exhaustive discussion about all such mechanisms of Linux, we

focus on two that, together, as we show in this work, can be used

in a complementary fashion to enable Lachesis.

Thread Niceness. The Linux scheduler maintains a list of queues,

one for each priority value. Normally, all threads belong to the

queue with priority zero (the lowest, of normal, non-real-time

threads). Within this queue, threads are kept ordered based on

the vruntime parameter, which represents the actual time spent in

execution by the thread, weighted by the whole load of the queue.

The OS continuously updates the vruntime on a per-thread basis

and schedules threads with minimum vruntime by preempting

running ones if needed. This ordering can be partially controlled

with the nice command, which assigns an integer in the interval

[−20, 19] to a thread. Each nice value 𝑛 is statically mapped to a

constant weight𝑤 (𝑛) = 1024

1.25𝑛 . Thus, the ratio between the weights

of two threads with nice of 𝑛1 and 𝑛2 is computed as 1.25𝑛2−𝑛1 . At
a high level, an increase in the nice value reflects in an increase of

the vruntime parameter, decreasing the probability for a thread to

run (and vice-versa). Although nice can effectively control thread

(and thus operator) priorities, it only supports 40 distinct values,

indicating a need for additional mechanisms in multi-query setups.

Control Groups. Control groups [22] (cgroups) are an alternative
way to control resources such as CPU time (the focus of this work).

They are groups of threads constructed as hierarchies rooted at one

or more resource controllers (also called subsystems). The scheduling
of threads in each cgroup is based on their relative nice values in

that group (i.e., the whole range of nice can be used in each cgroup
without interference from other processes). The CPU controller
allows the control of the CPU time allocated to the threads of

each cgroup through the cpu.shares parameter, which defines the

relative share of CPU time for all the threads in that cgroup. For
example, if we split the threads running a set of physical operators

evenly into two cgroups with equal cpu.shares, we can ensure

that the processing power available to the two subsets will be

balanced. In the extreme case, it is possible to assign each thread to

a dedicated cgroup to gain further control of their runtime.

3 SYSTEM MODEL AND GOALS
We study how to schedule a set of operators, from one or more

queries, executed in one or several nodes and with possibly multiple,

different SPEs, without modifications to the runtime system of such

SPEs. Each query is run in one SPE that can be composed of one

or more processes distributed on the underlying nodes, which are

dedicated to stream processing queries. We consider one-at-a-time

SPEs like Storm [3], Flink [9], and Liebre [52], where each physical

operator is executed by a dedicated thread. We study the main-

stream scenario where each SPE exposes quantitative information

about the running queries and operators through public APIs (e.g.,

for debugging and monitoring purposes). Furthermore, we assume

that each SPE process is running on a machine equipped with a

Linux distribution offering thread nice and cgroup mechanisms.

Below we define auxiliary terms, relevant to our problem statement.

The term entity refers to logical/physical operators/threads when
discussing aspects that apply to all such concepts.

Definition 3.1 (Metric). A metric is a triplet (𝜏, 𝑒, 𝑣𝑎𝑙𝑢𝑒) pro-
viding quantitative information about entity 𝑒 at time 𝜏 .

Metrics can be primitive or derived as transformations on primi-

tive metrics on which they depend.

Definition 3.2 (Scheduling Policy). A scheduling policy is an
algorithm receiving a set of metrics (sharing time 𝜏) and outputting
priority values for a set of physical operators.3

The priority given to a physical operator must be translated into

an input for the scheduling mechanism of the underlying OS, which

is handled by a translation policy.

Definition 3.3 (Translation Policy). A translation policy is a
strategy to translate priority values obtained from a scheduling policy
into OS-related parameters (i.e., nice or cpu.shares of cgroup)
associated with the corresponding threads.

3
SPEs can spawn additional helper threads e.g., in charge of copying/serializing tuples [3,

9]. Lachesis can control their priority similarly to physical operators, so, for brevity,

we do not discuss them as separate entities.

367

3.1 Problem Definition and Goals
We want to define a middleware that runs separately from the SPEs

and uses metrics to apply a broad spectrum of scheduling policies
by tuning the behavior of the Linux scheduler without changing

the implementation of the SPEs or the queries. To have real-world

value, that middleware should be able to:

G1 Enforce arbitrary, user-defined scheduling policies, taking ad-

vantage of appropriate OS scheduling mechanisms.

G2 Enforce such policies on different SPEs without alteration.

G3 Schedule multiple queries at a time, possibly optimizing differ-

ent goals for each query.

G4 Schedule queries deployed in different SPE processes running

on multiple nodes.

G5 Achieve G3 also for queries running on different SPEs.

3.2 Performance Metrics
Here, we introduce in more detail common metrics used to evaluate

the performance of streaming queries [18, 43, 51]:

• Throughput: #tuples ingested by an operator per time unit.

• Processing Latency (or simply latency): time interval between the

output of an egress tuple 𝑡 and the timewhen all the ingress tuples

that contribute to 𝑡 were ingested by the Ingress operator(s).

• End-to-end Latency, time interval between the output of an egress

tuple 𝑡 at the sink and the time when all the ingress tuples that

contribute to 𝑡 were produced by the Data Source(s).

• CPU Utilization, the percentage of the total CPU physical opera-

tors utilize, across all available processors (0-100%).

When the SPE comes close to saturation, an increase in the

end-to-end latency (rather than the processing latency) is often

beneficial for Data Sources to adapt their rates (e.g., through back-
pressure) [45, 51]. For measuring latencies in distributed setups, we

assume synchronized clocks (e.g., using NTP [37] or PTP [17]).

4 ARCHITECTURE
In this section, we describe Lachesis’ architecture, outlined in Fig-

ure 3, in relation to the goals of §3.1. Users configure Lachesis
through the Scheduler UI, choosing the scheduling and translation

policies. During Lachesis’ main loop, shown in Algorithm 1 and

explained in the following, the policies are executed at regular

scheduling periods, retrieving runtime information from the SPE
drivers and themetric provider, computing a new schedule (i.e., prior-
ities of the physical operators) and applying it with translators. The

latter implement translation policies using specific OS mechanisms.

Below, we describe each component in more detail.

SPE Drivers. An SPE driver acts as a bridge between the SPE

process(es) and Lachesis by pulling runtime information from pub-

lic APIs of the SPEs (cf. §3) without altering any part of the SPE

implementation. To enable transparent support for multiple SPEs

(G2, §3.1), drivers convert low-level runtime data to information

about entities (physical operators, logical operators, and threads),

hiding SPE-specific details and allowing the other components of

Lachesis to work at an abstract level. Drivers are also responsible for
exposing raw metric data retrieved by SPEs and other external sys-

tems to the metric provider. The use of public APIs simplifies driver

implementation and lowers the adoption risk of custom scheduling.

metrics
entities

schedule

Scheduling Policies
Scheduling logic

raw
metrics

Metric Provider
Metric computation

SPE Drivers
SPE interaction

OS
commands

Translators
Scheduling mechanism OS

Scheduler UI
Configuration

Lachesis User

SPE(s)

Figure 3: The architecture of Lachesis.

Such external drivers allow Lachesis to run as a separate process

without the potential to introduce bugs into the SPE. Furthermore,

the drivers reduce the maintenance effort of custom scheduling

since public APIs evolve slowly and maintain backward compati-

bility. For example, in §6 Lachesis uses the same driver to schedule

different versions of Storm, while a UL-SS would require a man-

ual port to the newer version. Lachesis provides drivers for various
SPEs and can be extended with additional ones. Lachesis can use the

available drivers, evaluated in §6, to schedule operators of different

queries that may even run simultaneously in different SPEs (G5,

§3.1), a feature unsupported by UL-SS, which are tightly coupled to

a specific SPE [18, 43].

Metric Provider. Lachesis comes with an extensible set of metrics,
each of which defines (1) its dependencies on other metrics and (2) a

function to compute its value from those dependencies. The metric

provider is the single entity responsible for computing the metrics

requested by the policies by fetching and transforming raw metrics

provided by each SPE driver (Algorithm 1 L1, L4) and exposing

them to the policies (L7). Different SPEs expose different raw met-

rics, and the metric provider is tasked with using the dependency

information to compute the requested values (as discussed in §5.2).

Translators. Lachesis’ policies compute a schedule as priorities

of the (physical) operators. A translator uses an OS scheduling

mechanism to apply that schedule after converting it to a format

appropriate for that mechanism (Algorithm 1, L8). Since translators

are orthogonal to the policies, it is possible to change the translator

(and thus the underlying OS mechanism) without changing the

Algorithm 1: Main loop of Lachesis.
User Input: P[𝐾]: 𝐾 user-selected scheduling policies

T[𝐾]: User-selected translators (one for each policy)

Lachesis Data: D[𝑁]: SPE Drivers (for 𝑁 distinct SPEs)

M: Metric provider

// Each policy has its own period and required metrics

1 M.register(
⋃
𝑝∈P

p.metrics) // Register required metrics

2 while True do // Main loop start
3 if ∃𝑝 ∈ P : 𝑝.timeToRun() then // Run scheduler
4 M.update(D) // Compute metrics, Algorithm 3

5 for 𝑖 ∈ [0, 𝐾) do // Each policy and translator
6 if P[𝑖].timeToRun() then
7 schedule← P[𝑖].schedule(M,D)
8 T[𝑖].apply(schedule) // OS mechanism

9 sleep(GCD(
⋃
𝑝∈P

p.period)) // Until time to check again

368

policy itself. For example, Lachesis could switch from using nice to
using other OS mechanisms (e.g., cpu.shares, used in §5 and §6).

Scheduling Policies. A scheduling policy computes a schedule

using a set of entities from the SPE drivers and a set of metrics from

the metric provider (L7). To schedule multiple queries, possibly

with different strategies, potentially executed by different SPEs (G3

and G5, §3.1), Lachesis can use multiple policies (e.g., one policy per

query), each with its own period (L3, L6). This, combined with each

policy being able to use a different translator (i.e., OS mechanism),

makes it possible to have fine-grained, multi-dimensional schedul-

ing decisions, as we show in §6. Furthermore, it allows Lachesis to
switch scheduling policies at runtime (by enabling one policy and

disabling another), with the conditions of this switch programmed

by the user. To account for policies with different periods, Lachesis
wakes up at the minimum time interval between policy invocations

(L9) but only runs if there is at least one policy to execute.

The decoupled architecture of Lachesis allows policies to be ab-

stract without the need to consider the characteristics of a certain

SPE or OS mechanism. Consequently, users can develop imple-

mentations of arbitrary policies only once and then reuse them to

schedule operators in any SPE supported by Lachesis, as further
discussed in §5 and §6.

5 DESIGN AND IMPLEMENTATION
5.1 Specifying User-Defined Scheduling Goals
SPEs convert the logical DAGs to physical ones during query de-

ployment (cf. §2). Even though scheduling policies refer to physical

operators (Definition 3.2), users might want to express their sched-

uling preferences independently of how DAGs are converted from

logical to physical, i.e., in terms of logical operators. Such policy

definitions can enable policy reuse in different deployments and

SPEs (G2 and G3, §3.1). With this consideration, Lachesis allows
users to either (1) define a policy directly for physical operators,

(when they know the structure of the physical query DAG), or (2)

define a policy in a decoupled fashion, combining a high-level policy
that refers to logical operators and a reusable transformation rule
that converts the logical schedule to a physical one.

A sample transformation rule is shown in Algorithm 2. This rule

takes the schedule of a high-level policy as input and produces a

physical schedule where the priority of fused physical operators

is the highest priority of the logical operators that comprise them.

Lachesis already comes with such basic transformation rules which

are used in our evaluation.

To show that Lachesis can accommodate various high-level sched-

uling policies, we present (and evaluate in §6) four such policies,

commonly used in the literature [18, 43]:

(1) Queue Size (QS) [18] prioritizes operators with more input

tuples in their queues, balancing such queues’ size and, in turn,

the operators’ effective utilization, to achieve higher throughput

at the Egresses and to lower latency.

(2) Highest Rate (HR) [50] prioritizes “operator paths” (branches
of a DAG ending at a sink) that are both productive (i.e., with

operators having high selectivity) and inexpensive (low cost)

with the goal of minimizing the average processing latency of

all the tuples in the system.

Algorithm 2: Example policy transformation rule.

1 Function transform(LogicalSchedule input)
2 out← EMPTY // Physical Schedule

3 for l ∈ input do // Each logical operator
4 𝑝𝑠 ← getPhysical(𝑙) // > 1 if fission applied

5 for 𝑝 ∈ 𝑝𝑠 do // Each associated physical op
6 if | getLogical(𝑝) | > 1 then // Fusion applied

// Set priority of physical to the max

priority of the associated logical

7 out[𝑝]← max(out[𝑝], input[𝑙])

8 else
9 out[𝑝]← input[𝑙]

10 return out

Highest Rate

Path Cost Path Selectivity

Operator Cost

SPE A
SPE B

Thread CPU

Operator Selectivity

Output TuplesInput Tuples

Figure 4: Example of the metric dependencies for policy HR.
Lachesis’ metric provider traverses the graph from the root
until it finds enoughmetrics to satisfy all the dependencies.

(3) First-Come-First-Serve (FCFS) [7] prioritizes those opera-

tors whose input tuples have spent more time in the system,

with the goal of minimizing the maximum latency.

(4) RANDOM gives operators uniformly random priorities.

5.2 Offering SPE-Agnostic Metrics
As mentioned in §4, each metric in Lachesis declares its dependen-
cies, forming a directed, acyclic dependency graph rooted at that

metric. Note that different SPEs might have only some parts of such

a graph available. For example, Figure 4 shows an example graph

for the goal of the HR policy, expressed as a metric. Notice that

none of the two example SPEs exposes the desired metric directly.

Hence, to keep scheduling policies independent of SPE-specific

details (G2, §3.1), the metric provider needs to compute the metric

based on its dependencies using a separate strategy for each SPE.

Algorithm 3 shows how Lachesis achieves the above. In the

updatemethod, called at each scheduling period, themetric provider

iterates through all drivers (i.e., for the SPEs being scheduled) and

uses compute (L6) to compute all registered metrics for each SPE.

The compute method relies on a per-driver cache (L4, L10-11) to

prevent duplicate computations of the same metric in each period.

If the metric has not been computed yet, Lachesis first tries to fetch

it directly from the SPE driver (L12-13). If that fails, then the met-

ric provider calls compute recursively to traverse the dependency

graph (L16) before computing the metric from its dependencies,

saving it in the cache, and returning it (L17-18). Looking back at the

example of Figure 4, for SPE A, Lachesis would compute the “Path

Selectivity” using the “Operator Selectivity”, and then combine the

former with the ‘Path Cost” to compute the “Highest Rate”. For

SPE B, it would use the metrics found at the leaves of the graph to

compute all intermediate metrics required for “Highest Rate”.

369

5.3 Enforcing Policy Priorities
Lachesis’ translators control the OS mechanisms that enforce the

user-defined schedule. One such mechanism is nice, which offers

thread-specific priorities but, as discussed in §2, offers only one

scheduling dimension and allows for limited control (i.e., only 40

distinct priority values). To overcome this limitation, Lachesis also
takes advantage of the cgroup mechanism, since it allows for sets

of threads/operators to be given different priorities using features

such as cpu.shares. Furthermore, when threads are placed in a

cgroup, their nice values affect only threads in the same cgroup,
opening up the possibility for effective multi-dimensional schedul-

ing (e.g., for multiple queries or multiple branches of a single query,

G3 in §3.1). Lachesis accounts for these aspects by defining two

complementary formats for schedules:

(1) The single-priority schedule gives a numerical priority to each

(physical) operator. It is defined as a dictionary {tid} → R from

thread IDs to real-numbered priorities.

(2) The grouping schedule describes how to assign operators to

groups and the priority of each group. It is a dictionary {gid} →
{(R, {tid})}, mapping the group IDs to tuples containing the

group priority and a set of thread IDs that belong to that group.

According to these two formats, Lachesis defines a nice translator

for single-priority schedules, controlling the niceness of threads

based on the schedule’s priorities, and a cpu.shares translator for

grouping schedules, assigning each group of threads to a cgroup
and controlling the relative share of CPU time given to each cgroup
based on the schedule’s priorities. These translators can be used

on their own or combined to offer more scheduling dimensions.

For example, in the query of Figure 2, the operators of each branch

could be split into two groups, with the cpu.shares translator

controlling the relative CPU time available to each branch and the

nice translator prioritizing operators inside each group.

While schedule priorities are real numbers, the OS usually ex-

pects discrete priorities in specific ranges, e.g., integers in [−20, +19]
for nice. To hide such details from the policies, keeping them gen-

eral and independent of the OS mechanism (G1, §3.1), Lachesis’

Algorithm 3: Metric provider computation.

1 Function update(Driver[] D) // Call from Algorithm 1, L4
2 metricValues← EMPTY // To be used by policies

3 for 𝑑 ∈ D do // For all drivers
4 cache← EMPTY // Per-driver cache

5 for𝑚 ∈ registeredMetrics do // Compute all metrics
6 v← compute(m, d)

7 metricValues.add(v)

8 save(metricValues)

9 Function compute(Metric m, Driver d)
10 if𝑚 ∈ cache then // Already computed in this period
11 return cache[m]
12 if d.provides(m) then // Available from driver
13 return d.get(m)
14 else if |m.deps | = 0 then// Primitive metric missing
15 throw Exception() // Wrong configuration

// Compute recursively all dependencies of m

16 v← ⋃
𝑟∈m.deps

compute(𝑟, 𝑑)

17 cache[m]← m.computeFromDependencies(v)

18 return cache[m]

translators perform priority normalization, converting the policy

priorities to the appropriate numerical units. This is done by a

normalization function 𝐹 , whose type depends on the combina-

tion of used policy and translator. For example, a policy that pro-

duces integer priorities in the range [−20, +19] might not need

special normalization when used with nice but will need one when
used with cpu.shares. For policies with linear priorities (e.g., QS),

Lachesis uses min-max normalization and discretizes priorities to

the required interval. For logarithmically-spaced priorities (e.g., in

HR [50]) Lachesis uses min-max normalization on the logarithms

of the priorities. For nice, the interpretation of the OS priorities

is known and equal to 𝑝1/𝑝2 = 1.25𝑛2−𝑛1 (see §2). Since 𝑛𝑚𝑎𝑥 is

also known (e.g., −20), we set 𝑝1 = 𝑝𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑝𝑖) and compute

all other nice values as 𝐹 (𝑥) = 𝑛𝑚𝑎𝑥 + 𝑙𝑜𝑔 (𝑝𝑚𝑎𝑥)−𝑙𝑜𝑔 (𝑥)
𝑙𝑜𝑔 (1.25) . As nice

values are bounded in the range [−20, +19], an additional min-max

normalization might still be required if the relative difference be-

tween 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 is too big to fit in the range.

6 EVALUATION
In this section, we illustrate Lachesis’ performance benefits com-

pared to SoA UL-SSs and the default OS scheduling (or simply

OS) in various streaming application deployments. As previously

discussed, CPS can utilize both resource constrained edge devices

but also more powerful servers. Following this spectrum, we eval-

uate Lachesis both in lower-power devices, comparing with the

SoA in single-query (§6.2, §6.3), multi-query (§6.4), and distributed

scale-out deployments (§6.5), and in a multi-tenancy scenario, with

a higher-end server running multiple queries and SPEs concur-

rently (§6.6). Table 1 outlines all experiment configurations (made

available at [40, 41]) and the performance highlights of Lachesis.

6.1 Evaluation Setup
Hardware and Software. We use (1) Odroid-XU4 [24] devices (or sim-

plyOdroid), similar in power to edge CPS devices [18, 43], mounting

Samsung Exynos5422 Cortex-A15 2Ghz and Cortex-A7 Octa core

CPUs, 2 GB RAM and (2) a higher-end server, mounting Intel Xeon

E5-2637 v4 @ 3.50GHz (4 cores, 8 threads), 64 GB RAM. All devices

run Ubuntu 18.04 and OpenJDK 1.8.0. Node clocks are synchro-

nized with NTP [37] in the local network.
4 Lachesis retrieves SPE

metrics from Graphite [13], which is supported by all evaluated

SPEs. Graphite allows Lachesis to collect metrics with a minimum

time resolution of one second. Thus, in this evaluation, Lachesis’
scheduling period is set to one second (i.e., metrics are fetched and

decisions are recomputed with this period) and is sufficient, in most

cases, to outperform SoA while allowing Lachesis to keep a low

resource footprint (discussed in the last part of the evaluation). Ex-

cept for §6.5 and §6.6, all processes run in a single Odroid, with the

SPEs running on the big cores. Experiments are at least 10 minutes

long and repeated at least 5 times, similarly to [18, 43]. The data is

averaged after discarding the warmup and cooldown.

Queries. We use five different queries in this evaluation:

(1) An Extract-Transform-Load (ETL) query, part of the RIoT-
Bench suite [51], which reads a stream of IoT sensor data, filters

4
NTP is adequate for the evaluated setups, as the latency differences are in themagnitude

of tens of milliseconds or more, i.e., an order of magnitude higher than any clock skew.

370

Table 1: Summary of the configurations explored in the evaluation.

Experiment Baseline Goals
(see §3.1)

Queries SPEs Policies
(see §5.1)

Translators
(see §5.3)

Figures Highlights *

(compared to the baseline)

Single-Query

(Odroid) - §6.2

EdgeWise [18] G1 ETL,

STATS

Storm [3] QS nice 5, 6, 7, 8 + 8% throughput

- 133x end-to-end latency

Single-Query

(Odroid) - §6.3

OS G1, G2 LR, VS Storm, Flink [9] QS, RANDOM nice 9, 10, 11,

12

+ 75% throughput

- 1130x latency

Multiple Queries

(Odroid) - §6.4

Haren [43] G3 SYN Liebre [52] QS, FCFS, HR cpu.shares 14, 15, 16 + 43% throughput

- 331x end-to-end latency

Scale-Out

(1-4 Odroids) - §6.5

OS G4 LR Storm, Flink QS nice 17 + 31% throughput

- 12x end-to-end latency

Multiple Queries &

SPEs (Server) - §6.6

OS G5 VS + LR

+ SYN

Storm + Flink +

Liebre

QS nice +
cpu.shares

18 + 60% throughput

- 498x latency

*
Average values. As shown in the relevant figures, in some comparisons the baseline has saturated whereas Lachesis has not, amplifying the latency improvement.

outliers, interpolates missing values, and adds extra annota-

tions to the data; used previously to evaluate EdgeWise [18];

composed of 10 operators.

(2) STATS, another query from RIoTBench that performs three

kinds of statistical analytics; also used previously to evaluate

EdgeWise; composed of 10 operators. We refer the reader to [51]

for more details on ETL and STATS.

(3) Linear Road (LR), which includes queries adapted from the

Linear Road benchmark in [61, 62], an established streaming

benchmark simulating a tolling system for motor vehicle ex-

pressways, introduced in [4]. Composed of 9 operators. A sim-

plified DAG of LR is shown in Figure 2.

(4) VoipStream (VS), a query from the DSPBench benchmark [8]

that analyzes call detail records to detect telemarketing users

using Bloom filters. Composed of 15 operators making intensive

use of group-by distributions.

(5) A set of 20 Synthetic (SYN) queries, each a pipeline of 5 opera-

tors generating a synthetic CPU load per tuple. Each query has a

uniformly random cost and selectivity, as in [43, 49]; used previ-

ously to evaluate Haren [43]; can simulate blocking operations

to assess the impact of I/O.

ETL, STATS use the input data from the EdgeWise paper [18]. Input

data for LR, VS is generated with the corresponding benchmark

suites. SYN inputs are generated on the fly.

Baselines, Scheduling Policies, and Translators. In all experiments,

we evaluate the default OS scheduling (OS) and Lachesis. Our query
setups and baseline UL-SSs are chosen to match the ones evaluated

in related works, considering only OS in the absence of such a UL-

SS. Our baseline for ETL and STATS is the UL-SS EdgeWise [18], for

LR and VS the OS, and for SYN the UL-SS Haren [43]. Unless other-

wise stated, both EdgeWise and Haren use the best configuration

described in their publications [18, 43]. For Lachesis, we evaluate
the policies of §5, ranging between 15 (FCFS) to 150 (HR) lines

of code and applied using the nice and cpu.shares translators.

To ensure access to a common set of resources in all experiments,

Lachesis nests the SPE threads under a custom root cgroup.

SPEs. We evaluate Lachesis in three SPEs: ETL and STATS queries

on Apache Storm 1.1.0 (the version compatible with EdgeWise),

LR and VS on Storm 1.2.3 (the latest version that runs out-of-the-

box on Odroids) and Apache Flink 1.11.2 [9], and SYN on Liebre

0.1.2 [52]. We had to write approximately 350, 220, and 250 lines of

code for the SPE Drivers of Flink, Storm, and Liebre, respectively.

Data Sources. The Data Sources replay existing input traces, allow-

ing to run experiments with increasing input rates (until queries

saturate) similarly to previous work [18]. The Data Sources are

Kafka producers on a different device than the queries. The only

exceptions are the ETL and STATS queries, where we generate data

in a separate thread exactly as in the original EdgeWise evalua-

tion [18], to have a fair comparison.

Metrics and Performance Behavior. We evaluate using metrics from

§3.2 and, more specifically, the sum of throughputs of all Ingress

operators, as well as the average latency and end-to-end latency

over all Egress operators. We also present the values of the goal

for each evaluated scheduling policy. Unless otherwise stated, the

metric values are averages over time. We study the whole latency

distribution separately (cf. § 6.3.1). In any SPE, as input rates (and

thus the load) increase, throughput increases accordingly until a

saturation point, at which it plateaus (and possibly decreases). End-

to-end latency gradually increases until the saturation point. For

higher rates, it explodes and keeps growing, as the queue of tuples

from the data source to the Ingress grows unbounded [18]. Better

system behavior results in saturation at a higher input rate. The

behavior of the processing latency depends on intra-query queuing

delays which in turn depend on the scheduling decisions.

6.2 Can Lachesis Perform Better than the SoA
in Single-Query Scheduling?

Here, we compare Lachesis to EdgeWise in single-query scheduling,

the scenario evaluated in the original publication [18]. Figure 5

shows the performance of ETL when scheduled either with the

default OS scheduling (OS), Lachesis with the QS policy, or Edge-

Wise with the same policy. Each line shows the mean metric values

for each experiment and input rate, with shaded areas (for all the

graphs in this section) representing the 95% confidence interval

across repetitions. As shown, Lachesis outperforms in throughput

both OS (+18%) and EdgeWise (+8%), keeping up with the external

rate up to 1625 t/s, in contrast with 1375 t/s for OS and 1500 t/s for

EdgeWise. Just before saturation (1625 t/s), Lachesis achieves 50x
lower latency than OS and 92x lower latency than EdgeWise as well

as 65x and 133x lower end-to-end latency, respectively. The QS pol-

icy goal (i.e., minimization of the variance in the sizes of the input

371

1000

1250

1500

1750
Throughput (t/s)

10
−1

10
0

10
1

Latency (s)

1000 1200 1400 1600 1800 2000
Input Rate (t/s)

10
0

10
2

End-to-end Latency (s)

1000 1200 1400 1600 1800 2000
Input Rate (t/s)

1

2

QS Goal

OS LACHESIS EDGEWISE

Figure 5: Performance comparison of ETL in Storm.

queues) is optimized by Lachesis significantly better than OS and

similarly to EdgeWise, up to the saturation point. Figure 6 shows

the distribution of queue sizes for the three scheduling methods.

Lachesis achieves small, homogeneous input queue sizes until the

saturation point, in contrast with OS, which allows some queues to

grow even for low input rates, leading to performance degradation.

EdgeWise keeps the queues more homogeneous than OS but leads

to all queues settling to a higher size for input rates above 1625 t/s,

explaining the worse performance compared to Lachesis in these

cases, even when the policy goal is adequately optimized.

The trend is similar for STATS as illustrated in Figure 7. STATS

has a high selectivity, producing approximately 15 egress tuples

for every ingress tuple. Thus, small steps in the input rate cause

big jumps in the computational load. Lachesis achieves 3% higher

throughput (340 t/s vs 330 t/s for OS and EdgeWise), and its through-

put degradesmore gracefully for increasing input rates, maintaining

15-20% higher throughput than OS for input rates > 360 t/s. Before

saturation, Lachesis also leads to a 17x lower latency than OS and

9x lower latency than EdgeWise at 340 t/s. The scheduling goal is

only slightly better than EdgeWise and OS before saturation, which

explains the smaller performance gain compared to ETL. This high

variance in queue sizes is due to a single bottleneck operator which,
as the load increases, is unable to keep up with its input even when

utilizing 100% of a CPU core. This is seen in Figure 8 as the sin-

gle outlier appearing when the input rate increases, reaching an

input queue size of up to 1000 tuples (represented by the “diamond”

symbol in the plots). This bottleneck requires replication through

10
00

11
25

12
50

13
75

15
00

16
25

17
50

18
75

20
00

Input Rate (t/s)

10
0

10
1

10
2

In
pu

t Q
ue

ue
 S

iz
es

OS

10
00

11
25

12
50

13
75

15
00

16
25

17
50

18
75

20
00

Input Rate (t/s)

LACHESIS

10
00

11
25

12
50

13
75

15
00

16
25

17
50

18
75

20
00

Input Rate (t/s)

EDGEWISE

Figure 6: Distributions of input queue sizes in ETL.

300

325

350

Throughput (t/s)

10
−1

10
0

10
1

Latency (s)

300 320 340 360 380 400
Input Rate (t/s)

10
0

10
2 End-to-end Latency (s)

300 320 340 360 380 400
Input Rate (t/s)

1

2

3
QS Goal

OS LACHESIS EDGEWISE

Figure 7: Performance comparison of STATS in Storm.

operator fission (§2), which, however, is orthogonal to scheduling

and can be used in synergy with both UL-SS and Lachesis.

6.3 Can Lachesis Perform Better than the OS in
Single-Query Scheduling for Other SPEs?

Here, we compare OS and Lachesis’ performance in a more recent

version of Storm (v1.2.3), and Flink for LR and VS. Since no UL-SS

exists for such SPEs,
5
we include the RANDOM policy, similarly

to [18], to show that the performance improvements of Lachesis are
not just a consequence of altering OS thread priorities arbitrarily.

Storm. Figure 9 outlines the performance of Lachesis for the LR
query. Lachesis achieves 30% higher throughput than OS (6500 t/s

compared to 5000 t/s for OS) and to 200x lower latency (at 6500 t/s).

Lachesis also leads to much lower end-to-end latency, up to 34x

lower than OS (at 6500 t/s). As expected, RANDOM behaves equally

bad to OS. This is also illustrated when observing the scheduling

goal of QS, which is consistently lower for Lachesis. Figure 10

shows the performance of the VS query for the same setup. Lachesis
manages to sustain a rate up to 3500 t/s, in contrast with OS that

can sustain only up to 2000 t/s (+75% improvement). Furthermore,

Lachesis attains up to 1130x lower latency and up to 923x lower end-
to-end latency (at 3500 t/s). When Lachesis is used, the scheduling
goal remains low for all experiments.

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Input Rate (t/s)

10
0

10
1

10
2

10
3

In
pu

t Q
ue

ue
 S

iz
es

OS

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Input Rate (t/s)

LACHESIS

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Input Rate (t/s)

EDGEWISE

Figure 8: Distributions of input queue sizes in STATS.

5
EdgeWise is bound to an old version of Storm, 1.1.0.

372

4000

5000

6000

7000
Throughput (t/s)

10
−1

10
0

10
1

Latency (s)

4000 5000 6000 7000
Input Rate (t/s)

10
0

10
1

10
2

End-to-end Latency (s)

4000 5000 6000 7000
Input Rate (t/s)

1

2

3
QS Goal

OS LACHESIS RANDOM

Figure 9: Performance of LR in Storm.

Flink. We begin with LR,
6
shown in Figure 11. Lachesis achieves

slightly higher throughput than OS, along with up to 9x lower

latency and 6x lower end-to-end latency (at 5500 t/s). The goal is

optimized by Lachesis until the saturation point where a bottleneck

operator prevents custom scheduling from minimizing the queue

sizes, similarly to STATS (§6.2). As in LR, the performance of VS

in Flink, shown in Figure 12, is lower than in Storm. Although

the query quickly saturates, Lachesis improves the scheduling goal

and attains up to 38% lower latency than OS. In contrast to Storm,

Flink keeps operator queues bounded, regardless of the scheduling.

Flink’s effective backpressure results in a smaller variance of queue

sizes (reflected by smaller values of the QS goal for the same queries

compared to Storm), and thus a smaller potential for the QS policy

to further improve the query performance in this SPE.

6.3.1 Does Lachesis improve the tail latency? As shown above,

Lachesis can significantly improve average query latency. Although

related works focus on such average [18], tail latency can also be

important, especially in interactive or large-scale streaming applica-

tions where even short-term latency spikes can severely affect the

1000

2000

3000

4000

Throughput (t/s)

10
0

10
2

Latency (s)

1000 2000 3000 4000
Input Rate (t/s)

10
0

10
2

End-to-end Latency (s)

1000 2000 3000 4000
Input Rate (t/s)

0

2

QS Goal

OS LACHESIS RANDOM

Figure 10: Performance of VS in Storm.

6
Chaining (i.e., fusion) is disabled in Flink to have the same physical DAGs as in Storm,

but the performance trends are similar when chaining is active.

3000

4000

5000

Throughput (t/s)

10
0

Latency (s)

3000 4000 5000 6000
Input Rate (t/s)

10
0

10
1

End-to-end Latency (s)

3000 4000 5000 6000
Input Rate (t/s)

0.75

1.00

1.25

QS Goal

OS LACHESIS RANDOM

Figure 11: Performance of LR in Flink.

performance of a whole system [14, 33]. For this reason, we study

here the whole latency distributions of the query setups of §6.3. We

visualize these distributions as letter-value (or boxen) plots, an ex-

tension of boxplots that includes more information about the tails of

distributions [26]. Letter-value plots replace boxplot whiskers with

a variable number of letter-values (LVs), which represent quantiles.

The number of displayed LVs depends on the input data. An LV

plot begins with the median line (first LV), expanding upward and

downward with a pair of boxes that contain 25% of the data each

(second LV), identically to a boxplot. Each consecutive LV contains

half the data of the previous one (i.e., 12.5% of the data, 6.25% of the

data, etc.) and the corresponding boxes have decreasing widths.

Figure 13 shows the letter-value plots for the latencies of the

four queries studied above.
7
As seen in the plots, Lachesis’s sched-

uling generally improves not only the average but also the tail

latency, compared to OS. More specifically, for LR in Storm, Lach-
esis achieves 79x lower 99th percentile latency and 44x lower 99.9th

percentile latency compared to the OS (at 6500 t/s). Similarly, for VS

in Storm, Lachesis reduces the 99th percentile latency by up to 358x

and the 99.9th percentile by 215x (at 3500 t/s), following the trend

1000

2000

3000

Throughput (t/s)

10
0

Latency (s)

1000 2000 3000 4000
Input Rate (t/s)

10
0

10
1

10
2

End-to-end Latency (s)

1000 2000 3000 4000
Input Rate (t/s)

0.6

0.8

1.0

QS Goal

OS LACHESIS RANDOM

Figure 12: Performance of VS in Flink.

7
The end-to-end latency distributions, not shown here, follow similar trends.

373

4000 4500 5000 5500 6000 6500 7000 7500
Rate (t/s)

10
−1

10
1

La
te

nc
y

(s
)

a) LR – Storm

1000 1500 2000 2500 3000 3500 4000 4500
Rate (t/s)

10
−1

10
1

La
te

nc
y

(s
)

b) VS – Storm

3000 3500 4000 4500 5000 5500 6000
Rate (t/s)

10
−1

10
0

La
te

nc
y

(s
)

c) LR – Flink

1000 1500 2000 2500 3000 3500 4000
Rate (t/s)

10
−1

10
0

10
1

La
te

nc
y

(s
)

d) VS – Flink

OS LACHESIS RANDOM

Figure 13: Letter-value (boxen) plots of the latency distribu-
tions of LR/VS in Storm/Flink.

of the average latency seen in Figure 10. For LR in Flink, Lachesis
reduces the 99th and 99.9th latency percentiles by approximately

2x (at 5500 t/s). Lastly, for VS in Flink, though Lachesis pulls the
latency distribution downwards, it leads to slightly higher values

in the upper percentiles, at worst increasing the values of the 99th

and 99.9th latency percentiles by approximately 39% (at 3000 t/s).

6.4 Can Lachesis Perform Better than the SoA
When Scheduling Multiple Queries,
Possibly with Blocking Operators?

We now evaluate SYN queries in Liebre [52] using three scheduling

policies, comparing Lachesis and the UL-SS Haren, as in the latter’s

original evaluation [43]. This experiment deploys 100 operators, but

nice has only 40 distinct priorities (cf. §2), so we use cpu.shares
translation, assigning each operator to its own cgroup.

The results, in Figure 14, include the scheduling goals of all poli-

cies we evaluate. The color of each line represents the scheduler,

20000

25000

30000

Throughput (tuples/sec)

10
−2

10
−1

10
0

10
1

Latency (sec)

10
−1

10
0

10
1

10
2

End-to-end Latency (sec)

2

4

6

QS Goal

1000 1250 1500 1750 2000
Input Rate (tuples/sec)

10
−1

10
1

FCFS Goal

1000 1250 1500 1750 2000
Input Rate (tuples/sec)

10
−4

10
−3

10
−2

10
−1

HR Goal

Scheduler
OS
LACHESIS
HAREN

Policy
default
QS
FCFS
HR

Figure 14: Multi-query scheduling of SYN in Liebre.

and the line style the scheduling policy. As shown, Lachesis’ per-
formance is between Haren and the OS for most of the metrics.

Comparing Lachesis with OS, we observe that QS and FCFS suc-

ceed in keeping the queue sizes small and thus improve the overall

system throughput (up to 12%). The latency is significantly reduced

(up to 25x at 1000 t/s) and the end-to-end latency exhibits a big drop

(up to 66x at 1250 t/s). The HR policy mostly achieves its goal, albeit

with a smaller improvement over the OS (up to 42% lower average

tuple latency). Note that HR is the only evaluated policy that does

not react directly to the metric it tries to optimize (average tuple

latency), but instead attempts to optimize it indirectly based on the

operator cost and selectivity. While outperforming EdgeWise (§6.2),

we see here that Lachesis performs worst than Haren. It should be

noted, though, that in this setup Haren takes 20x more scheduling

decisions than Lachesis (every 50 ms rather than every 1 s), with

20000

25000

30000

Throughput (t/s)

10
−2

10
−1

10
0

Latency (s)

1000 1200 1400 1600 1800 2000
Input Rate (t/s)

10
0

10
2

End-to-end Latency (s)

1000 1200 1400 1600 1800 2000
Input Rate (t/s)

10
−2

10
−1

10
0

FCFS Goal

HAREN LACHESIS HAREN-1000

Figure 15: The effect of scheduling granularity on Haren.

374

20000

25000

30000
Throughput (t/s)

10
−1

10
0

Latency (s)

1000 1100 1200 1300 1400 1500
Input Rate (t/s)

10
0

10
2

End-to-end Latency (s)

1000 1100 1200 1300 1400 1500
Input Rate (t/s)

10
−1

10
0

10
1

FCFS Goal

OS LACHESIS HAREN

Figure 16: The effect of blocking operations on SYN.

finer-grained access to fresh, accurate metrics from within the (cou-

pled) SPE runtime itself. In fact, as shown in Figure 15, when using

the same scheduling period of Lachesis (HAREN-1000), Haren’s
performance becomes comparable (Throughput and End-to-end

Latency) or worse (Latency and FCFS goal) than Lachesis’.

How does Lachesis deal with blocking? As discussed in §1, a draw-

back of UL-SS is that they cannot transparently handle operators

that block (i.e., for I/O). Since Lachesis relies on the OS scheduling

mechanisms, it is unaffected by this issue. This is shown in Figure 16,

with the same setup as Figure 14 (picking only FCFS) but with a

random set of 10% of the operators having at 0.1% chance to block

for up to 200 ms every time they process a tuple (i.e., simulating an

I/O operation such as committing to a remote system). In this case,

Lachesis outperforms Haren with up to 43% higher throughput, up

to 4.5x lower latency (at 1125 t/s) and up to 331x lower end-to-end

latency, while it achieves similar values for the policy goal.

6.5 Is Lachesis Beneficial When Scaling Out?
In this experiment, we explore whether Lachesis can work equally

well in scale-out, distributed query deployments. We run LR either

in Storm or Flink (not concurrently), increasing the fission degree

(parallelism) of all operators of the query from 1 to 2 and 4 and

deploying the operators to an equal number of Odroids, each of

which runs a separate instance of Lachesis. The different instances
of Lachesis run independently, without communicating with each

other. The results are shown in Figure 17 for the QS policy. Lachesis
follows the same trend as in the non-distributed experiments, illus-

trating that, in this case, even isolated scheduler instances without

global knowledge can bring significant performance benefits. In

Storm, Lachesis attains higher throughput (up to 31% at input rate

25000 t/s) and up to 12x lower latency and end-to-end latency (at

11000 t/s). In Flink, Lachesis reaches 10x lower latency (at 11000 t/s)

and 7x lower end-to-end latency (at 11000 t/s).

6.6 Is Lachesis’ Multi-SPE Scheduling
Beneficial?

Lachesis is the first middleware, to the best of our knowledge, that

can concurrently schedule entities from multiple, different SPEs.

5000

10000

15000

20000

Th
ro

ug
hp

ut
 (t

/s
)

Storm Flink

10
−1

10
0

10
1

La
te

nc
y

(s
)

5000 10000 15000 20000 25000
Input Rate (t/s)

10
0

10
1

10
2

E
nd

-to
-e

nd
 la

te
nc

y
(s

)

5000 10000 15000 20000 25000
Input Rate (t/s)

Scheduler
OS
LACHESIS

Nodes
1
2
4

Figure 17: Scalability study of LR in Storm/Flink.

Such scheduling can be useful when analysts deploy their queries

in shared, central CPS devices, using multiple SPEs e.g., due to spe-

cific performance or compatibility requirements. To evaluate this

scenario, we deploy VS, LR, and SYN on Storm, Flink, and Liebre in

the Xeon server (23 queries total). The queries receive their inputs

from separate Data Sources and at different rates, at a certain per-

centage of the empirically determined maximum rate each query

can sustain in this setup. Lachesis enforces a multi-dimensional

schedule, where each query is assigned to a cgroup, and given an

equal part of the total CPU, using cpu.shares, whereas each oper-

ator is scheduled using the QS policy and nice. Figure 18 illustrates
the performance of the OS and Lachesis with the QS policy. As

shown, the benefits of Lachesis are consistent with the previous ex-

periments on Odroids. All queries perform significantly better with

Lachesis, which outperforms OS by up to 40% in throughput in the

case of Liebre - SYN (60% of max rate for the OS 100% for Lachesis),

1.0

1.5

Th
ro

ug
hp

ut
(t/

s)

1e4
Storm (VS)

1

2
1e4

Flink (LR)

2

3
1e5
Liebre (SYN)

10
−1

10
0

10
1

La
te

nc
y

(s
)

10
−1

10
0

10
−1

60 80 100
Input Rate (%)

10
−1

10
0

10
1

E
nd

-to
-e

nd
La

te
nc

y
(s

)

60 80 100
Input Rate (%)

10
0

10
1

10
2

60 80 100
Input Rate (%)

10
−1

10
0

10
1

OS LACHESIS

Figure 18: Multi-SPE/query scheduling of LR, VS, SYN.

375

up to 498x lower latency and 414x lower end-to-end latency in the

case of Storm - VS (at input rate 100%).

6.7 Evaluation Summary
Our evaluation shows that Lachesis achieves the goals from §3.1,

being able to use arbitrary scheduling policies to schedule one or

more queries running possibly in multiple SPEs and nodes in both

low- and high-end devices. Compared to OS, Lachesis helped queries
attain significant performance improvements (up to 75% higher

throughput, three orders of magnitude lower average latency, as

well as two orders of magnitude lower average end-to-end latency

and 99.9th percentile latency) while it also performed better than

state-of-the-art UL-SS in a variety of experimental setups.

In all our experiments, the CPU utilization of Lachesis was very
low (in most cases, around 1% of the total CPU and always less

than 5%). Lachesis resulted in a slight increase in the CPU usage

of Graphite (1-10%) due to the increased requests, but this did not

negatively affect query performance.

7 RELATEDWORK
As mentioned in §2, operator scheduling is sometimes used as a

synonym for operator placement [2, 10, 34, 57–59]. Noting again

that these are complementary techniques, we now further cover

works about operator scheduling in line with Lachesis.

Scheduling in one-at-a-time SPEs. Haren [43] is a customizable

UL-SS based on Liebre [52], which suffers from the drawbacks

outlined in §1 and, in contrast to Lachesis, cannot be used with

production-ready systems without significant changes. EdgeWise

adopts a similar model for Storm [3, 18]. In contrast to Lachesis,
it has a fixed policy (QS) and is only evaluated in single-query

experiments. Being a UL-SS, EdgeWise cannot be added to different

SPEs (or different versions of Storm) without changes to the SPE.

Lachesis applies custom scheduling through Linux mechanisms

such as nice and cgroup [23]. cgroups are used in Storm [3] for

coarse-grained control of resource allocation, and in resource con-

trollers [27, 28], to adjust the computational capacity of each appli-

cation in a shared platform and reduce QoS violations. In contrast

to our work, such techniques are coarse-grained, cannot schedule

individual operators nor support user-defined scheduling policies.

Docker [29] uses cgroups to enforce resource limits for its contain-

ers. Lachesis can be adjusted to schedule queries deployed in docker

by identifying the relevant cgroups and changing the scheduling

attributes of operator threads according to the policy (e.g., updating

their nice or altering relevant cgroup attributes).

Researchers have proposed diverse operator scheduling poli-

cies that Lachesis can support for arbitrary SPEs, i.e., Queue-Size

(QS) [18], Highest-Rate (HR) [50], and FCFS [7] (cf. §6). Other ex-

isting policies are superseded by the above, i.e., the Rate-Based
(RB) [55] policy, which minimizes the average latency of a single

query (while the HR does the same for multiple queries [48]). The

Chain policy [6] minimizes the memory usage of multiple queries

and can take maximum query latency into account [5]. Other in-

teresting policies optimize average query throughput (Min-Cost),
average latency (Min-Latency, similar to HR and RB), available

memory (Min-Memory) or the total QoS of the system [11, 12].

In executions of multiple heterogeneous queries, fairness can
be important, i.e., minimizing the variation in query slowdown,

measured by the slowdown or stretch [1, 39] metrics. Translating

fairness-based policies for Lachesis can be an interesting future di-

rection. The Longest Stretch First [1] policy minimizes the maximum

slowdown, while other policies [49, 50] balance fairness and overall

latency.Multi-class scheduling approaches [38] assign different QoS-
requirements to queries and also explore how scheduling and load

management can work in synergy to honor priority classes [46, 47].

Scheduling for microbatched SPEs. Microbatched SPEs (cf. §1) are

specifically optimized for throughput, and recent prototypes fol-

lowing this model have tried to exploit at best the computing power

of single scale-up machines. For them, scheduling is referred to the

logic behind the dynamic assignment of tasks to a pool of threads,

where each task executes a chain of operators over the inputs of a

batch (often in the order of thousands to amortize the scheduling

overhead). Systems of this kind are StreamBox [36], based on a cen-

tralized scheduler, and LightSaber and Grizzly [21, 54]. The latter

adopt a code generation approach where the task code is a tight

loop generated and compiled from a SQL-like representation of the

query, while tasks are scheduled using concurrent lock-free queues.

Scheduling in those systems has a different goal than the one of

one-at-a-time SPEs, often designed to balance the load among the

threads in the pool rather than optimizing application-specific QoS

requirements (e.g., average or maximum latency).

8 CONCLUSIONS
We presented Lachesis, a middleware for streaming applications

that can enforce custom scheduling policies on streaming queries

running in one or multiple nodes, using one or more SPEs. In con-

trast to previously proposed custom scheduling solutions, which

required tight integration into the SPEs to schedule operators as

user-level threads, Lachesis runs as a standalone process, using OS

mechanisms such as nice and cgroup to guide the decisions of the

OS scheduler, without altering SPEs or query implementations, or

requiring query redeployment. Lachesis’ design is modular and can

be extended to support new SPEs, policies, and OS mechanisms. We

extensively evaluated Lachesis and showed that it can significantly

outperform both the default OS scheduling adopted by SPEs as well

as the SoA. Future work directions can include (1) the exploration of

additional OS mechanisms, such as real-time threads and CPU quo-

tas (available at Lachesis’ repository [41]), (2) global coordination

for distributed Lachesis instances, (3) the usage of learning tech-

niques to guide Lachesis’ scheduling, and (4) further exploration of

query bottlenecks using pressure stall information [31].

ACKNOWLEDGMENTS
We thank the shepherd, Aniruddha Gokhale, and the anonymous

reviewers. Work supported by the Swedish Government Agency for

Innovation Systems VINNOVA, project “AutoSPADA” grant nr. DNR

2019-05884 in the funding program FFI: Strategic Vehicle Research

and Innovation, the Swedish Foundation for Strategic Research,

project “FiC” grant nr. GMT14-0032, the Swedish Research Council

(Vetenskapsrådet) project “HARE” grant nr. 2016-03800, Chalmers

Energy AoA framework projects INDEED and STAMINA and by

the European H2020 project TEACHING, grant 871385.

376

REFERENCES
[1] Swarup Acharya and S. Muthukrishnan. 1998. Scheduling On-Demand Broad-

casts: New Metrics and Algorithms. In Proceedings of the 4th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom ’98).
ACM, New York, NY, USA, 43–54. https://doi.org/10.1145/288235.288248

[2] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. 2013. Adaptive On-

line Scheduling in Storm. In Proceedings of the 7th ACM International Conference
on Distributed Event-based Systems (Arlington, Texas, USA) (DEBS ’13). ACM,

New York, NY, USA, 207–218. https://doi.org/10.1145/2488222.2488267

[3] Apache. 2020. Storm. Retrieved March 11, 2021 from https://storm.apache.org/

[4] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear Road: A

StreamData Management Benchmark. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30 (Toronto, Canada) (VLDB ’04).
VLDB Endowment, Toronto, Canada, 480–491. http://dl.acm.org/citation.cfm?

id=1316689.1316732

[5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys Thomas.

2004. Operator Scheduling in Data Stream Systems. The VLDB Journal 13, 4 (Dec.
2004), 333–353. https://doi.org/10.1007/s00778-004-0132-6

[6] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. 2003. Chain:

Operator Scheduling for Memory Minimization in Data Stream Systems. In

Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’03). ACM, New York, NY, USA, 253–264. https://doi.org/10.

1145/872757.872789

[7] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. 1998. Flow and

Stretch Metrics for Scheduling Continuous Job Streams. In Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’98). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 270–279.

[8] Maycon V. Bordin, Dalvan Griebler, Gabriele Mencagli, Cláudio F. R. Geyer, and

Luiz Gustavo L. Fernandes. 2020. DSPBench: A Suite of Benchmark Applications

for Distributed Data Stream Processing Systems. IEEE Access 8 (2020), 222900–
222917. https://doi.org/10.1109/ACCESS.2020.3043948

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and batch processing in a

single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015), 28–38.

[10] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, andMatteo Nardelli. 2015.

On QoS-Aware Scheduling of Data Stream Applications over Fog Computing

Infrastructures. In 2015 IEEE Symposium on Computers and Communication (ISCC).
IEEE, Larnaca, 271–276. https://doi.org/10.1109/ISCC.2015.7405527

[11] Don Carney, Ǔgur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,

Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2002. Mon-

itoring Streams: A New Class of Data Management Applications. In Proceedings
of the 28th International Conference on Very Large Data Bases (Hong Kong, China)
(VLDB ’02). VLDB Endowment, New York, NY, USA, 215–226.

[12] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and

Mike Stonebraker. 2003. Operator Scheduling in a Data Stream Manager. In

Proceedings of the 29th International Conference on Very Large Data Bases (VLDB
’03, Vol. 29). VLDB Endowment, Berlin, Germany, 838–849.

[13] Chris Davis et al. 2021. Graphite. Retrieved March 8, 2021 from https://

graphiteapp.org/

[14] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,

2 (Feb. 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[15] Marcos Dias de Assunção, Alexandre da Silva Veith, and Rajkumar Buyya. 2018.

Distributed data stream processing and edge computing: A survey on resource

elasticity and future directions. Journal of Network and Computer Applications
103 (2018), 1–17. https://doi.org/10.1016/j.jnca.2017.12.001

[16] Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Kafka versus Rab-

bitMQ: A Comparative Study of Two Industry Reference Publish/Subscribe Im-

plementations: Industry Paper. In Proceedings of the 11th ACM International
Conference on Distributed and Event-Based Systems (Barcelona, Spain) (DEBS
’17). Association for Computing Machinery, New York, NY, USA, 227–238.

https://doi.org/10.1145/3093742.3093908

[17] John C Eidson, Mike Fischer, and Joe White. 2002. IEEE-1588 Standard for a

precision clock synchronization protocol for networkedmeasurement and control

systems. In Proceedings of the 34th Annual Precise Time and Time Interval Systems
and Applications Meeting. 243–254.

[18] Xinwei Fu, Talha Ghaffar, James C Davis, and Dongyoon Lee. 2019. Edgewise:

A Better Stream Processing Engine for the Edge. In USENIX Annual Technical
Conference (ATC) 19. USENIX, WA, USA, 929–946.

[19] Panagiotis Garefalakis, Konstantinos Karanasos, and Peter Pietzuch. 2019. Nep-

tune: Scheduling Suspendable Tasks for Unified Stream/Batch Applications. In

Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)

(SoCC ’19). Association for Computing Machinery, New York, NY, USA, 233–245.

https://doi.org/10.1145/3357223.3362724

[20] Prajith Ramakrishnan Geethakumari, Vincenzo Gulisano, Bo Joel Svensson, Pedro

Trancoso, and Ioannis Sourdis. 2017. Single window stream aggregation using

reconfigurable hardware. In 2017 International Conference on Field Programmable
Technology (ICFPT). IEEE, 112–119.

[21] Philipp M. Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Ble-

ichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient

Stream Processing Through Adaptive Query Compilation. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,

USA, 2487–2503. https://doi.org/10.1145/3318464.3389739

[22] Serge Hallyn and Michael Kerrisk. 2020. cgroups(7) Linux Programmers’s Manual
(5.10 ed.).

[23] Serge Hallyn, Peter Zijlstra, Juri Lelli, Michael Kerrisk, Carsten Emde, Tom

Bjorkholm,Markus Kuhn, and DavidWheeler. 2020. sched(7) Linux Programmers’s
Manual (5.10 ed.).

[24] HardKernel. 2020. Odroid-XU4. Retrieved November 12, 2020 from http:

//www.hardkernel.com

[25] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.

2014. A Catalog of Stream Processing Optimizations. ACM Computing Surveys
(CSUR) 46, 4 (2014), 1–34. https://doi.org/10.1145/2528412

[26] Heike Hofmann, Hadley Wickham, and Karen Kafadar. 2017. Letter-Value

Plots: Boxplots for Large Data. Journal of Computational and Graphical Sta-
tistics 26, 3 (2017), 469–477. https://doi.org/10.1080/10618600.2017.1305277

arXiv:https://doi.org/10.1080/10618600.2017.1305277

[27] M. Reza HoseinyFarahabady, Ali Jannesari, Javid Taheri, Wei Bao, Albert Y.

Zomaya, and Zahir Tari. 2020. Q-Flink: A QoS-Aware Controller for Apache

Flink. In 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID). IEEE, Melbourne, VIC, Australia, 629–638. https:

//doi.org/10.1109/CCGrid49817.2020.00-30

[28] M. Reza HoseinyFarahabady, Javid Taheri, Albert Y. Zomaya, and Zahir Tari. 2020.

A Dynamic Resource Controller for Resolving Quality of Service Issues inModern

Streaming Processing Engines. In 2020 IEEE 19th International Symposium on
Network Computing and Applications (NCA). IEEE, Cambridge, MA, USA, 1–8.

https://doi.org/10.1109/NCA51143.2020.9306697

[29] Docker Inc. 2021. Docker. Retrieved March 23, 2021 from https://www.docker.

com/

[30] Henning Kagermann. 2015. Change through Digitization—Value Creation in the

Age of Industry 4.0. InManagement of Permanent Change, Horst Albach, Heribert
Meffert, Andreas Pinkwart, and Ralf Reichwald (Eds.). Springer Fachmedien

Wiesbaden, Wiesbaden, 23–45. https://doi.org/10.1007/978-3-658-05014-6_2

[31] Linux Kernel. 2021. Pressure Stall Information. Retrieved September 6, 2021

from https://www.kernel.org/doc/html/latest/accounting/psi.html

[32] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.

2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data (Melbourne,

Victoria, Australia) (SIGMOD ’15). ACM, New York, NY, USA, 239–250. https:

//doi.org/10.1145/2723372.2742788

[33] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales

of the Tail: Hardware, OS, and Application-Level Sources of Tail Latency. In

Proceedings of the ACM Symposium on Cloud Computing (SOCC ’14). Association
for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/

2670979.2670988

[34] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. 2018. Model-Free Control for

Distributed Stream Data Processing Using Deep Reinforcement Learning. Proc.
VLDB Endow. 11, 6 (Feb. 2018), 705–718. https://doi.org/10.14778/3199517.3199521

[35] Robert Love. 2010. Linux Kernel Development (3rd ed.). Addison-Wesley Profes-

sional, Boston, MA, United States.

[36] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S.

McKinley, and Felix Xiaozhu Lin. 2017. StreamBox: Modern Stream Processing

on a Multicore Machine. In Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference (Santa Clara, CA, USA) (USENIX ATC ’17). USENIX
Association, USA, 617–629.

[37] D. L. Mills, Martin J., Burbank J., and Kasc W. others. 1985. RFC0958: Network
Time Protocol (NTP). Technical Report. Internet Engineering Task Force (IETF),

USA.

[38] Lory Al Moakar, Thao N. Pham, Panayiotis Neophytou, Panos K. Chrysanthis,

Alexandros Labrinidis, and Mohamed Sharaf. 2009. Class-Based Continuous

Query Scheduling for Data Streams. In Proceedings of the Sixth International
Workshop on Data Management for Sensor Networks (DMSN ’09). ACM, Arlington,

VA, USA, Article 9, 6 pages. https://doi.org/10.1145/1594187.1594199

[39] S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen, and Johannes E.

Gehrke. 1999. Online Scheduling to Minimize Average Stretch. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science (FOCS ’99). IEEE
Computer Society, Washington, DC, USA, 433–. http://dl.acm.org/citation.cfm?

id=795665.796508

[40] Online. 2021. Lachesis’ evaluation artifacts. Retrieved October 4, 2021 from

https://github.com/dmpalyvos/lachesis-evaluation

[41] Online. 2021. Lachesis’ implementation. Retrieved October 4, 2021 from

https://github.com/dmpalyvos/lachesis

377

https://doi.org/10.1145/288235.288248
https://doi.org/10.1145/2488222.2488267
https://storm.apache.org/
http://dl.acm.org/citation.cfm?id=1316689.1316732
http://dl.acm.org/citation.cfm?id=1316689.1316732
https://doi.org/10.1007/s00778-004-0132-6
https://doi.org/10.1145/872757.872789
https://doi.org/10.1145/872757.872789
https://doi.org/10.1109/ACCESS.2020.3043948
https://doi.org/10.1109/ISCC.2015.7405527
https://graphiteapp.org/
https://graphiteapp.org/
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1145/3357223.3362724
https://doi.org/10.1145/3318464.3389739
http://www.hardkernel.com
http://www.hardkernel.com
https://doi.org/10.1145/2528412
https://doi.org/10.1080/10618600.2017.1305277
https://arxiv.org/abs/https://doi.org/10.1080/10618600.2017.1305277
https://doi.org/10.1109/CCGrid49817.2020.00-30
https://doi.org/10.1109/CCGrid49817.2020.00-30
https://doi.org/10.1109/NCA51143.2020.9306697
https://www.docker.com/
https://www.docker.com/
https://doi.org/10.1007/978-3-658-05014-6_2
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.14778/3199517.3199521
https://doi.org/10.1145/1594187.1594199
http://dl.acm.org/citation.cfm?id=795665.796508
http://dl.acm.org/citation.cfm?id=795665.796508
https://github.com/dmpalyvos/lachesis-evaluation
https://github.com/dmpalyvos/lachesis

[42] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2019.

GeneaLog: Fine-grained data streaming provenance in cyber-physical systems.

Parallel Comput. 89 (2019), 102552.
[43] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2019.

Haren: A Framework for Ad-Hoc Thread Scheduling Policies for Data Streaming

Applications. In Proceedings of the 13th ACM International Conference on Dis-
tributed and Event-Based Systems (DEBS ’19). ACM, Darmstadt, Germany, 19–30.

https://doi.org/10.1145/3328905.3329505

[44] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2019.

Haren: A Middleware for Ad-Hoc Thread Scheduling Policies in Data Streaming.

In Proceedings of the 20th International Middleware Conference Demos and Posters.
19–20.

[45] Dimitris Palyvos-Giannas, Bastian Havers, Marina Papatriantafilou, and Vincenzo

Gulisano. 2020. Ananke: A Streaming Framework for Live Forward Provenance.

Proceedings of the VLDB Endowment 14, 3 (2020), 391–403.
[46] Thao N. Pham, Panos K. Chrysanthis, and Alexandros Labrinidis. 2016. Avoiding

Class Warfare: Managing Continuous Queries with Differentiated Classes of

Service. The VLDB Journal 25, 2 (April 2016), 197–221. https://doi.org/10.1007/

s00778-015-0411-4

[47] Thao N. Pham, Lory A. Moakar, Panos K. Chrysanthis, and Alexandros Labrinidis.

2011. DILoS: A Dynamic Integrated Load Manager and Scheduler for Continuous

Queries. In 2011 IEEE 27th International Conference on Data EngineeringWorkshops.
IEEE, USA, 10–15. https://doi.org/10.1109/ICDEW.2011.5767652

[48] Mohamed A. Sharaf, Panos K. Chrysanthis, and Alexandros Labrinidis. 2005.

Preemptive Rate-Based Operator Scheduling in a Data Stream Management

System. In Proceedings of the ACS/IEEE 2005 International Conference on Computer
Systems and Applications (AICCSA ’05). IEEE Computer Society, USA, 46–I.

[49] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs.

2006. Efficient Scheduling of Heterogeneous Continuous Queries. In Proceedings
of the 32Nd International Conference on Very Large Data Bases (VLDB ’06). VLDB
Endowment, Seoul, Korea, 511–522. http://dl.acm.org/citation.cfm?id=1182635.

1164172

[50] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk

Pruhs. 2008. Algorithms and Metrics for Processing Multiple Heterogeneous

Continuous Queries. ACM Transactions on Database Systems 33, 1 (March 2008),

1–44. https://doi.org/10.1145/1331904.1331909

[51] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. 2017. RIoTBench: An

IoT Benchmark for Distributed Stream Processing Systems. Concurrency and
Computation: Practice and Experience 29, 21 (2017), e4257. https://doi.org/10.

1002/cpe.4257 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4257

[52] Open Source. 2021. Liebre SPE. Retrieved March 11, 2021 from https://github.

com/vincenzo-gulisano/Liebre

[53] Andrew S Tanenbaum andHerbert Bos. 2015.Modern Operating Systems. Pearson.
[54] Georgios Theodorakis, Alexandros Koliousis, Peter R. Pietzuch, and Holger Pirk.

2020. LightSaber: Efficient Window Aggregation on Multi-core Processors. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’20). ACM, Portland, OR, USA.

[55] Tolga Urhan and Michael J. Franklin. 2001. Dynamic Pipeline Scheduling for

Improving Interactive Query Performance. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 501–510. http://dl.acm.org/citation.cfm?id=645927.

672188

[56] Ivan Walulya, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo

Gulisano, Marina Papatriantafilou, and Philippas Tsigas. 2018. Viper: A Mod-

ule for Communication-Layer Determinism and Scaling in Low-Latency Stream

Processing. Future Generation Computer Systems 88 (2018), 297–308. https:

//doi.org/10.1016/j.future.2018.05.067

[57] Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Rohit

Wagle, Kun-Lung Wu, and Lisa Fleischer. 2008. SODA: An Optimizing Scheduler

for Large-Scale Stream-Based Distributed Computer Systems. InMiddleware 2008,
Valérie Issarny and Richard Schantz (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 306–325.

[58] Y. Xing, S. Zdonik, and J. -. Hwang. 2005. Dynamic Load Distribution in the

Borealis Stream Processor. In 21st International Conference on Data Engineering
(ICDE’05). IEEE, Tokyo, Japan, 791–802. https://doi.org/10.1109/ICDE.2005.53

[59] J. Xu, Z. Chen, J. Tang, and S. Su. 2014. T-Storm: Traffic-Aware Online Scheduling

in Storm. In 2014 IEEE 34th International Conference on Distributed Computing
Systems. IEEE, USA, 535–544. https://doi.org/10.1109/ICDCS.2014.61

[60] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.

Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache

Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct.

2016), 56–65. https://doi.org/10.1145/2934664

[61] Shuhao Zhang, Jiong He, Chi (Amelie) Zhou, and Bingsheng He. 2019.

BriskStream: Scaling Stream Processing on Multicore Architectures. In Pro-
ceedings of the 2019 International Conference on Management of Data (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 705–722.

https://doi.org/10.1145/3299869.3300067

[62] Shuhao Zhang, Yingjun Wu, Feng Zhang, and Bingsheng He. 2020. Towards

Concurrent Stateful Stream Processing on Multicore Processors. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE, Dallas, TX, USA,
1537–1548. https://doi.org/10.1109/ICDE48307.2020.00136

378

https://doi.org/10.1145/3328905.3329505
https://doi.org/10.1007/s00778-015-0411-4
https://doi.org/10.1007/s00778-015-0411-4
https://doi.org/10.1109/ICDEW.2011.5767652
http://dl.acm.org/citation.cfm?id=1182635.1164172
http://dl.acm.org/citation.cfm?id=1182635.1164172
https://doi.org/10.1145/1331904.1331909
https://doi.org/10.1002/cpe.4257
https://doi.org/10.1002/cpe.4257
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4257
https://github.com/vincenzo-gulisano/Liebre
https://github.com/vincenzo-gulisano/Liebre
http://dl.acm.org/citation.cfm?id=645927.672188
http://dl.acm.org/citation.cfm?id=645927.672188
https://doi.org/10.1016/j.future.2018.05.067
https://doi.org/10.1016/j.future.2018.05.067
https://doi.org/10.1109/ICDE.2005.53
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1145/2934664
https://doi.org/10.1145/3299869.3300067
https://doi.org/10.1109/ICDE48307.2020.00136

	Abstract
	1 Introduction
	2 Preliminaries
	3 System Model and Goals
	3.1 Problem Definition and Goals
	3.2 Performance Metrics

	4 Architecture
	5 Design and Implementation
	5.1 Specifying User-Defined Scheduling Goals
	5.2 Offering SPE-Agnostic Metrics
	5.3 Enforcing Policy Priorities

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Can Lachesis Perform Better than the SoA in Single-Query Scheduling?
	6.3 Can Lachesis Perform Better than the OS in Single-Query Scheduling for Other SPEs?
	6.4 Can Lachesis Perform Better than the SoA When Scheduling Multiple Queries, Possibly with Blocking Operators?
	6.5 Is Lachesis Beneficial When Scaling Out?
	6.6 Is Lachesis' Multi-SPE Scheduling Beneficial?
	6.7 Evaluation Summary

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

