

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Enabling Large-Molecule Simulations of Biological Interest
through LSDALTON's DFT Method

Soon-Heum Koa*
aNational Supercomputing Centre, Linköping University, 581 83 Linköping, Sweden

, Simen Reineb, Thomas Kjærgaardc

bCentre for Theoretical and Computational Chemistry, Department of Chemistry, Oslo University,
Postbox 1033, Blindern, 0315, Oslo , Norway

cqLEAP – Center for Theoretical Chemistry, Department of Chemistry , Aarhus University ,
Langelandsgade 140, Aarhus C , 8000 , Denmark

Abstract

In this paper, we present the performance of LSDALTON's DFT method in large molecular simulations of
biological interest. We primarily focus on evaluating the performance gain by applying the density fitting (DF)
scheme and the auxiliary density matrix method (ADMM). The enabling effort is put towards finding the right
build environment (composition of the compiler, an MPI and extra libraries) which generates a full 64-bit
integer-based binary. Using three biological molecules varying in size, we verify that the DF and the ADMM
schemes provide much gain in the performance of the DFT code, at the cost of large memory consumption to
store extra matrices and a little change on scalability characteristics with the ADMM calculation. In the insulin
simulation, the parallel region of the code accelerates by 30 percent with the DF calculation and 56 percent in the
case of the DF-ADMM calculations.

1. Introduction
The advent of Tier-0 systems in Europe nowadays facilitates the ab-initio based evaluation of large biological
molecules. The DALTON family of codes is renowned as a both accurate and versatile tool for electronic-
structure calculations, which made it to be widely used in life-science community such as the ScalaLife project
[1] under an FP7 program. The DALTON code [2] has been developed since 1983 and more than 60 developers
contribute to the improvement and new functionalities. The code is distributed freely, under the personal/site
license agreement.

Two major branches exist under the DALTON code: traditional DALTON and LSDALTON (Linear Scaling
DALTON). The latter was born with the ultimate research goal of deploying a linear-scaling Density Functional
Theory (DFT) [3] in order to treat large molecular systems. LSDALTON therefore serves as a framework to test
and develop new linear-scaling methods. The novelty of the LSDALTON program made it fairly easy to fully
exploit the latest Fortran programming schema and tune it for modern computing architectures. Due to the
different application regimes of DALTON and LSDALTON, some fundamental design decisions are changed.
LSDALTON does not use point group symmetry, since most large molecular systems have no such symmetry.
LSDALTON does however exploit integral-screening techniques that become increasingly important with
molecular size, in combination with integral-acceleration techniques and highly efficient integral approximations.
LSDALTON is fully atomic-orbital (AO) based, allowing for asymptotic linear-scaling treatment of large
molecular systems. DALTON, on the other hand, is molecular-orbital (MO) based, and linear scaling is thus
prohibited without major revisions of the code. Even though there are several differences between the two codes,
many of the code components are mostly identical and could be shared, like the numerical schemes for the
exchange-correlation functional evaluation as needed for the DFT.

* Corresponding author. E-mail address: sko@nsc.liu.se

2

AO-based treatment [4,5] allows for linear-scaling wave-function optimization, molecular gradients and various
response-function calculations. As a result, LSDALTON provides better efficiency over the traditional
DALTON code on large molecular systems suitable for large-scale parallel simulations.

In this work, we aim at examining the performance of the linear-scaling DFT method in the LSDALTON code in
order to enable the simulation of large biological molecules. Both OpenMP and MPI parallelism were introduced
to LSDALTON through the prior PRACE work [6], and the scalability was benchmarked on selected small
problem sets. In this paper, we make an intensive investigation on the code performance at various MPI sizes
and for different molecules. We primarily focus on finding obstacles associated with the density-fitting (DF) and
the auxiliary-density-matrix method (ADMM), because these two approximations are essential for achieving
highly efficient computations of large biological molecules in Tier-0 scale.

The present paper is structured as follows. The DFT method and associated schemes are introduced in Section 2.
The performance of the LSDALTON code in biological molecular simulations is presented in Section 3. In this
section, we address the enabling work to overcome the memory-related errors and provide the parallel
performance of the DFT code with regular, DF, and ADMM schemes. A short summary and the future work
follow in the last section.

2. DFT Method in LSDALTON Code
The DFT is the most popular computational-chemistry method. The success of the DFT stems from the fact that
it gives the best compromise between accuracy and computational effort. However, applying the DFT to large
molecular systems is challenging and requires efficient parallelization in order to accomplish this goal. A
detailed description of the DFT and its implementation is beyond the scope of the paper. However, focusing on
the computational aspects, a standard DFT calculation can be characterized as an iterative scheme. Each step in
this iterative procedure requires the construction of an AO-based Kohn-Sham matrix and the construction of a
new AO density matrix (or a corresponding set of MOs). The construction of a Kohn-Sham matrix requires the
calculation of AO integrals while the construction of a new density matrix can be cast in terms of linear algebra
routines.

The DF is a method to approximate the electron-repulsion integrals. In effect, the expensive four-center two-
electron integrals are replaced by the evaluation of two- and three-center two-electron integrals and the solution
of a set of linear equations. The resulting speed-up can be substantial, typically one to two orders of magnitude.
However, the price for the reduced cost is an increased memory usage, since the so-called metric matrix (the
two-center two-electron integral matrix in the larger auxiliary basis set which is used to approximate the electron
density) is typically 9-15 times larger than the conventional Kohn-Sham and density matrices.

The ADMM [7] is a method to approximate the expensive exact Hartree-Fock exchange contribution to the
hybrid DFT calculations. The basic idea of the ADMM is to calculate the exact Hartree-Fock exchange
contribution in a reduced basis set, using an auxiliary density matrix that is smaller in size. The assumption
behind the approximation is that the difference in the exchange energy between the primary and auxiliary density
matrices is well captured by a GGA functional. The ADMM scheme should therefore have roughly the same
memory consumption as the regular calculation. The ADMM and the DF schemes can be combined so that the
DF is used to approximate the Coulomb contribution to the Kohn-Sham matrix and the ADMM is used to
approximate the exact exchange contribution to the Kohn-Sham matrix.

The parallelization of the Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra PACKage
(LAPACK) routines was done by linking to the parallel-distributed libraries Parallel BLAS (PBLAS) and
Scalable LAPACK (ScaLAPACK) [8]. The parallelization of the integrals was done using method-specific
MPI/OpenMP schemes [6] and good scalability was demonstrated for up to 2048 cores using pure DFT
calculations. However, looking at the strong scaling, the efficiency is determined by the LSTENSOR Fortran
derived type. The LSTENSOR structure was used to store all data inside the integral driver. A general integral
code uses a variety of input and output arrays, like the two-dimensional AO density matrix, the four-dimensional
two-electron integrals, the five-dimensional differentiated two-electron integrals, the two- and three-dimensional
DF integrals, etc. LSTENSOR was therefore constructed to be a common structure that could contain all the data
needed for input and output handling. However, a large percentage of the time was spent in setting up the
LSTENSOR structure, transforming data from the memory-distributed format used by ScaLAPACK to the
LSTENSOR structure and back, and accessing the data in the LSTENSOR structure within the integral code.
The LSTENSOR limitations on scalability was found to be exaggerated when using the DF techniques and the
ADMM, and the initial benchmark results of this project therefore revealed the need to abandon the LSTENSOR
structure in favor of simple Fortran array structures.

3

3. Biomolecular Simulations with LSDALTON

A. Computing Resources
The CURIE [9] supercomputer is one of PRACE (Partnership for Advanced Computing in Europe [10]) Tier-0
resources. It is an x86-64 cluster system that holds in total 80640 CPU cores on the thin node partition. Each
node contains two eight-core Intel Sandy Bridge processors and has 64 GB RAM capacity. The system operates
on bullx Linux Server 6.1 whose kernel version is 2.6.32. Relatively long-running and large memory-requested
Insulin simulations were run on this system.

Another x86-64 supercomputer, named Triolith [11], was also used for performance evaluation of valinomycin
and titin simulations. This supercomputer serves as one of the national SNIC (Swedish National Infrastructure
for Computing [12]) systems. This system is quite similar to CURIE in terms of both hardware specifications
and software stack. The total of 1600 HP SL230s compute nodes are in service, each of which is equipped with
two eight-core Intel E5-2660 (2.2 GHz Sandy Bridge) processors. The operating system is CentOS 6.5 whose
kernel version is 2.6.32. A noticeable difference from CURIE lies in the RAM capacity per node. Each node of
Triolith contains 32 GB RAM, which is half the size of each CURIE standard node. This prevented us from
running the Insulin simulation which uses ~60 GB RAM on the DF calculations.

B. Verification of the Density Fitting Scheme on the Valinomycin Molecule
LSDALTON was used to obtain the DFT density and energy for the valinomycin molecule. Valinomycin is an
antibiotic that consists of 168 atoms; composed of H (hydrogen), C (carbon), O (oxygen) and N (nitrogen). We
used the cc-pVDZb

[13

 basis set, giving a total amount of 1542 basis functions. For the DF calculation, we used the
df-def2 fitting basis set, giving a total of 7518 auxiliary basis functions. For the ADMM calculation, we applied
the 6-31G basis, which gives 882 basis functions for the smaller basis. The hybrid functional B3LYP ,14]
was used throughout, which combines Becke’s formulation for the exchange part [15], Lee, Yang and Parr’s
formulation for the correlation part [16] and 20% HF-type exchange.

Four different sets of simulations were performed to study the performance of LSDALTON’s DFT simulation:
pure MPI and hybrid MPI+OpenMP calculations each using ScaLAPACK/PBLAS or LAPACK/BLAS
mathematical libraries. The memory requirement per an MPI rank was a little larger than 2 GB, which exceeded
the memory-per-core of the Triolith compute node. Thus, only half of the CPU cores were used so as to secure
the extra amount of memory in the case of a pure MPI run, whereas the entire CPU cores in a node could be used
in the case of a hybrid simulation. The memory consumption for storing the metric matrix for the DF scheme
was close to 0.5 GB.

Total execution times for pure MPI and hybrid simulations are presented in Fig. 1 and Fig. 2. Scalability of the
DFT code is experimented over three different numerical configurations: regular (non-DF), DF, and DF
combined with ADMM calculations. In these figures, the gray solid line denotes the ideal scalability. Both x-
and y-axes are presented in logarithmic scales. All experiments are run from 1 to 32 Triolith compute nodes.

Figure 1 presents the performance of the pure MPI simulation. The DFT simulation iterates until the
convergence is reached. In the valinomycin simulation, the Self-Consistent Field (SCF) energy-optimization
procedure converges after 17 iterations, regardless of the level of approximation. The DF-ADMM DFT
calculation takes the shortest execution time and the DF DFT calculation is the next. This is since the DF-
ADMM calculation simplifies the Hartree-Fock exchange calculation on top of the DF formulation. The DF DFT
and the regular DFT runs scale similarly and they are highly scalable. The DFT run with the DF-ADMM scheme
somewhat scales worse than the other two simulations. When using the ScaLAPACK/PBLAS library for matrix
operations, the scalability is much better than using the LAPACK/BLAS library.

Figure 2 presents the performance of the hybrid simulation. The graph shows the similar pattern as the result of
the pure MPI simulation. The DF-ADMM DFT calculation converges fastest, followed by the DF DFT
calculation. In similar to the MPI simulations, the DF DFT and the regular DFT runs show the similar scalability
and they scale better than the DF-ADMM DFT calculation. Additionally, the use of the ScaLAPACK/PBLAS
libraries contributes to improving scalability, especially as the number of cores increases. The scalability
suddenly becomes far worse at 512 (64 MPI ranks × 8 threads) cores, presumably because of the small problem
size. In most cases, the hybrid simulation executes faster than the pure MPI task that runs at the same number of

b correlation-consistent polarized valence-only basis sets with double-zeta, first proposed by Dunning

4

nodes, because half of the CPU cores are sacrificed in pure MPI simulations due to the large memory
consumption. The pure MPI simulation runs faster than the hybrid counterpart in the case of the DF-ADMM
DFT simulation with the ScaLAPACK/PBLAS on 32 nodes.

Figure 1 Execution Time for the MPI Simulation of a Valinomycin Molecule. Gray solid lines denote the ideal condition.

Figure 2 Execution Time for the Hybrid (MPI+OpenMP) Simulation of a Valinomycin.

From the valinomycin simulation, we can draw the following conclusions.

- The DF-ADMM computation saves a significant computation time. On the other hand, it has the poorer
scalability over other two methodologies.

- The use of the ScaLAPACK/PBLAS library is essential in terms of scalability and performance.

- The hybrid simulation is preferred to the pure MPI simulation, since a number of CPU cores are
sacrificed in MPI simulations due to a large memory requirement in DF simulations.

5

C. Enabling Large Biomolecular Simulations within LSDALTON
Enabling a TRUE 64-bit integer binary is not at all straightforward. Utilized libraries do have their own
limitation and finding a working composition is a laborious task.

With regard to the MPI library, OpenMPI was one of the software that supports the communication of large
datasets over 2 GB.c

Issues with MPI Library

 System-supplied commercial libraries were first experimented because they encapsulate
several configurations in the single package and users can easily link the right library by simply adding proper
compilation options. However, in the case of Intel MPI, it fails to perform the message passing arrays larger than
2 GB since the message size parameter is fixed as 32-bit integer. Bullxmpi installations on the CURIE
supercomputer were defining Fortran integers as 32-bit, thus naturally leading to failure in handling large size
arrays. Open-source OpenMPI library fully supports message passing of large datasets if it is installed with 64-
bit integer representation, though more care is needed in compiling user’s code (i.e., matching the compiler with
its version, datatype declaration). More detail is described in Appendix A: .

The linear algebra library that takes care of matrix operation also raised the confusion. Both LSDALTON’s
built-in matrix operator and Intel MKL’s LAPACK/BLAS interface were stable regardless of the matrix size. On
the other hand, MKL’s ScaLAPACK/PBLAS library with 64-bit interface did not work as desired: it worked
successfully in the valinomycin simulation which handles the array within 32-bit integer range, while a memory
error takes place in titin/insulin simulations which create large matrices over 2GB in size. Detailed description is
provided in Appendix B: 64-bit Math Libraries.

Therefore, the compilation environment that performed best is as follows:

- Intel compiler, version 14.0.2 (Intel Composer XE 2013 SP1 Update2)

- OpenMPI, version 1.6.5

- Intel MKL’s LAPACK/BLAS 64-Bit Interface, version 11.1.2 (Intel Composer XE 2013 SP1 Update2)

D. Titin and Insulin Simulations using DFT Method
The DFT performance of LSDALTON was thoroughly investigated for large biological molecules of titin and
insulin. A titin consists of 392 H, C, O, N, or S (sulphur) atoms. Used regular basis set was the 6-31G* typed

Since the requested amount of memory was larger than the memory-per-core of the available computing
resources, we only conducted hybrid simulations. The number of threads was set to 8 for the titin simulation,
which assigned one MPI rank per each Sandy Bridge processor. In the case of the insulin calculation, the single
MPI rank consumed almost all RAM memory of the node. Thus, only one MPI rank was launched per a node in
a threaded mode using all 16 cores. We used the MKL LAPACK/BLAS library for matrix operations due to the
noted issue in a ScaLAPACK/PBLAS implementation.

 and
a total of regular basis functions is 3196. The auxiliary basis set was the df-def2 type and has 18761 functions.
The 3-21G basis set with 2196 basis functions was also utilized for the ADMM computation. An insulin is
composed of 787 H, C, O, N, or S atoms. The cc-pVDZ regular basis set with 7604 functions and the df-def2
auxiliary basis set consisting of 37853 basis functions were used. The STO-3G and the 6-31G bases are used as
complimentary auxiliary basis function and JK auxiliary basis function, respectively. The STO-3G basis holds
2431 functions and the 6-31G consists of 4433 basis functions. In both titin and insulin simulations, the B3LYP
hybrid functional was applied.

Figures 3 to 6 represent the performance for the titin simulation for three different configurations. The code
continued running until convergence and the number of SCF iterations were mostly the same among different
configurations (DFT calculations with the DF and the DF-ADMM converged after 21 iterations and the regular
DFT calculation converged after 20 iterations). The simulations were launched over 4 to 256 MPI ranks, each
holding 8 threads.

Computation time per one SCF iteration of DFT calculation is plotted in Fig. 3. A DFT simulation with the DF-
ADMM shows the best performance at small MPI sizes and the run with the DF performs best at 1000+ (128

c More precisely, the “allocatable” array on the heap memory space fails to communicate if the size exceeds 32-bit representation (231 bit).
There exists a controversy that the message passing is successful in case the static array is defined, though no strong verification was
performed: http://stackoverflow.com/questions/13211990/mpi-send-error-with-derived-data-type-fortran.
d A valence double-zeta polarized basis set that adds to the 6-31G set six d-type Cartesian-Gaussian polarization functions on each of the
atoms Li through Ca and ten f-type Cartesian Gaussian polarization functions on each of the atoms Sc through Zn.

6

ranks × 8 threads and 256 ranks × 8 threads) cores. In terms of scalability, the DF DFT and regular DFT runs
show a very similar pattern, while the DF-ADMM DFT calculation scales worse than them. As the number of
CPU cores increase to 1000, the performance of all simulations reaches a saturation plateau and the computation
time increases at 2048 CPU cores. In DF-ADMM DFT runs, the extra communication cost overtakes the
computational gain at 256+ CPU cores. It means that the ADMM implementation in the LSDALTON code is not
well tuned for large number of CPU cores. Nevertheless, the DF-ADMM case at 32 × 8 cores takes the shortest
time out of all DFT simulations. This proves that the DF-ADMM scheme is very powerful in reducing
computational cost.

Figure 3 Elapsed Time per One SFT Iteration for the Hybrid Simulation of a Titin Molecule (Time at the 2nd Iteration).

To investigate the parallel performance in detail, we compare the computation time for Kohn-Sham matrix
construction, including Coulomb, Exchange and Exchange-Correlation contributions. All other parts of the code
in the SCF iteration run serially and are independent of the matrix design. From Fig. 4 we observe that the DF
DFT and the regular DFT runs have good scalability up to 32 × 8 CPU cores. The scalability with the DF-
ADMM is worse than other schemes and the performance reaches a saturation plateau at 32 × 8 CPU cores.
Compared to the regular simulation, the DF DFT computation saves about 30% of computation time in the case
of 32 × 8 cores and the percentage increases for smaller MPI sizes. Computation time is the shortest for the DF-
ADMM DFT calculation with 32 × 8 cores, where elapsed time is 37.44 seconds. For the DF DFT simulation,
the shortest computation time is monitored at 64 × 8 cores with 43.74 seconds. The regular run also shows the
best performance at the same number of cores, taking 56.17 seconds.

Figure 4 Elapsed Time for the Single Kohn-Sham Matrix Construction for the Hybrid Simulation of a Titin Molecule (Time at the 2nd
Iteration).

7

Figure 5 shows the computational overhead from non-iterative routines. This overhead is measured by
subtracting the SCF iteration time from the total DFT execution time. It includes an initial creation of matrices
(density matrix components, an auxiliary fit, the ADMM construct, etc) and the global tensor data structure, as
well as other general components such as I/O and the initialization. The initial tensor size for the DF simulation
becomes much larger than that for the regular computation since it has to store extra components related with the
auxiliary basis set. This results in a longer time for creating the tensor structure and broadcasting the entire
structure by the master rank. An extra cost for the ADMM simulation is mostly due to the time for producing the
exchange-matrix contribution, which is around 1 minute independent of MPI sizes. The overhead tends to
increase as the MPI size increases, because many routines at the initial and final stages are serially executed in a
master rank and the product is broadcasted to all other MPI ranks. The overhead is larger and grows faster for the
DF/DF-ADMM DFT simulations due to broadcasting a large tensor structure.

Figure 5 Extra Overhead for the Hybrid Simulation of a Titin.

The total execution time until convergence is presented in Fig. 6. Much of the gain of the DF and the DF-
ADMM methods in SCF iterations is largely cancelled out by the initial overhead for the matrix creation and the
tensor generation. Still, the DF-ADMM DFT simulation at 32 × 8 cores shows the best performance out of all
experiments.

Figure 6 Total Execution Time for the Titin Molecule Simulation.

8

Figures 7--9 represent the performance for the insulin simulation for three different configurations. Because the
insulin simulation takes essentially longer time than that of titin, the code is set to run only 2 iterations.
Simulations are launched over 8 to 256 MPI ranks, each holding 16 threads.

Figures 7 and 8 present the DFT computation time per the single SCF iteration and the Kohn-Sham matrix
construction. The DF-ADMM DFT calculation shows the best performance over an entire range except 4096
(256 rank × 16 threads) cores. The scalability is quite similar to the case of titin, where the DF DFT and regular
DFT runs showed a very similar pattern and the calculation with the DF-ADMM was poorer. Looking at the
scalability of Kohn-Sham matrix construction graph, DF DFT and regular DFT runs up to 64 × 16 cores are
highly scalable while these runs at 2000+ cores and all DF-ADMM DFT runs are far from scalable. In view of
the execution time, the DF-ADMM DFT run at 32 × 16 cores provides the lowest computation time with 3.07
minutes for Kohn-Sham matrix construction. The DF DFT calculation shows the best result of 5.42 minutes at
64 × 16 cores and the regular run was the fastest at 128 × 16 cores by 8.13 minutes.

As the problem size increases, so increases the computation time per iteration. This implies that the amount of
saved computation time by the DF or the DF-ADMM approach accordingly increases in comparison to the
computation cost in the regular calculation. Moreover, a higher reduction rate of Kohn-Sham matrix construction
time is observed in the insulin simulation than the titin simulation. We monitored that the DFT calculation with
the DF saved about 30% of the computation time in the case of 32 × 8 cores of the titin calculation: it saves 56%
in comparison to a regular DFT simulation (6.90 minutes with the DF scheme and 15.67 minutes with the regular
run) at 32 × 16 cores. Indeed, the computation cost is further saved by applying the ADMM approximation. This
result expresses that the DF and the DF-ADMM methods are more powerful for the simulation of a large
molecular structure in terms of the number of atoms and basis functions, in the condition that the memory
requirement does not exceed the hardware capacity.

Figure 7 Elapsed Time per One SCF Iteration for the Hybrid Simulation of an Insulin Molecule.

9

Figure 8 Elapsed Time in Kohn-Sham Matrix Construction for the Hybrid Simulation of an Insulin Molecule (Time at the 2nd Iteration).

The extra overhead in the insulin simulation is reported in Fig. 9. Like the titin simulation, the cost increases as
we apply the DF and the ADMM methods. Comparing between the regular DFT and the DF-ADMM DFT cases,
the DF-ADMM DFT calculation takes 10 minutes longer at 8 × 16 cores, which grows to be 51 minutes at 256 ×
16 cores. In the case of 1024 (64 × 16) cores which looks to be a reasonable MPI size for the insulin simulation,
the DF-ADMM DFT calculation saves 6.15 minutes per an SCF iteration (10.35 minutes taken in the DF-
ADMM DFT run and 16.50 minutes in the regular DFT run). The extra cost for the initiation is 18.04 minutes
(22.32 minutes in the DF-ADMM DFT run and 4.28 minutes in the regular DFT run). It means that the DFT run
with the DF-ADMM schemes will be more efficient than the regular DFT calculation, if the total number of
iteration until convergence is more than 4. We argue that the extra cost for initialization is acceptable
considering the high gain from applying the DF and the DF-ADMM schemes.

Figure 9 Extra Overhead for Hybrid Simulation of Insulin.

Finally, the amount of allocated RAM memory is presented in Table 1. As seen, the DF computation requires
much larger memory allocation than the regular calculation and the size of the allocated array is almost
independent of the MPI sizes. Therefore, it is unfortunately very hard to apply the DF scheme to larger
biomolecular simulations before the matrix and the tensor data structures are reformulated. The DF-ADMM
computation allocates the same memory as the DF method.

10

Table 1 Memory Consumptions in Hybrid Simulations with 64 MPI Ranks. Number of threads are 8 in valinomycin and titin simulations,
and 16 threads used for insulin simulations.

Density Fitting Regular (Non-DF)

Total Matrix Tensor Total Matrix Tensor

Valinomycin 2.46 GB 1.38 GB 530 MB 851 MB 742 MB 148 MB

Titin 16.04 GB 7.68 GB 3.26 GB 3.73 GB 3.19 GB 734 MB

Insulin 62.32 GB 28.94 GB 13.23 GB 13.69 GB 13.41 GB 2.49 GB

4. Discussion and Conclusion
In this work, we evaluated the DFT performance of LSDALTON for the simulation of large biological molecules.
Primary effort was put towards enabling the DF scheme and the ADMM approximation on top of the DFT
method, which contributes much to the performance improvement without harming the convergence of the code.

Initial investigations revealed that the large memory allocation accompanies the usage of the DF scheme of the
LSDALTON code, due to the necessity of storing extra matrix components. We tried to solve the memory-
related issue by addressing a right composition of the build environment. It was struggling to find MPI and linear
algebra libraries who truly support 64-bit integer capability. After investigation of different MPI libraries, we
found that OpenMPI was such a library, providing the large message passing over 2 GB. Some LAPACK/BLAS
routines are found to capacitate the matrix operation over 2 GB in size, such as Intel MKL and OpenBLAS. Yet,
no ScaLAPACK library was found to handle large matrix sizes successfully, without labouring intensive
changes to the ScaLAPACK source code. So, OpenMPI and Intel MKL's LAPACK/BLAS interface are selected
to be used in conjunction with Intel compiler, to build a truly 64-bit integer-based binary.

We evaluated the performances of the DF scheme and the ADMM approximation by simulating three biological
molecular structures of valinomycin, titin and insulin. Notable performance improvements are observed with the
DF and the ADMM methods, without noticeable degradation of the convergence criteria. In all three cases, the
runtime for the single SCF iteration of the DFT calculation was shorter with the DF scheme and the code
accelerated further with the ADMM approximation. In the case of the insulin simulation, the parallel region of
the code accelerates by 30 percent with the DF method and 56 percent with the DF-ADMM methods.

With the DF scheme, the scalability pattern remains almost the same as the regular DFT run in small number of
cores (less than 1K cores) and the performance with the DF scheme is still better than the regular DFT run
despite of a slight loss in scalability at more than 1K cores. We argue that the DF implementation is highly
beneficial for most production runs of moderate molecular sizes. With the ADMM approximation on top of the
DF scheme, we can normally expect further performance gain at small number of processors. On the other hand,
the scalability becomes much poorer with the ADMM scheme: the DFT code does not scale any further at larger
than 256 or 512 cores, depending on the size of molecules. The ADMM approach could be recommended if the
number of utilized cores remain within this range. At the same time, further investigation is necessary to improve
scalability of the ADMM implementation.

The memory requirement of the DF implementation within LSDALTON code is a bottleneck in applying this
method to large molecular simulations. The size of allocated memory was around 60 GB per an MPI rank in the
case of insulin simulation. Remembering that the DF calculation does not scale any further at more than 2K CPU
cores, the use of more than 2K parallel cores is not meaningful on general-purpose cluster systems. Instead, the
regular DFT implementation can be applied to the simulation of molecules larger than insulin.

The DF and the ADMM implementations introduce extra overheads in the non-iterative part of the code. It is
natural since these schemes allocate extra matrix components for an auxiliary basis set and the resultant cost for
broadcasting increases. Yet, the amount of overhead could be reduced by redesigning the internal tensor
structure to a lighter fashion. A new tensor design is expected to be released with a future LSDALTON code.

The valinomycin simulation demonstrates that scalability is improved by using a ScaLAPACK/PBLAS library.
However, ScaLAPACK/PBLAS libraries up to now fail to allocate large arrays over 32-bit integer range. Since
it is not at all trivial to change the ScaLAPACK source code personally, we shall sustain with the
LAPACK/BLAS library or lighten the matrix structure of LSDALTON.

Overall, the DF and the ADMM schemes proved to contribute much on increasing the performance of the code.
Further changes to reduce the memory consumption and improve the scalability of the ADMM scheme will
enable the simulation of larger molecular systems than the current experiments.

11

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-312763.

References

[1] http://www.scalalife.eu/
[2] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P.

Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H.
Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E.
Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J.
Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp,
K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen,
P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S.
Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sánchez de Merás,
T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R.
Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson,
D. J. D. Wilson, M. Ziolkowski, and H. Ågren, “The Dalton quantum chemistry program system,” WIREs
Comput. Mol. Sci. (doi: 10.1002/wcms.1172)

[3] C. J. Cramer, “Density Functional Theory,” in Essential of Computational Chemistry, pp.233—273, John
Wiley & Sons Ltd (2004)

[4] P. Salek, S. Høst, L. Thøgersen, P. Jørgensen, P. Manninen, J. Olsen, B. Jansik, S. Reine, F. Pawlowski, E.
Tellgren, T. Helgaker, and S. Coriani, “Linear-scaling implementation of molecular electronic self-
consistent field theory,” J. Chem. Phys. 126, 114110 (2007)

[5] S. Coriani, S. Høst, B. Janisk, L. Thøgersen, J. Olsen, P. Jørgensen, S. Reine, F. Pawlowski, T. Helgaker,
and P. Salek, “A linear scaling implementation of molecular response theory in self-consistent field
electronic-structure theory,” J. Chem. Phys. 126, 154108 (2007)

[6] S. Reine,T. Kjærgaard, T. Helgaker, O. Vahtras, Z. Rinkevicius, B. Frecus, T. W. Keal, A. Sunderland, P.
Sherwood, M. Schliephake, X. Aguilar, L. Axner, M. F. Iozzi, O. W. Saastad, and J. Gimenez, "Petascaling
and Performance Analysis of DALTON on Different Platforms," PRACE White Paper, Available at
http://www.prace-
ri.eu/IMG/pdf/Petascaling_and_Performance_Analysis_of_DALTON_on_Different_Platforms.pdf

[7] M. Guidon, J. Hutter, and J. VandeVondele, “Auxiliary Density Matrix Methods for Hartree−Fock
Exchange Calculations,” J. Chem. Theory Comput., 6 (8), pp.2348-2364 (2010) (doi: 10.1021/ct1002225)

[8] S. Reine, T. Kjærgaard, T. Helgaker, O. W. Saastad, and A. Sunderland, “A ScaLAPACK-based
Parallelization of LSDALTON,” PRACE White Paper, Available at http://www.prace-
project.eu/IMG/pdf/a_scalapack-based_parallelization_of_lsdalton.pdf

[9] TGCC CURIE, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
[10] Partnership for Advanced Computing in Europe, http://www.prace-ri.eu/
[11] Triolith User Guide, http://www.nsc.liu.se/systems/triolith/
[12] SNIC Homepage, http://www.snic.vr.se/
[13] K. Kim and K. D. Jordan, “Comparison of Density Functional and MP2 Calculations on the Water

Monomer and Dimer,” J. Phys. Chem. 98 (40) pp.10089-10094 (1994)
[14] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab Initio Calculation of Vibrational

Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” J. Phys. Chem., 98 (45),
pp.11623-11627 (1994)

[15] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behaviour,” Phys.
Rev. A, 38 (6), pp.3098-3100 (1988)

[16] C. Lee, W. Yang, and R. G. Parr “Development of the Colle-Salvetti correlation-energy formula into a
functional of the electron density,” Phys. Rev. B, 37 (2), pp.785-789 (1988)

12

Appendix. Building a Binary with TRUE 64-bit Integer Support

A. Issues with MPI Library

Compiler technologies are highly advanced that users can easily select the byte representation of datatypes in
their serial codes by adding proper compilation flags. On the other hand, compiling MPI-parallelized code
sometimes leads to confusion, since MPI library itself is a series of compiled objects under a specific
configuration. Situation is more favourable in the case of using commercial MPI libraries (e.g., Intel MPI). They
usually encapsulate a series of different configurations under the single package and load the right solution
(library and environmental parameters) based on a user’s compilation option. On the other hand, open-source
MPI libraries (e.g., OpenMPI, MVAPICH) frequently build the single set of libraries suited for the
environmental configuration at time of library installation. It results that the code fails to compile or the binary
fails to run if the configuration changes after the library was built. Thus, more care is needed to make use of
open-source libraries.

Intel MPI (on Triolith at NSC) was first exploited to compile LSDALTON code with 64-bit integer
representation. It is simple to compile with 64-bit integer formulation through Intel MPI:

- Replace “use mpi” to “include ‘mpif.h’” from source code. “use mpi” loads a pre-built MPI module file
which is based on 32-bit integer specification.

- Add “-ilp64” flag at time of compilation. Alternatively, this flag can be addressed as the global option
at time of launching MPI task, i.e., “mpirun –ilp64 …”.

We confirmed that the right library (64-bit interface) had been linked. However, the binary still crashed in the
middle of execution. The error message was as follows.

Assertion failed in file ../../i_rtc_cache.c at line 631: buf_end_palign > buf_start_palign

According to online discussione

Bull-supported MPI on CURIE was also examined to figure out whether it supports the 64-bit integer interface.
Since bullxmpi is developed on top of OpenMPI, this library borrows most commands from OpenMPI. The
default integer size in Fortran interface is easily detected by running a following command.

, the current limitation of message passing size is 2 GB due to the fact that type
'int' is used by the MPI standard to designate a message size parameter. It expresses that Intel MPI is not a
perfect 64-bit integer provider.

$ ompi_info -a | grep "Fort integer size"

On all bullxmpi installation on CURIE, returned value is 4 byte. Therefore, bullxmpi also fails to create a TRUE
64-bit integer binary for creating and exchanging large arrays.

Personal installation of OpenMPI is the only solution for an end-user. OpenMPI 1.7.5 and 1.6.5 f

./configure --prefix=$USERS_OWN_PATH --with-slurm --enable-mca-no-build=btl-tcp
CC=icc CXX=icpc FC=ifort F77=ifort F90=ifort FFLAGS=-i8 FCFLAGS=-i8

 were
experimented. Intel compiler serves as the baseline compiler for MPI library. The installation command is as
follows:

make; make install

Since intra-node communication on CURIE is conducted through direct memory access, OpenMPI’s default
reference to KNEM service (intra-node MPI communication kernel module) shall be disabled. That could be
handled by turning off the service in user’s environmental configurationg or at runtimeh

.

e https://software.intel.com/en-us/forums/topic/361060
f Version 1.6.5 was added for experimentation since scalasca 1.X profiling tool explicitly links to mpi_f77 and mpi_f90 libraries whereas
they are deprecated from OpenMPI version 1.7 (Instead these two libraries are merged into mpi_mpifh).
g export OMPI_MCA_btl_sm_use_knem=0; export OMPI_MCA_btl_openib_pkey=0x8090;
export OMPI_MCA_btl_openib_ib_service_level=5; export OMPI_MCA_btl_base_exclude=tcp;
export OMPI_MCA_btl_openib_warn_default_gid_prefix=0
h mpirun "--mca btl_sm_use_knem 0" …

13

B. 64-bit Math Libraries
LSDALTON associates lots of matrix operations for the SCF energy optimization. Matrix size grows much
bigger at the DF scheme than the typical DFT calculations since the number of auxiliary basis function which is
used on the DF calculations is far larger than the regular Gaussian basis function on typical DFT computations.
Matrix size easily exceeds 2GB in our experiments on titin and insulin simulations, thus 64-bit integer
representation is necessary to solve these molecules.

There exist 3 different ways to conduct matrix operations at LSDALTON code: the call to external
ScaLAPACK, the link to sequential/threaded LAPACK and BLAS, and the use of built-in matrix operation
functions. As long as they operate as desired, the best choice would be the use of ScaLAPACK since it supports
the parallel distributed operation.

Intel MKL math library was linked to exploit ScaLAPACK features. However, the code crashed in a call to
PDGEMR2D routine, which provides a copy from any block cyclically distributed (sub)matrix to any other
block cyclically distributed (sub)matrix, with the following error message:

xxmr2d: out of memory

From online discussioni we find that this error is associated with large matrix array creation which exceeds 2GB
in size. Intel argues that this error was resolved at MKL version 10.3j but the problem still persists in both MKL
10.3.10 and 11.1.2. We rather decided to make our own installation of open-source ScaLAPACK libraryk after
applying recommended changes on REDIST/SRC/pgemraux.c.l

Open-source ScaLAPACK requests BLAS and LAPACK libraries as prerequisite. So we first installed
OpenBLAS

m

In summary, we could confirm that 64-bit array creation is fully supported in MKL’s LAPACK and BLAS
routines. On the other hand, the 64-bit interface implementation in ScaLAPACK is suspicious. Out of
simulations with 64-bit interface, valinomycin was the only successful case which handles less than 1GB matrix.
Simulations failed in titin and insulin cases, both of which creates matrix over 2GB.

 as the BLAS/LAPACK library, which is verified to fully provide 64-bit integer support. However,
64-bit integer ScaLAPACK installation failed to pass its own testsuite, reporting the malfunction in incorporated
BLACS (Basic Linear Algebra Communication Subprograms) library. We later linked MKL’s OpenMPI
BLACS and skipped BLACS installation from ScaLAPACK, but the error persisted. The final decision was
made to utilize the sequential/threaded LAPACK and BLAS from Intel’s MKL, which successfully worked at
any matrix sizes.

i https://software.intel.com/en-us/forums/topic/509048;
https://software.intel.com/en-us/forums/topic/286499

j https://software.intel.com/en-us/articles/intel-mkl-103-bug-fixes,
DPD200199131 PDGEMR2D: out of memory error even when using 64-bit libraries
k http://www.netlib.org/scalapack/
l https://icl.cs.utk.edu/lapack-forum/viewtopic.php?t=465
m http://www.openblas.net/

https://software.intel.com/en-us/forums/topic/509048�
https://software.intel.com/en-us/articles/intel-mkl-103-bug-fixes�

	Enabling Large-Molecule Simulations of Biological Interest through LSDALTON's DFT Method
	Soon-Heum Koa0F*, Simen Reineb, Thomas Kjærgaardc
	aNational Supercomputing Centre, Linköping University, 581 83 Linköping, Sweden
	bCentre for Theoretical and Computational Chemistry, Department of Chemistry, Oslo University, Postbox 1033, Blindern, 0315, Oslo , Norway
	cqLEAP – Center for Theoretical Chemistry, Department of Chemistry , Aarhus University ,
	Langelandsgade 140, Aarhus C , 8000 , Denmark
	Abstract
	Acknowledgements
	References

