
 

 

 

 

 
 

1 

 

Available online at www.prace-ri.eu 
 

Partnership for Advanced Computing in Europe 
 

 

Enabling Large-Molecule Simulations of Biological Interest 
through LSDALTON's DFT Method 

Soon-Heum Koa*
aNational Supercomputing Centre, Linköping University, 581 83 Linköping, Sweden 

, Simen Reineb, Thomas Kjærgaardc 

bCentre for Theoretical and Computational Chemistry, Department of Chemistry, Oslo University, 
Postbox 1033, Blindern, 0315, Oslo , Norway 

cqLEAP – Center for Theoretical Chemistry, Department of Chemistry , Aarhus University , 
Langelandsgade 140, Aarhus C , 8000 , Denmark 

 

Abstract 

In this paper, we present the performance of LSDALTON's DFT method in large molecular simulations of 
biological interest. We primarily focus on evaluating the performance gain by applying the density fitting (DF) 
scheme and the auxiliary density matrix method (ADMM). The enabling effort is put towards finding the right 
build environment (composition of the compiler, an MPI and extra libraries) which generates a full 64-bit 
integer-based binary. Using three biological molecules varying in size, we verify that the DF and the ADMM 
schemes provide much gain in the performance of the DFT code, at the cost of large memory consumption to 
store extra matrices and a little change on scalability characteristics with the ADMM calculation. In the insulin 
simulation, the parallel region of the code accelerates by 30 percent with the DF calculation and 56 percent in the 
case of the DF-ADMM calculations. 
 

1. Introduction 
The advent of Tier-0 systems in Europe nowadays facilitates the ab-initio based evaluation of large biological 
molecules. The DALTON family of codes is renowned as a both accurate and versatile tool for electronic-
structure calculations, which made it to be widely used in life-science community such as the ScalaLife project 
[1] under an FP7 program. The DALTON code [2] has been developed since 1983 and more than 60 developers 
contribute to the improvement and new functionalities. The code is distributed freely, under the personal/site 
license agreement. 

Two major branches exist under the DALTON code: traditional DALTON and LSDALTON (Linear Scaling 
DALTON). The latter was born with the ultimate research goal of deploying a linear-scaling Density Functional 
Theory (DFT) [3] in order to treat large molecular systems. LSDALTON therefore serves as a framework to test 
and develop new linear-scaling methods. The novelty of the LSDALTON program made it fairly easy to fully 
exploit the latest Fortran programming schema and tune it for modern computing architectures. Due to the 
different application regimes of DALTON and LSDALTON, some fundamental design decisions are changed. 
LSDALTON does not use point group symmetry, since most large molecular systems have no such symmetry. 
LSDALTON does however exploit integral-screening techniques that become increasingly important with 
molecular size, in combination with integral-acceleration techniques and highly efficient integral approximations. 
LSDALTON is fully atomic-orbital (AO) based, allowing for asymptotic linear-scaling treatment of large 
molecular systems. DALTON, on the other hand, is molecular-orbital (MO) based, and linear scaling is thus 
prohibited without major revisions of the code. Even though there are several differences between the two codes, 
many of the code components are mostly identical and could be shared, like the numerical schemes for the 
exchange-correlation functional evaluation as needed for the DFT.  
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AO-based treatment [4,5] allows for linear-scaling wave-function optimization, molecular gradients and various 
response-function calculations. As a result, LSDALTON provides better efficiency over the traditional 
DALTON code on large molecular systems suitable for large-scale parallel simulations. 

In this work, we aim at examining the performance of the linear-scaling DFT method in the LSDALTON code in 
order to enable the simulation of large biological molecules. Both OpenMP and MPI parallelism were introduced 
to LSDALTON through the prior PRACE work [6], and the scalability was benchmarked on selected small 
problem sets. In this paper, we make an intensive investigation on the code performance at various MPI sizes 
and for different molecules. We primarily focus on finding obstacles associated with the density-fitting (DF) and 
the auxiliary-density-matrix method (ADMM), because these two approximations are essential for achieving 
highly efficient computations of large biological molecules in Tier-0 scale. 

The present paper is structured as follows. The DFT method and associated schemes are introduced in Section 2. 
The performance of the LSDALTON code in biological molecular simulations is presented in Section 3. In this 
section, we address the enabling work to overcome the memory-related errors and provide the parallel 
performance of the DFT code with regular, DF, and ADMM schemes. A short summary and the future work 
follow in the last section. 

 

2. DFT Method in LSDALTON Code 
The DFT is the most popular computational-chemistry method. The success of the DFT stems from the fact that 
it gives the best compromise between accuracy and computational effort. However, applying the DFT to large 
molecular systems is challenging and requires efficient parallelization in order to accomplish this goal. A 
detailed description of the DFT and its implementation is beyond the scope of the paper. However, focusing on 
the computational aspects, a standard DFT calculation can be characterized as an iterative scheme. Each step in 
this iterative procedure requires the construction of an AO-based Kohn-Sham matrix and the construction of a 
new AO density matrix (or a corresponding set of MOs). The construction of a Kohn-Sham matrix requires the 
calculation of AO integrals while the construction of a new density matrix can be cast in terms of linear algebra 
routines. 

The DF is a method to approximate the electron-repulsion integrals. In effect, the expensive four-center two-
electron integrals are replaced by the evaluation of two- and three-center two-electron integrals and the solution 
of a set of linear equations. The resulting speed-up can be substantial, typically one to two orders of magnitude. 
However, the price for the reduced cost is an increased memory usage, since the so-called metric matrix (the 
two-center two-electron integral matrix in the larger auxiliary basis set which is used to approximate the electron 
density) is typically 9-15 times larger than the conventional Kohn-Sham and density matrices. 

The ADMM [7] is a method to approximate the expensive exact Hartree-Fock exchange contribution to the 
hybrid DFT calculations. The basic idea of the ADMM is to calculate the exact Hartree-Fock exchange 
contribution in a reduced basis set, using an auxiliary density matrix that is smaller in size. The assumption 
behind the approximation is that the difference in the exchange energy between the primary and auxiliary density 
matrices is well captured by a GGA functional. The ADMM scheme should therefore have roughly the same 
memory consumption as the regular calculation. The ADMM and the DF schemes can be combined so that the 
DF is used to approximate the Coulomb contribution to the Kohn-Sham matrix and the ADMM is used to 
approximate the exact exchange contribution to the Kohn-Sham matrix.  

The parallelization of the Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra PACKage 
(LAPACK) routines was done by linking to the parallel-distributed libraries Parallel BLAS (PBLAS) and 
Scalable LAPACK (ScaLAPACK) [8]. The parallelization of the integrals was done using method-specific 
MPI/OpenMP schemes [6] and good scalability was demonstrated for up to 2048 cores using pure DFT 
calculations. However, looking at the strong scaling, the efficiency is determined by the LSTENSOR Fortran 
derived type. The LSTENSOR structure was used to store all data inside the integral driver. A general integral 
code uses a variety of input and output arrays, like the two-dimensional AO density matrix, the four-dimensional 
two-electron integrals, the five-dimensional differentiated two-electron integrals, the two- and three-dimensional 
DF integrals, etc. LSTENSOR was therefore constructed to be a common structure that could contain all the data 
needed for input and output handling. However, a large percentage of the time was spent in setting up the 
LSTENSOR structure, transforming data from the memory-distributed format used by ScaLAPACK to the 
LSTENSOR structure and back, and accessing the data in the LSTENSOR structure within the integral code. 
The LSTENSOR limitations on scalability was found to be exaggerated when using the DF techniques and the 
ADMM, and the initial benchmark results of this project therefore revealed the need to abandon the LSTENSOR 
structure in favor of simple Fortran array structures. 
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3. Biomolecular Simulations with LSDALTON 

A. Computing Resources 
The CURIE [9] supercomputer is one of PRACE (Partnership for Advanced Computing in Europe [10]) Tier-0 
resources. It is an x86-64 cluster system that holds in total 80640 CPU cores on the thin node partition. Each 
node contains two eight-core Intel Sandy Bridge processors and has 64 GB RAM capacity. The system operates 
on bullx Linux Server 6.1 whose kernel version is 2.6.32. Relatively long-running and large memory-requested 
Insulin simulations were run on this system. 

Another x86-64 supercomputer, named Triolith [11], was also used for performance evaluation of valinomycin 
and titin simulations. This supercomputer serves as one of the national SNIC (Swedish National Infrastructure 
for Computing [12]) systems. This system is quite similar to CURIE in terms of both hardware specifications 
and software stack. The total of 1600 HP SL230s compute nodes are in service, each of which is equipped with 
two eight-core Intel E5-2660 (2.2 GHz Sandy Bridge) processors. The operating system is CentOS 6.5 whose 
kernel version is 2.6.32. A noticeable difference from CURIE lies in the RAM capacity per node. Each node of 
Triolith contains 32 GB RAM, which is half the size of each CURIE standard node. This prevented us from 
running the Insulin simulation which uses ~60 GB RAM on the DF calculations. 

 

B. Verification of the Density Fitting Scheme on the Valinomycin Molecule 
LSDALTON was used to obtain the DFT density and energy for the valinomycin molecule. Valinomycin is an 
antibiotic that consists of 168 atoms; composed of H (hydrogen), C (carbon), O (oxygen) and N (nitrogen). We 
used the cc-pVDZb

[13

 basis set, giving a total amount of 1542 basis functions. For the DF calculation, we used the 
df-def2 fitting basis set, giving a total of 7518 auxiliary basis functions. For the ADMM calculation, we applied 
the 6-31G basis, which gives 882 basis functions for the smaller basis. The hybrid functional B3LYP ,14] 
was used throughout, which combines Becke’s formulation for the exchange part [15], Lee, Yang and Parr’s 
formulation for the correlation part [16] and 20% HF-type exchange.  

Four different sets of simulations were performed to study the performance of LSDALTON’s DFT simulation: 
pure MPI and hybrid MPI+OpenMP calculations each using ScaLAPACK/PBLAS or LAPACK/BLAS 
mathematical libraries. The memory requirement per an MPI rank was a little larger than 2 GB, which exceeded 
the memory-per-core of the Triolith compute node. Thus, only half of the CPU cores were used so as to secure 
the extra amount of memory in the case of a pure MPI run, whereas the entire CPU cores in a node could be used 
in the case of a hybrid simulation. The memory consumption for storing the metric matrix for the DF scheme 
was close to 0.5 GB. 

Total execution times for pure MPI and hybrid simulations are presented in Fig. 1 and Fig. 2. Scalability of the 
DFT code is experimented over three different numerical configurations: regular (non-DF), DF, and DF 
combined with ADMM calculations. In these figures, the gray solid line denotes the ideal scalability. Both x- 
and y-axes are presented in logarithmic scales. All experiments are run from 1 to 32 Triolith compute nodes. 

Figure 1 presents the performance of the pure MPI simulation. The DFT simulation iterates until the 
convergence is reached. In the valinomycin simulation, the Self-Consistent Field (SCF) energy-optimization 
procedure converges after 17 iterations, regardless of the level of approximation. The DF-ADMM DFT 
calculation takes the shortest execution time and the DF DFT calculation is the next. This is since the DF-
ADMM calculation simplifies the Hartree-Fock exchange calculation on top of the DF formulation. The DF DFT 
and the regular DFT runs scale similarly and they are highly scalable. The DFT run with the DF-ADMM scheme 
somewhat scales worse than the other two simulations. When using the ScaLAPACK/PBLAS library for matrix 
operations, the scalability is much better than using the LAPACK/BLAS library. 

Figure 2 presents the performance of the hybrid simulation. The graph shows the similar pattern as the result of 
the pure MPI simulation. The DF-ADMM DFT calculation converges fastest, followed by the DF DFT 
calculation. In similar to the MPI simulations, the DF DFT and the regular DFT runs show the similar scalability 
and they scale better than the DF-ADMM DFT calculation. Additionally, the use of the ScaLAPACK/PBLAS 
libraries contributes to improving scalability, especially as the number of cores increases. The scalability 
suddenly becomes far worse at 512 (64 MPI ranks × 8 threads) cores, presumably because of the small problem 
size. In most cases, the hybrid simulation executes faster than the pure MPI task that runs at the same number of 

 

b correlation-consistent polarized valence-only basis sets with double-zeta, first proposed by Dunning 
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nodes, because half of the CPU cores are sacrificed in pure MPI simulations due to the large memory 
consumption. The pure MPI simulation runs faster than the hybrid counterpart in the case of the DF-ADMM 
DFT simulation with the ScaLAPACK/PBLAS on 32 nodes. 

 

Figure 1 Execution Time for the MPI Simulation of a Valinomycin Molecule. Gray solid lines denote the ideal condition. 

 

 

Figure 2 Execution Time for the Hybrid (MPI+OpenMP) Simulation of a Valinomycin. 

From the valinomycin simulation, we can draw the following conclusions. 

- The DF-ADMM computation saves a significant computation time. On the other hand, it has the poorer 
scalability over other two methodologies. 

- The use of the ScaLAPACK/PBLAS library is essential in terms of scalability and performance. 

- The hybrid simulation is preferred to the pure MPI simulation, since a number of CPU cores are 
sacrificed in MPI simulations due to a large memory requirement in DF simulations. 

 



5 

 

C. Enabling Large Biomolecular Simulations within LSDALTON 
Enabling a TRUE 64-bit integer binary is not at all straightforward. Utilized libraries do have their own 
limitation and finding a working composition is a laborious task. 

With regard to the MPI library, OpenMPI was one of the software that supports the communication of large 
datasets over 2 GB.c

Issues with MPI Library

 System-supplied commercial libraries were first experimented because they encapsulate 
several configurations in the single package and users can easily link the right library by simply adding proper 
compilation options. However, in the case of Intel MPI, it fails to perform the message passing arrays larger than 
2 GB since the message size parameter is fixed as 32-bit integer. Bullxmpi installations on the CURIE 
supercomputer were defining Fortran integers as 32-bit, thus naturally leading to failure in handling large size 
arrays. Open-source OpenMPI library fully supports message passing of large datasets if it is installed with 64-
bit integer representation, though more care is needed in compiling user’s code (i.e., matching the compiler with 
its version, datatype declaration). More detail is described in Appendix A: . 

The linear algebra library that takes care of matrix operation also raised the confusion. Both LSDALTON’s 
built-in matrix operator and Intel MKL’s LAPACK/BLAS interface were stable regardless of the matrix size. On 
the other hand, MKL’s ScaLAPACK/PBLAS library with 64-bit interface did not work as desired: it worked 
successfully in the valinomycin simulation which handles the array within 32-bit integer range, while a memory 
error takes place in titin/insulin simulations which create large matrices over 2GB in size. Detailed description is 
provided in Appendix B: 64-bit Math Libraries. 

Therefore, the compilation environment that performed best is as follows: 

- Intel compiler, version 14.0.2 (Intel Composer XE 2013 SP1 Update2) 

- OpenMPI, version 1.6.5 

- Intel MKL’s LAPACK/BLAS 64-Bit Interface, version 11.1.2 (Intel Composer XE 2013 SP1 Update2) 

 

D. Titin and Insulin Simulations using DFT Method 
The DFT performance of LSDALTON was thoroughly investigated for large biological molecules of titin and 
insulin. A titin consists of 392 H, C, O, N, or S (sulphur) atoms. Used regular basis set was the 6-31G* typed

Since the requested amount of memory was larger than the memory-per-core of the available computing 
resources, we only conducted hybrid simulations. The number of threads was set to 8 for the titin simulation, 
which assigned one MPI rank per each Sandy Bridge processor. In the case of the insulin calculation, the single 
MPI rank consumed almost all RAM memory of the node. Thus, only one MPI rank was launched per a node in 
a threaded mode using all 16 cores. We used the MKL LAPACK/BLAS library for matrix operations due to the 
noted issue in a ScaLAPACK/PBLAS implementation. 

 and 
a total of regular basis functions is 3196. The auxiliary basis set was the df-def2 type and has 18761 functions. 
The 3-21G basis set with 2196 basis functions was also utilized for the ADMM computation. An insulin is 
composed of 787 H, C, O, N, or S atoms. The cc-pVDZ regular basis set with 7604 functions and the df-def2 
auxiliary basis set consisting of 37853 basis functions were used. The STO-3G and the 6-31G bases are used as 
complimentary auxiliary basis function and JK auxiliary basis function, respectively. The STO-3G basis holds 
2431 functions and the 6-31G consists of 4433 basis functions. In both titin and insulin simulations, the B3LYP 
hybrid functional was applied. 

Figures 3 to 6 represent the performance for the titin simulation for three different configurations. The code 
continued running until convergence and the number of SCF iterations were mostly the same among different 
configurations (DFT calculations with the DF and the DF-ADMM converged after 21 iterations and the regular 
DFT calculation converged after 20 iterations). The simulations were launched over 4 to 256 MPI ranks, each 
holding 8 threads. 

Computation time per one SCF iteration of DFT calculation is plotted in Fig. 3. A DFT simulation with the DF-
ADMM shows the best performance at small MPI sizes and the run with the DF performs best at 1000+ (128 

 

c More precisely, the “allocatable” array on the heap memory space fails to communicate if the size exceeds 32-bit representation (231 bit). 
There exists a controversy that the message passing is successful in case the static array is defined, though no strong verification was 
performed: http://stackoverflow.com/questions/13211990/mpi-send-error-with-derived-data-type-fortran. 
d A valence double-zeta polarized basis set that adds to the 6-31G set six d-type Cartesian-Gaussian polarization functions on each of the 
atoms Li through Ca and ten f-type Cartesian Gaussian polarization functions on each of the atoms Sc through Zn. 
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ranks × 8 threads and 256 ranks × 8 threads) cores. In terms of scalability, the DF DFT and regular DFT runs 
show a very similar pattern, while the DF-ADMM DFT calculation scales worse than them. As the number of 
CPU cores increase to 1000, the performance of all simulations reaches a saturation plateau and the computation 
time increases at 2048 CPU cores. In DF-ADMM DFT runs, the extra communication cost overtakes the 
computational gain at 256+ CPU cores. It means that the ADMM implementation in the LSDALTON code is not 
well tuned for large number of CPU cores. Nevertheless, the DF-ADMM case at 32 × 8 cores takes the shortest 
time out of all DFT simulations. This proves that the DF-ADMM scheme is very powerful in reducing 
computational cost. 

 

Figure 3 Elapsed Time per One SFT Iteration for the Hybrid Simulation of a Titin Molecule (Time at the 2nd Iteration). 

To investigate the parallel performance in detail, we compare the computation time for Kohn-Sham matrix 
construction, including Coulomb, Exchange and Exchange-Correlation contributions. All other parts of the code 
in the SCF iteration run serially and are independent of the matrix design. From Fig. 4 we observe that the DF 
DFT and the regular DFT runs have good scalability up to 32 × 8 CPU cores. The scalability with the DF-
ADMM is worse than other schemes and the performance reaches a saturation plateau at 32 × 8 CPU cores. 
Compared to the regular simulation, the DF DFT computation saves about 30% of computation time in the case 
of 32 × 8 cores and the percentage increases for smaller MPI sizes. Computation time is the shortest for the DF-
ADMM DFT calculation with 32 × 8 cores, where elapsed time is 37.44 seconds. For the DF DFT simulation, 
the shortest computation time is monitored at 64 × 8 cores with 43.74 seconds. The regular run also shows the 
best performance at the same number of cores, taking 56.17 seconds. 

 

Figure 4 Elapsed Time for the Single Kohn-Sham Matrix Construction for the Hybrid Simulation of a Titin Molecule (Time at the 2nd 
Iteration). 
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Figure 5 shows the computational overhead from non-iterative routines. This overhead is measured by 
subtracting the SCF iteration time from the total DFT execution time. It includes an initial creation of matrices 
(density matrix components, an auxiliary fit, the ADMM construct, etc) and the global tensor data structure, as 
well as other general components such as I/O and the initialization. The initial tensor size for the DF simulation 
becomes much larger than that for the regular computation since it has to store extra components related with the 
auxiliary basis set. This results in a longer time for creating the tensor structure and broadcasting the entire 
structure by the master rank. An extra cost for the ADMM simulation is mostly due to the time for producing the 
exchange-matrix contribution, which is around 1 minute independent of MPI sizes. The overhead tends to 
increase as the MPI size increases, because many routines at the initial and final stages are serially executed in a 
master rank and the product is broadcasted to all other MPI ranks. The overhead is larger and grows faster for the 
DF/DF-ADMM DFT simulations due to broadcasting a large tensor structure. 

 

Figure 5 Extra Overhead for the Hybrid Simulation of a Titin. 

The total execution time until convergence is presented in Fig. 6. Much of the gain of the DF and the DF-
ADMM methods in SCF iterations is largely cancelled out by the initial overhead for the matrix creation and the 
tensor generation. Still, the DF-ADMM DFT simulation at 32 × 8 cores shows the best performance out of all 
experiments. 

 

Figure 6 Total Execution Time for the Titin Molecule Simulation. 
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Figures 7--9 represent the performance for the insulin simulation for three different configurations. Because the 
insulin simulation takes essentially longer time than that of titin, the code is set to run only 2 iterations. 
Simulations are launched over 8 to 256 MPI ranks, each holding 16 threads. 

Figures 7 and 8 present the DFT computation time per the single SCF iteration and the Kohn-Sham matrix 
construction. The DF-ADMM DFT calculation shows the best performance over an entire range except 4096 
(256 rank × 16 threads) cores. The scalability is quite similar to the case of titin, where the DF DFT and regular 
DFT runs showed a very similar pattern and the calculation with the DF-ADMM was poorer. Looking at the 
scalability of Kohn-Sham matrix construction graph, DF DFT and regular DFT runs up to 64 × 16 cores are 
highly scalable while these runs at 2000+ cores and all DF-ADMM DFT runs are far from scalable. In view of 
the execution time, the DF-ADMM DFT run at 32 × 16 cores provides the lowest computation time with 3.07 
minutes for Kohn-Sham matrix construction. The DF DFT calculation shows the best result of 5.42 minutes at 
64 × 16 cores and the regular run was the fastest at 128 × 16 cores by 8.13 minutes. 

As the problem size increases, so increases the computation time per iteration. This implies that the amount of 
saved computation time by the DF or the DF-ADMM approach accordingly increases in comparison to the 
computation cost in the regular calculation. Moreover, a higher reduction rate of Kohn-Sham matrix construction 
time is observed in the insulin simulation than the titin simulation. We monitored that the DFT calculation with 
the DF saved about 30% of the computation time in the case of 32 × 8 cores of the titin calculation: it saves 56% 
in comparison to a regular DFT simulation (6.90 minutes with the DF scheme and 15.67 minutes with the regular 
run) at 32 × 16 cores. Indeed, the computation cost is further saved by applying the ADMM approximation. This 
result expresses that the DF and the DF-ADMM methods are more powerful for the simulation of a large 
molecular structure in terms of the number of atoms and basis functions, in the condition that the memory 
requirement does not exceed the hardware capacity. 

 

Figure 7 Elapsed Time per One SCF Iteration for the Hybrid Simulation of an Insulin Molecule. 
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Figure 8 Elapsed Time in Kohn-Sham Matrix Construction for the Hybrid Simulation of an Insulin Molecule (Time at the 2nd Iteration). 

The extra overhead in the insulin simulation is reported in Fig. 9. Like the titin simulation, the cost increases as 
we apply the DF and the ADMM methods. Comparing between the regular DFT and the DF-ADMM DFT cases, 
the DF-ADMM DFT calculation takes 10 minutes longer at 8 × 16 cores, which grows to be 51 minutes at 256 × 
16 cores. In the case of 1024 (64 × 16) cores which looks to be a reasonable MPI size for the insulin simulation, 
the DF-ADMM DFT calculation saves 6.15 minutes per an SCF iteration (10.35 minutes taken in the DF-
ADMM DFT run and 16.50 minutes in the regular DFT run). The extra cost for the initiation is 18.04 minutes 
(22.32 minutes in the DF-ADMM DFT run and 4.28 minutes in the regular DFT run). It means that the DFT run 
with the DF-ADMM schemes will be more efficient than the regular DFT calculation, if the total number of 
iteration until convergence is more than 4. We argue that the extra cost for initialization is acceptable 
considering the high gain from applying the DF and the DF-ADMM schemes. 

 

Figure 9 Extra Overhead for Hybrid Simulation of Insulin. 

Finally, the amount of allocated RAM memory is presented in Table 1. As seen, the DF computation requires 
much larger memory allocation than the regular calculation and the size of the allocated array is almost 
independent of the MPI sizes. Therefore, it is unfortunately very hard to apply the DF scheme to larger 
biomolecular simulations before the matrix and the tensor data structures are reformulated. The DF-ADMM 
computation allocates the same memory as the DF method. 
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Table 1 Memory Consumptions in Hybrid Simulations with 64 MPI Ranks. Number of threads are 8 in valinomycin and titin simulations, 
and 16 threads used for insulin simulations. 

  

Density Fitting Regular (Non-DF) 

Total Matrix Tensor Total Matrix Tensor 

Valinomycin 2.46 GB 1.38 GB 530 MB 851 MB 742 MB 148 MB 

Titin 16.04 GB 7.68 GB 3.26 GB 3.73 GB 3.19 GB 734 MB 

Insulin 62.32 GB 28.94 GB 13.23 GB 13.69 GB 13.41 GB 2.49 GB 

 

4. Discussion and Conclusion 
In this work, we evaluated the DFT performance of LSDALTON for the simulation of large biological molecules. 
Primary effort was put towards enabling the DF scheme and the ADMM approximation on top of the DFT 
method, which contributes much to the performance improvement without harming the convergence of the code. 

Initial investigations revealed that the large memory allocation accompanies the usage of the DF scheme of the 
LSDALTON code, due to the necessity of storing extra matrix components. We tried to solve the memory-
related issue by addressing a right composition of the build environment. It was struggling to find MPI and linear 
algebra libraries who truly support 64-bit integer capability. After investigation of different MPI libraries, we 
found that OpenMPI was such a library, providing the large message passing over 2 GB. Some LAPACK/BLAS 
routines are found to capacitate the matrix operation over 2 GB in size, such as Intel MKL and OpenBLAS. Yet, 
no ScaLAPACK library was found to handle large matrix sizes successfully, without labouring intensive 
changes to the ScaLAPACK source code. So, OpenMPI and Intel MKL's LAPACK/BLAS interface are selected 
to be used in conjunction with Intel compiler, to build a truly 64-bit integer-based binary. 

We evaluated the performances of the DF scheme and the ADMM approximation by simulating three biological 
molecular structures of valinomycin, titin and insulin. Notable performance improvements are observed with the 
DF and the ADMM methods, without noticeable degradation of the convergence criteria. In all three cases, the 
runtime for the single SCF iteration of the DFT calculation was shorter with the DF scheme and the code 
accelerated further with the ADMM approximation. In the case of the insulin simulation, the parallel region of 
the code accelerates by 30 percent with the DF method and 56 percent with the DF-ADMM methods. 

With the DF scheme, the scalability pattern remains almost the same as the regular DFT run in small number of 
cores (less than 1K cores) and the performance with the DF scheme is still better than the regular DFT run 
despite of a slight loss in scalability at more than 1K cores. We argue that the DF implementation is highly 
beneficial for most production runs of moderate molecular sizes. With the ADMM approximation on top of the 
DF scheme, we can normally expect further performance gain at small number of processors. On the other hand, 
the scalability becomes much poorer with the ADMM scheme: the DFT code does not scale any further at larger 
than 256 or 512 cores, depending on the size of molecules. The ADMM approach could be recommended if the 
number of utilized cores remain within this range. At the same time, further investigation is necessary to improve 
scalability of the ADMM implementation. 

The memory requirement of the DF implementation within LSDALTON code is a bottleneck in applying this 
method to large molecular simulations. The size of allocated memory was around 60 GB per an MPI rank in the 
case of insulin simulation. Remembering that the DF calculation does not scale any further at more than 2K CPU 
cores, the use of more than 2K parallel cores is not meaningful on general-purpose cluster systems. Instead, the 
regular DFT implementation can be applied to the simulation of molecules larger than insulin. 

The DF and the ADMM implementations introduce extra overheads in the non-iterative part of the code. It is 
natural since these schemes allocate extra matrix components for an auxiliary basis set and the resultant cost for 
broadcasting increases. Yet, the amount of overhead could be reduced by redesigning the internal tensor 
structure to a lighter fashion. A new tensor design is expected to be released with a future LSDALTON code. 

The valinomycin simulation demonstrates that scalability is improved by using a ScaLAPACK/PBLAS library. 
However, ScaLAPACK/PBLAS libraries up to now fail to allocate large arrays over 32-bit integer range. Since 
it is not at all trivial to change the ScaLAPACK source code personally, we shall sustain with the 
LAPACK/BLAS library or lighten the matrix structure of LSDALTON. 

Overall, the DF and the ADMM schemes proved to contribute much on increasing the performance of the code. 
Further changes to reduce the memory consumption and improve the scalability of the ADMM scheme will 
enable the simulation of larger molecular systems than the current experiments. 
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Appendix. Building a Binary with TRUE 64-bit Integer Support 

 
A. Issues with MPI Library 

Compiler technologies are highly advanced that users can easily select the byte representation of datatypes in 
their serial codes by adding proper compilation flags. On the other hand, compiling MPI-parallelized code 
sometimes leads to confusion, since MPI library itself is a series of compiled objects under a specific 
configuration. Situation is more favourable in the case of using commercial MPI libraries (e.g., Intel MPI). They 
usually encapsulate a series of different configurations under the single package and load the right solution 
(library and environmental parameters) based on a user’s compilation option. On the other hand, open-source 
MPI libraries (e.g., OpenMPI, MVAPICH) frequently build the single set of libraries suited for the 
environmental configuration at time of library installation. It results that the code fails to compile or the binary 
fails to run if the configuration changes after the library was built. Thus, more care is needed to make use of 
open-source libraries. 

Intel MPI (on Triolith at NSC) was first exploited to compile LSDALTON code with 64-bit integer 
representation. It is simple to compile with 64-bit integer formulation through Intel MPI: 

- Replace “use mpi” to “include ‘mpif.h’” from source code. “use mpi” loads a pre-built MPI module file 
which is based on 32-bit integer specification. 

- Add “-ilp64” flag at time of compilation. Alternatively, this flag can be addressed as the global option 
at time of launching MPI task, i.e., “mpirun –ilp64 …”. 

We confirmed that the right library (64-bit interface) had been linked. However, the binary still crashed in the 
middle of execution. The error message was as follows. 

Assertion failed in file ../../i_rtc_cache.c at line 631: buf_end_palign > buf_start_palign 

According to online discussione

Bull-supported MPI on CURIE was also examined to figure out whether it supports the 64-bit integer interface. 
Since bullxmpi is developed on top of OpenMPI, this library borrows most commands from OpenMPI. The 
default integer size in Fortran interface is easily detected by running a following command. 

, the current limitation of message passing size is 2 GB due to the fact that type 
'int' is used by the MPI standard to designate a message size parameter. It expresses that Intel MPI is not a 
perfect 64-bit integer provider. 

$ ompi_info -a | grep "Fort integer size" 

On all bullxmpi installation on CURIE, returned value is 4 byte. Therefore, bullxmpi also fails to create a TRUE 
64-bit integer binary for creating and exchanging large arrays.  

Personal installation of OpenMPI is the only solution for an end-user. OpenMPI 1.7.5 and 1.6.5 f

./configure --prefix=$USERS_OWN_PATH --with-slurm --enable-mca-no-build=btl-tcp  
CC=icc CXX=icpc FC=ifort F77=ifort F90=ifort FFLAGS=-i8 FCFLAGS=-i8 

 were 
experimented. Intel compiler serves as the baseline compiler for MPI library. The installation command is as 
follows: 

make; make install 

Since intra-node communication on CURIE is conducted through direct memory access, OpenMPI’s default 
reference to KNEM service (intra-node MPI communication kernel module) shall be disabled. That could be 
handled by turning off the service in user’s environmental configurationg or at runtimeh

 

. 

 

e https://software.intel.com/en-us/forums/topic/361060 
f Version 1.6.5 was added for experimentation since scalasca 1.X profiling tool explicitly links to mpi_f77 and mpi_f90 libraries whereas 
they are deprecated from OpenMPI version 1.7 (Instead these two libraries are merged into mpi_mpifh). 
g export OMPI_MCA_btl_sm_use_knem=0; export OMPI_MCA_btl_openib_pkey=0x8090; 
export OMPI_MCA_btl_openib_ib_service_level=5; export OMPI_MCA_btl_base_exclude=tcp; 
export OMPI_MCA_btl_openib_warn_default_gid_prefix=0 
h mpirun "--mca btl_sm_use_knem 0" … 
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B. 64-bit Math Libraries 
LSDALTON associates lots of matrix operations for the SCF energy optimization. Matrix size grows much 
bigger at the DF scheme than the typical DFT calculations since the number of auxiliary basis function which is 
used on the DF calculations is far larger than the regular Gaussian basis function on typical DFT computations. 
Matrix size easily exceeds 2GB in our experiments on titin and insulin simulations, thus 64-bit integer 
representation is necessary to solve these molecules. 

There exist 3 different ways to conduct matrix operations at LSDALTON code: the call to external 
ScaLAPACK, the link to sequential/threaded LAPACK and BLAS, and the use of built-in matrix operation 
functions. As long as they operate as desired, the best choice would be the use of ScaLAPACK since it supports 
the parallel distributed operation. 

Intel MKL math library was linked to exploit ScaLAPACK features. However, the code crashed in a call to 
PDGEMR2D routine, which provides a copy from any block cyclically distributed (sub)matrix to any other 
block cyclically distributed (sub)matrix, with the following error message: 

xxmr2d: out of memory 

From online discussioni we find that this error is associated with large matrix array creation which exceeds 2GB 
in size. Intel argues that this error was resolved at MKL version 10.3j but the problem still persists in both MKL 
10.3.10 and 11.1.2. We rather decided to make our own installation of open-source ScaLAPACK libraryk after 
applying recommended changes on REDIST/SRC/pgemraux.c.l

Open-source ScaLAPACK requests BLAS and LAPACK libraries as prerequisite. So we first installed 
OpenBLAS

 

m

In summary, we could confirm that 64-bit array creation is fully supported in MKL’s LAPACK and BLAS 
routines. On the other hand, the 64-bit interface implementation in ScaLAPACK is suspicious. Out of 
simulations with 64-bit interface, valinomycin was the only successful case which handles less than 1GB matrix. 
Simulations failed in titin and insulin cases, both of which creates matrix over 2GB. 

 as the BLAS/LAPACK library, which is verified to fully provide 64-bit integer support. However, 
64-bit integer ScaLAPACK installation failed to pass its own testsuite, reporting the malfunction in incorporated 
BLACS (Basic Linear Algebra Communication Subprograms) library. We later linked MKL’s OpenMPI 
BLACS and skipped BLACS installation from ScaLAPACK, but the error persisted. The final decision was 
made to utilize the sequential/threaded LAPACK and BLAS from Intel’s MKL, which successfully worked at 
any matrix sizes. 

 

i https://software.intel.com/en-us/forums/topic/509048; 
https://software.intel.com/en-us/forums/topic/286499 

j https://software.intel.com/en-us/articles/intel-mkl-103-bug-fixes, 
DPD200199131  PDGEMR2D: out of memory error even when using 64-bit libraries 
k http://www.netlib.org/scalapack/ 
l https://icl.cs.utk.edu/lapack-forum/viewtopic.php?t=465 
m http://www.openblas.net/ 
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