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Abstract 

The size of data that can be fitted with a statistical model becomes restrictive when accounting for hidden 
dynamical effects, but approximations can be computed using loosely coupled computations mainly limited by 
computational throughput. This whitepaper describes scalability results attained by implementing one 
approximate approach using accelerator technology identified in the PRACE deliverable D7.2.1 [1], with the aim 
of adapting the technique to future exascale platforms. 

Introduction	
A challenging problem in neural computational research is that of estimating structures of neural networks which 
are hidden from the limited experimental data that can be acquired from, for example, neural recordings. This 
whitepaper investigates the potential for improving the parallelisation of a sample application that implements an 
approximate expectation-maximization method [2] to inferring the network structure and time varying states of a 
hidden population within the framework of the kinetic Ising model. The kinetic Ising model is a tool developed 
in statistical physics which has been recently brought forward as an efficient method for the analysis of non-
equilibrium systems [3]. The size of networks that can yield informative results can be made arbitrarily large, 
and the long-running computational demand is highly localised, making the application a strong candidate for 
exascale computations. We describe a proof-of-concept implementation that adapts a sample application code to 
use OpenMP on the Intel Xeon Phi accelerator architecture. Accelerator-enabled platforms are currently at the 
forefront of massively parallel computations at the petascale, and can be expected to remain key technologies as 
supercomputers address exascale challenges: both were identified as candidate exascale technologies in the 
PRACE deliverable D7.2.1[1]. 

Sample	Case	Characteristics	
This section describes a case study of an example application written in Python, and the adaptations made to 
enable it to use accelerator units. It begins with a description of the test platform, before it describes results from 
a preliminary profiling of its behaviour, and finally describes how it was translated to an implementation that 
shows favourable strong scaling characteristics both on a Xeon Phi accelerator unit and a general processor. 
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Test Platform 
Development and experiments were conducted on a 6-core i7 workstation featuring a Xeon Phi card, with the 
technical specifications shown in Table 1. 

Table 1: Test system configuration 
Host CPU 6-core i7-4930K, 3.4 GHz clock speed 
RAM 2x8GB, 1.6GHz bus speed 
Motherboard ASUS P9X79 WS, Socket-2011, PCIexpress 3.0 x16 
Accelerator unit 57-core Intel Xeon Phi 3120A, 

6GB onboard memory, 28.5MB cache 
 
A Python 2.7.3  interpreter was configured with NumPy 1.7.0 and SciPy 0.12.0c1, compiled using the Intel 
compiler toolchain 14.0.1 using its MKL libraries[5] to satisfy BLAS and LAPACK dependencies. The same 
compiler version was used to compile all C sources, targeting both the host CPU and Xeon Phi architectures. 
 
Structure of the Example Application 
As a starting point for this study, a small, representative application program was written in Python, and a 
sample data set was generated for validation purposes. This implementation utilises the NumPy and SciPy 
packages for data format handling, programmability, and low-level linear algebra routines. 

The high-level structure of the computation is a sequence of iterations which produces a series of single scalars 
reduced from a large working matrix, which was sized to a PxT matrix, with P=22 and T=199986 derived from a 
33MB data set in the sample case. It is summarized in Figure 1. 

 

 

 

 

Figure 1: High-level structure of the computation 

 

The reduction step contains negligible data movement and cost compared to the convergence of the inner 
iteration to convergence, which can be performed for several iterations after a single transfer of the input data, to 
place it in an accelerator unit’s memory. This suggested the inner loop as a viable target for optimization. 

The iterative refinement process consists of a sequence of element-wise operations and dot products applying a 
small set of PxP and PxM masks also derived from the input data, with M=3 in the sample data, as well as some 
intermediate results derived from μ. 

Preliminary Profiling 
The initial Python version suggested that integrating parallelized BLAS and LAPACK routines may be a viable 
method of parallelization, and the customized Python interpreter was used to investigate this. An initial profile of 
the sample application was obtained using the callgrind module of the valgrind run-time profiling framework 
[6], running on the host CPU, and a visualization of the distribution of run time for 10 converged iterations is 
show in Figure 2,  which was produced using the tool kcachegrind [7]. 

For each iteration: 

1. Initialize a matrix μ from a window of the input data 

2. Iteratively refine μ matrix to convergence 

3. Reduce single scalar from converged μ matrix 
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Figure 2: Visualization of run time for 10 iterations 

As can be seen in Figure 2, this initial profile indicates that the fraction of time spent in MKL subroutines 
amounts to some 36.91%, all due to use of the ddot function. With this as the only source of parallelism in the 
program, adjusting the execution environment to admit higher thread counts gave no measurable benefit, and 
only a single core was utilised. This can partly be explained by the limited size of the sample data set, but 
regardless of this consideration, Amdahl’s Law suggests that unless larger problem sizes result in dot products 
constituting a significantly larger fraction of the total work, parallel speedup will be bounded by a number of 
cores far smaller than the available number on future exascale architectures. As production use with larger data 
sizes has been reported to achieve peak speedup between 2 and 4 cores, an alternative to the library-based 
parallelisation was deemed necessary. 

Adaptation to OpenMP 
Examination of the source program’s inner iteration to convergence showed that it consists entirely of operations 
which can be written as doubly or triply nested loops that are amenable to parallelization. Figures 3 and 4 show 
an example of an element-wise operation in Python, and a corresponding implementation in C. 
 
 
 

Figure 3: Combination of element-wise operations in a Python expression 
 

 
 
 

 
 
 
 

Figure 4: C implementation corresponding to the expression in Figure 3 
 

The indexing of matrices DTB, tanhB and the SQUARE operation were all encapsulated in parametric macros, 
in order to admit experiments with different memory layouts and implementations of exponentiation. Rewriting 
each operation in the convergence iteration of the original program produced a sequence of which could be 
subjected to manual implementation of loop fusion[8]  where matrix sizes were identical. Manual strength 
reduction [8] was also found to be effective, in the form of implementing the SQUARE operation as a 
multiplication operator, rather than a call to the standard library exponentiation routine. After fusion and 
optimizations, the implementation consisted of four triply nested loops, five doubly nested loops, and two linear 
array assignments, all of which were subject to parallelization with OpenMP[9]. A row-major layout of the 
matrices combined with parallelization of the outer loop was found to give the greatest benefit in terms of 
execution time, and the compiler identified vectorizations of the inner loops. Apart from straightforward 

DTB = 1.0 – tanhB ** 2 

#pragma omp parallel for 

for ( size_t t=0; t<TS; t++ ) 

    for ( int8_t y=0; y<M; y++ ) 

        DTB(y,t) = 1.0 – SQUARE(TANHB(y,t)); 
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floating-point arithmetic, two of the inner loops involve hyperbolic tangents, which was implemented as a 
standard library call because it is non-trivial to implement explicitly. 
 
All intermediate numerical results of this inner loop were validated to be identical with the values produced by 
the Python version, and convergence was established with the same values, in an identical number of iterations. 
To account for the altered overheads of switching implementation languages, execution was timed to 
convergence of the inner loop for the first iteration of the sample problem, which gave a factor 10.6 speedup 
without parallel execution. The performance of this C translation will henceforth be used as a baseline for further 
comparisons. 

Performance	Results	
Tests were conducted on both the 6-core CPU of the host system, and native mode execution on its 57core Xeon 
Phi coprocessor. Figure 5 shows parallel speedups in strong scaling mode, using the sample problem. 
 

 
Figure 5: Parallel speedup of sample problem on Xeon Phi and i7 

 
As per the PRACE Xeon Phi best practice guide [4], Xeon Phi cores support execution of multiple threads, and 
can be expected to yield advantages by exploiting this capability. Figure 6 shows the absolute timings of sample 
runs utilising the full number of cores, and overcommitting threads by factors 2, 3 and 4. 

 
Figure 6: Absolute times to convergence of first iteration, multiple threads per core 

 
Finally, as the speedup plots give no indication of absolute execution time between the two architectures, Figure 
7 shows them in comparison. 
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Figure 7: Absolute times to convergence of first iteration 

Discussion	
As the figures show, the performance bottleneck of the computation is parallelizable in its entirety, and in spite 
of reaching diminishing returns with a comparatively small sample problem, still obtains speedups through 
employing the full hardware resources of both a conventional multi-core processor, and an Intel Xeon Phi 
accelerator board. The memory available to both architectures suggests that problem sizes can easily be scaled to 
many times that of the sample, and utilise all the available hardware, making it a strong candidate for future 
exascale platforms. 
While the proof-of-concept implementation studied in this whitepaper falls short of a full implementation, the 
loosely coupled nature of the computation suggests that the small communication requirements between 
iterations to convergence can admit a throughput-oriented implementation with a coordinating process managing 
working processes on both of the tested architectures. Although a small amount of coordinating code will be 
needed for convergence testing in the bottleneck iteration when using multiple accelerators, such testing is not 
necessary on each iteration, and can be tuned to communication latencies. The remaining operations are all 
element-wise or associative, suggesting that the input data can be split across multiple, independent units quite 
flexibly. The advantage of superior absolute execution time on the multi-core processor suggests that utilising a 
combination of units may cause a load balancing issue that can be ameliorated with appropriate partitioning of a 
larger problem, but quantifying the balance will depend strongly on the details of the target machine, placing it 
beyond the scope of this whitepaper. 
It can be remarked that a similar run-time profile of the implementation as that shown in the preliminary 
profiling indicate that a 23% portion of the C version’s run time is spent on computing hyperbolic tangent 
values. While the Intel Xeon Phi implements this as a function call, this is an indication that further speed 
improvements may be obtainable by porting the application to graphics accelerators, where support for 
trigonometric functions may be implemented in hardware on appropriate models. 

Conclusions	
We have described a proof-of-concept parallelization of the computationally intensive step in a neural network 
inference application, and demonstrated that it shows favourable scalability up to full utilisation of host and 
accelerator processors in a system resembling a node from current petascale architectures. The limited 
communication requirements of the application suggest that its performance is primarily bounded by 
computational throughput, which makes it a feasible candidate to utilise exascale resources. 
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