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Abstract 

Electrostatic interactions in molecular simulations are usually evaluated by employing the Ewald summation 

method, which splits the summation into a short-ranged part, treated in real space and a long-range part treated in 

reciprocal space.  For performance purposes in molecular dynamics software the latter is usually handled by SPME 

or P3M grid based methods both relying on 3D fast Fourier transform (FFT) as their central operation.  However, 

the Ewald summation method is derived for model systems that are subject to 3D periodic boundary conditions 

(PBC) while there are many models of scientific as well as commercial interest, where geometry implies a 1D or 

2D structures.  Thus for systems, such as membranes, interfaces, linear protein complexes, thin layers, nanotubes, 

etc.; employing Ewald summation based techniques is either very disadvantageous computationally or impossible 

at all.  Another approach to evaluate the electrostatics interactions is to solve the Poisson equation of the model-

system charge distribution on a 3D special grid.  The formulation of the method allows an elegant way to switch 

on and off the dependence on periodic boundary conditions in a simple manner.  Furthermore, 3D FFT kernels are 

known to scale poorly at large scale due to excessive memory and communication overheads, which makes the 

Poisson solvers a viable alternative for DL_POLY on the road to exascale. This paper describes the work 

undertaken to integrate a Poisson solver library, developed in PRACE-2IP [1], within the DL_POLY_4 domain 

decomposition framework.  The library relies on a unique combination of bi-conjugated gradient (BiCG) and 

conjugated gradient (CG) methods to warrant both independence on initial conditions with a rapid convergence of 

the solution on the one hand and stabilization of possible fluctuations of the iterative solution on the other.  The 

implementation involves the development of procedures for generating charge density and electrostatic potential 

grids in real space over all domains in a distributed manner as well as halo exchange routines and functions to 

calculate the gradient of the potential in order to recover electrostatic forces on point charges. 
 

Introduction 

Due to the long-range nature of the electrostatic interactions, their treatment is of crucial importance in the context 

of studying the materials’ properties at atomistic and molecular level by means of molecular dynamics (MD) 

simulations. The electrostatics acts on polar or charged molecules, including water, ions, amino acids, nucleic 

acids, carbohydrates, and lipids, and hence greatly influences their behaviour and properties, including solvation, 

folding and binding.  Thus, it is essential that the electrostatic interactions be evaluated with high level of accuracy 

in MD simulations. However, their long-range and many-body character makes their evaluation immensely 

computationally demanding – in fullness, this is a N2 problem, N being the number of particles in the model system.  

A number of techniques have been developed to tract the problem in a better scalable manner, of which the most 
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widely used, especially in computational bio-chemistry and bio-physics, are SPME [2,3] and P3M [4]. Both are 

based on the Ewald summation method and use Fourier transforms as a central operation. The application of these 

Ewald based techniques is however limited to model systems with 3D periodic boundary conditions (PBC) in its 

original formulation. An alternative approach is to use a continuum electrostatics model that allows simulations 

under general boundary conditions, for example by solving the Poisson’s equation.  Such a technique can be 

efficiently employed to evaluate accurately the electrostatic contribution to the free energy [5], for modeling of 

biomolecular titration states [6], computation of the electrostatic potential of lipid bilayers [7], ion-channel 

characteristics calculations [8], etc. 

In this paper, we present some of the most important aspects of the work undertaken on DL_POLY_4.05 to 

implement a parallel Poisson’s Equation Solver for model systems without PBC using a 27-stencil discretization 

scheme based on the stabilised bi-conjugate gradient (BiCG) method.  The work has led to a sub-program module, 

which includes procedures for generating charge density and electrostatic potential grids in real space in a 

commensurate manner with the domain decomposition strategy adopted in DL_POLY_4.  The module also 

includes subroutines for halo exchange information and functions to calculate the gradient of the potential in order 

to recover electrostatic forces on charged atoms.  It is worth noting that further work was undertaken to properly 

account for the electrostatics in model systems with intra-molecular interaction since while the Poisson solver 

returns a global electrostatic potential locally a number of direct interactions may be suppressed due to intra-

molecular bonding. 

The motivation for this work was to enhance DL_POLY_4 capability in terms of (i) enabling it to tract accurately 

and efficiently electrostatic interaction under non-periodic boundary conditions, and (ii) preparation for the 

exascale involving simulations of very large (~107 atoms) systems on large core counts (~105), where the FFT 

component of SPME and P3M is known to lose its scalable performance due to excessive non-local 

communications and large memory requirements. 

Theory 

The Poisson equation gives the electrostatic potential 𝜙(𝑟) created by a charge distribution 𝜌(𝑟) in a continuum 

medium with a given dielectric constant 𝜖(𝑟): 
 

𝛻2𝜙 =  −
𝜌

𝜖
       (1) 

 

Let us denote (𝑖, 𝑗, 𝑘) three-dimensional lattice indices and (𝜙𝛼𝛼)𝑖𝑗𝑘 is an approximation to the second partial 

derivative with respect to the coordinate direction 𝛼𝛼. Then the discretized form of Eq. (1) can be written as: 

 

(𝜙𝑥𝑥)𝑖𝑗𝑘 + (𝜙𝑦𝑦)𝑖𝑗𝑘 +
(𝜙𝑧𝑧)𝑖𝑗𝑘 = −𝑓𝑖𝑗𝑘.    (2) 

 

We denote the second-order difference operator as: 
 

(𝜙𝛼𝛼)𝑖𝑗𝑘 =
1

ℎ𝛼
2 𝛿𝛼

2𝜙𝑖𝑗𝑘,     (3) 

 

where ℎ𝛼 is the grid spacing in direction 𝛼 and 𝛿𝛼
2 is the second-order difference operator 

 

δx
2 = 𝜙𝑖−1,𝑗,𝑘 −  2𝜙𝑖,𝑗,𝑘 + 𝜙𝑖+1,𝑗,𝑘, 

δy
2 = 𝜙𝑖,𝑗−1,𝑘 −  2𝜙𝑖,𝑗,𝑘 + 𝜙𝑖,𝑗+1,𝑘, 

δz
2 = 𝜙𝑖,𝑗,𝑘−1 −  2𝜙𝑖,𝑗,𝑘 + 𝜙𝑖,𝑗,𝑘+1. 

 

We are using a 27-point stencil finite difference approximation. Given this approximation and h = 0.5Å;    i =
 1,2, …m;    j = 1,2, …n;  k =  1,2, …p;    m =  x/h;    n =  y/h;    p =  z/h;   ρ = q/h3, where q is the point 

electric charge, we arrive at the following equation for the unknowns 𝜙(𝑖, 𝑗, 𝑘) using when the finite difference 

operator from Eq.(3): 

 

144ℎ2𝜌 =  −600𝜑𝑖,𝑗,𝑘   + 60[𝜑𝑖,𝑗,𝑘−1 + 𝜑𝑖,𝑗,𝑘+1]  +  60[𝜑𝑖−1,𝑗,𝑘 + 𝜑𝑖+1,𝑗,𝑘 + 𝜑𝑖,𝑗−1,𝑘 + 𝜑𝑖,𝑗+1,𝑘]  +

 18[𝜑𝑖−1,𝑗−1,𝑘 + 𝜑𝑖−1,𝑗+1,𝑘 + 𝜑𝑖+1,𝑗−1,𝑘  +  𝜑𝑖+1,𝑗+1,𝑘]  + 18[𝜑𝑖−1,𝑗,𝑘−1 + 𝜑𝑖+1,𝑗,𝑘−1 + 𝜑𝑖−1,𝑗,𝑘+1 +

 𝜑𝑖+1,𝑗,𝑘+1 + 𝜑𝑖,𝑗−1,𝑘−1 + 𝜑𝑖,𝑗+1,𝑘−1 + 𝜑𝑖,𝑗−1,𝑘+1 +   𝜑𝑖,𝑗+1,𝑘+1]  +  3[𝜑𝑖+1,𝑗−1,𝑘−1 + 𝜑𝑖−1,𝑗−1,𝑘−1 +

 𝜑𝑖+1,𝑗+1,𝑘−1 + 𝜑𝑖+1,𝑗+1,𝑘+1 + 𝜑𝑖−1,𝑗−1,𝑘+1 + 𝜑𝑖+1,𝑗−1,𝑘+1  +  𝜑𝑖−1,𝑗+1,𝑘−1 + 𝜑𝑖−1,𝑗+1,𝑘+1]     (4) 

 

The maximum absolute error of this approximation for 𝜑(𝑟) is 𝑂(ℎ−6). 
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Eq. (4) can be rewritten in the following matrix form: 

𝐴𝑢(𝑠) =  𝑏(𝑠),      (5) 

where 

 

𝐴 =

(

 
 

𝑅 𝑆
𝑆 𝑅 𝑆

⋯

⋮ ⋱ ⋮

⋯
𝑆 𝑅 𝑆

𝑆 𝑅)

 
 

 

𝑅 =

(

 
 

𝑅1 𝑅2
𝑅2 𝑅1 𝑅2

⋯

⋮ ⋱ ⋮

⋯
𝑅2 𝑅1 𝑅2

𝑅2 𝑅1)

 
 

,   𝑆 =

(

 
 

𝑆1 𝑆2
𝑆 𝑆1 𝑆2

⋯

⋮ ⋱ ⋮

⋯
𝑆 𝑆1 𝑆2

𝑆2 𝑆1)

 
 

 

Matrix A has p blocks and each block is of order 𝑚𝑛 ×  𝑚𝑛. R and S have n blocks and each block is of order 

𝑚 ×  𝑚. 
 

𝑅1 =

(

 
 

−600 60
60 −600 60

⋯

⋮ ⋱ ⋮

⋯
60 −600 60

60 −600)

 
 

,  𝑅1 =

(

 
 

60 18
18 60 18

⋯

⋮ ⋱ ⋮

⋯
18 60 18

18 60)

 
 

 

𝑆1 =

(

 
 

60 18
18 60 18

⋯

⋮ ⋱ ⋮

⋯
18 60 18

18 60)

 
 

,                    𝑆1 =

(

 
 

18 3
3 18 3

⋯

⋮ ⋱ ⋮

⋯
3 18 3

3 18)

 
 

 

𝑢 =

(

 
 

𝑈1
𝑈2
𝑈3
⋮
𝑈𝑝)

 
 
                        𝑏 =

(

 
 

𝐵1
𝐵2
𝐵3
⋮
𝐵𝑝)

 
 

 

𝑈𝑘 = ( 𝑢1,1,𝑘 , 𝑢2,1,𝑘 , … , 𝑢𝑚,1,𝑘  ;  𝑢1,2,𝑘 , 𝑢2,2,𝑘 . . 𝑢𝑚,2,𝑘  … 𝑢1,𝑛,𝑘  , 𝑢2,𝑛,𝑘 , 𝑢𝑚,𝑛,𝑘 ) 

𝐵𝑘  =  ( 𝑏1,1,𝑘 , 𝑏2,1,𝑘 , … , 𝑏𝑚,1,𝑘 ;  𝑏1,2,𝑘, 𝑏2,2,𝑘 , … , 𝑏𝑚,2,𝑘 …𝑏1,𝑛,𝑘  , 𝑏2,𝑛,𝑘 , 𝑏𝑚,𝑛,𝑘  );   

If in the point with lattice indices 𝑡, 𝑠, 𝑣 the charge is 𝑞, then the charge density is 𝑏𝑡,𝑠,𝑣   =  𝜌 =  𝑞/ℎ
3.  

We use an implementation of a parallel BiCGSTAB algorithm [9] to find the solution of the aforementioned system 

of linear algebraic equations.  The multiplications of the matrix A with the vectors of the solution 𝜑 and the search 

directions 𝑠 are the most time consuming part of the algorithm. The number of arithmetic operations 

“multiplication and addition” is 27𝑚𝑛𝑝 for each of the two multiplications. 

Results 

We tested the performance and scalability of the DL_POLY Poisson solver module on two model systems with 

3921 (~100 Å box edge) and 32201 (~200 Å box edge) TIP3P water molecules, respectively.  The models systems 

intermolecular interactions (van der Waals and Coulomb) were handled with a smaller cutoff (of 5 Å instead of 8-

10 Å) than usual in order to warrant a linear scaling of the linked-cells algorithm for construction the Verlet 

neighbour list (VNL) and have the Poisson solver routine as the dominant contribution of the force evaluation 

cycle.  This assumption will hold true up to 64 and 1024 MPI counts for the small and the large system respectively.  

The simulations were performed on a Linux cluster with Intel Xeon E5540 @ 2.53GHz chips.  The reported 

results were obtained using the GNU Fortran90 compiler, gfortran version 4.8.1, with O3 level of optimisation 

and the execution times were averaged over 20 timesteps. 
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Table 1 lists the performance data for the models systems run under the conditions outlined above.  The missing 

values indicate run failures due to grid size mismatch on the selected processor counts as processor grids dictated 

unfavourable grid cell sizes for the linear 27-stencil approximation of the potential gradients.  The data are plotted 

in Figure 1, which indicates that the developed method has a close to linear performance at small processor counts 

with some degradation as expected at large ones.  As the algorithms work in good scaling regime the performance 

degradation is clearly due to the increase of the volume of messages of smaller sizes as the processor counts 

increase. 

 

Table 1. Execution time per timestep 

Number of 

processes 

11763 atoms 96603 atoms 

Time, [s] Speed-up Time, [s] Speed-up 

1 0.368 1.00 0.632 1.00 

16 0.118 3.12 0.131 4.82 

32 0.078 4.70 0.112 5.67 

48 0.052 7.12 0.084 7.56 

64 0.045 8.19 0.056 11.39 

80 0.041 9.09 N/A N/A 

112   0.051 12.49 

128   0.046 13.80 

 

 

It is worth noting that for exascale performance we expect system sizes of the order of 108 particles on 105 core 

counts.  This relates the performance of the Poisson solver as running the large test system on 96 cores or the small 

one on 12 cores.  Under these conditions, we indeed stay in linear scaling regimes.  Furthermore, the Poisson 

solver routines already contain openMP parallelism and when DL_POLY_4 allows for the use of openMP within 

its MPI framework of domain decomposition the scalability will be further improved by offsetting the MPI 

degradation by loading more work within a domain carried out by the domain’s openMP threads. 
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Figure 1. Execution time as a function of the number of the MPI processes for one timestep. 
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Conclusions 

The motivation for this work was to enhance DL_POLY_4 capability in terms of (i) enabling it to treat accurately 

and efficiently electrostatic interaction under non-periodic boundary conditions, and (ii) to prepare for exascale 

computing, which will involve simulations of very large (~107 atoms) systems on machines with  a ~billion-way 

concurrency, where the FFT component of SPME and P3M methods is already known to lose its scalable efficiency 

very quickly and exhibit poor performance due to excessive non-local communications and large memory 

requirements. In this paper we demonstrated that the real-space Poisson solver methodology we developed 

provides a viable alternative to the aforementioned methods which is especially indispensible in the case of model 

systems with no periodic boundary conditions. The Poisson solver worked in truly memory distributed manner 

with very good hard scaling performance for the systems sizes investigated.  The decline in performance at large 

processor counts was due to limits of hard scaling where communication becomes dominant over computation due 

to increase of small size messages volume and decrease of compute per core. 

We believe that this particular Poisson solver methodology is very promising and could be improved further by 

adopting the use of cardinal B-splines. This will lead to smoother initial conditions of the charge density and thus 

faster and more stable electrostatic potential solutions as well as more accurate energy, stress and force evaluations.  

This will potentially decrease compute prefactors and improve the method’s scalable performance – an option 

worth pursuing elsewhere. 
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