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Abstract 

Solution of multiscale and/or multiphysics problems is one of the domains which can most benefit from use of 
supercomputers. Those problems are often very complex and their accurate description and numerical solution requires use of 
several different solvers. For example problems of Fluid Structure Interaction (FSI) are usually solved using two different 
discretization schemes, Finite volumes to solve Computational Fluid Dynamics (CFD) part and Finite elements to solve the 
structural part of the problem. This paper summarizes different libraries and solvers used by the PRACE community that are 
able to deal with multiscale and/or multiphysic problems such as Elmer, Code_Saturne and Code_Aster, and OpenFOAM. 
The main bottlenecks in performance and scalability on the side of Computational Structure Mechanics (CSM) codes are 
identified and their possible extension to fulfill needs of future exascale problems are shown. The numerical results of the 
strong and weak scalabilities of  CSM solver implemented in our FLLOP library are presented. 

1. Multiscale and muliphysics problem introduction 

Let us start with the question “What is multiphysics?” and “What is multiscale?” The Wikipedia says 
in [1] and [2]:  

“Multiphysics treat simulations that involve multiple physical models or multiple simultaneous 
physical phenomena. Multiphysics typically involve solving coupled systems of partial differential 
equations.” 

“In engineering, mathematics, physics, meteorology and computer science, multiscale modelling is 
the field of solving physical problems which have important features at multiple scales, particularly 
multiple spatial and(or) temporal scales. Multiscale modelling in physics is aimed to calculation of 
material properties or system behaviour on one level using information or models from different 
levels. On each level particular approaches are used for description of a system.” 

A typical example of multiscale modelling in CFD calculations is modelling of turbulent flow. Solving 
turbulent flow is quite a difficult task. There are an infinite number of degrees of freedom and 
velocities fluctuate in all directions. The flow is chaotic, three dimensional, diffusive, dissipative and 
intermittent. Governing equations describing it are elliptic, non-linear and coupled (pressure-velocity 
and temperature-velocity). The main obstacle in modelling turbulent flows is a quite wide range of 
length and time scales associated with turbulence which makes it a good example of multiscale 
problems. There are several approaches how to address this problem and each of them comes with its 
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own computational cost and accuracy. To solve turbulent flow with high accuracy Direct numerical 
simulation (DNS) has to be employed. In this case turbulence is numerically solved without any 
turbulence model and all spatial and temporal scales of turbulence must be resolved. To resolve even 
smallest turbulences a very fine grid must be created which makes DNS very computationally 
expensive even at low Reynolds numbers.  

Numerical solution of multiphysics problems needs a fundamentally different approach to solution 
than multiscale problems. While multiscale problems combine different levels of scale, multiphysics 
combines various physical models. Currently two main approaches are used for solution of such 
problems: monolithic and partitioned one. 

In case of the monolithic approach governing equations for all physics problems cast in terms of the 
same primitive variables and single discretization scheme is applied to the entire domain. This leads to 
solving of a single coupled matrix equation system. The monolithic approach is suitable for 
multiphysics problems with very strong interaction between individual physical phenomena. The 
advantage of the monolithic approach is its good stability and convergence properties. The 
disadvantage is that in some cases it may lead to ill-conditioned matrices due to non-optimal 
discretization and solution procedure of the unified spatial domain. Another disadvantage is that the 
monolithic approach requires a code developed for this particular combination of physical problems. 

The partitioned approach on the other hand uses separate governing equation for each individual 
physical phenomenon. This allows us to separate the discretization scheme of each domain where 
exchange of data between domains is done via the domain interface. This leads to solving of separate 
matrix equations with distinct solvers for each domain. The advantage of the partitioned approach is 
that it preserves software modularity because existing solvers could be employed. Moreover, the 
partitioned approach facilitates solution with different, possibly more efficient techniques which have 
been developed specifically for solving particular physical phenomena. On the other hand, the 
development of a stable and accurate coupling algorithm is required in partitioned simulations. 

Fluid structure interaction (FSI) is one of the multi-physics domains where the partitioned approach is 
widely used. The main reason is that usually the Finite Volume Method (FVM) is used for solving 
CFD problems and the Finite Element Method (FEM) is used for Computational Structure Mechanics 
(CSM) calculations. There are several CFD and CSM software packages developed, for example 
codes OpenFoam and Code_Saturne for CFD simulations or Code_Aster and Elmer for CSM 
calculations.  

Unfortunately, those codes have limited capability in term of FSI simulations. In OpenFOAM 
icoFsiFoam solver could be used. The limitation of this approach is that it could be used only for 
linear models with small displacements. Other options such as the combination of Code_Saturne with 
Code_Aster or using Elmer for FSI simulation have similar limitations. In case of Elmer the main 
bottleneck is the limitation in terms of problem size which could be solved.  

This paper is not intended to deal with the problem of coupling CFD and CSM codes. The partitioned 
approach is very well known and many research groups around the world are working on coupling of 
different codes as a part of their own research activities.  

In this paper another issue arising with FSI calculations is addressed instead. This issue could be found 
in different domain sizes. It is very common that to solve accurately CFD problems meshes consisting 
of hundred millions or even billions of cells are required. On the other hand it’s quite rare if CSM 
numerical model consists of meshes bigger than tens of millions of cells. Historically solving of CSM 
problems by numerical methods led to simplification and using of specially developed element types 
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such as shell elements for discretization of thin structures etc. This results in approaches where 
complex problems could be solved by relatively small numerical models.  

The disproportion in term of domain sizes is even more evident in case of exascale computing. While 
solvers for CFD simulations are already capable of a parallel solution of very large problems with a 
very good scalability, the same cannot be said about CSM codes. In this paper highly scalable 
algorithms’ implementations were tested on problems with 380M DOFS and 14,000 subdomains. 
These problem sizes are beyond the limits reachable by most of meshing tools, this is the reason, why 
we have implemented for this purpose our own generator PermonCube.   

  

2. PRACE CFD and CSM codes overview 
 
The OpenFOAM® [11] (Open Field Operation and Manipulation) CFD Toolbox is an open source 
CFD software package with an extensive range of features to solve anything from complex fluid flows 
involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics. It 
includes meshing tools for parallel mesh generation using complex CAD geometries. Almost 
everything in OpenFOAM (including meshing, and pre- and post-processing) runs in parallel by 
default, enabling users to take full advantage of computer hardware at their disposal. OpenFOAM 
could be customized and its capability and functionality can be extended by users to solve their 
specific problems. OpenFOAM includes over 80 solver applications that simulate specific problems in 
engineering mechanics and over 170 utility applications that perform pre- and post-processing tasks, 
e.g. meshing, data visualization, etc. This makes this code quite popular among users who created a 
large community of engineers and scientists exchanging their knowledge and expertise in various 
fields. 
 
Code_Saturne [10] is a general purpose CFD software package based on FVM. It solves the Navier-
Stokes equations for 2D, 2D-axisymmetric and 3D flows, steady or unsteady, laminar or turbulent, 
incompressible or weakly dilatable, isothermal or not, with scalars transport if required. Several 
turbulence models are implemented, from Reynolds-Averaged models (a. k. a. RANS models) to 
Large-Eddy Simulation models. In addition, a number of specific physical models are also available as 
"modules": gas, coal and heavy-fuel oil combustion, semi-transparent radiative transfer, particle-
tracking with Lagrangian modelling, Joule effect, electrics arcs, weakly compressible flows, 
atmospheric flows, rotor/stator interaction for hydraulic machines. Code_Saturne can handle any type 
of cells tetrahedral, hexahedral, prismatic, pyramidal, polyhedral etc. or any type of grid such as 
unstructured, block structured, hybrid, conforming or with hanging nodes etc.  
 
Code_Aster [9] is a free and open source software package for civil and structural engineering based 
on FEM. Most of the fields of the software have been validated by independent comparisons with 
analytical or experimental results, benchmarks towards other codes. It is provided with about 2,000 
tests and examples. Code_Aster is mainly a solver for mechanics. Its capability covers a large range of 
applications: 3D thermal analyses and mechanical analyses in linear and non-linear statics and 
dynamics, for machines, pressure vessels and civil engineering structures. Beyond the standard 
functionalities of FEM software for solid mechanics, Code_Aster compiles specific research in various 
fields: fatigue, damage, fracture, contact, geomaterials, porous media, and multi-physics coupling. It is 
widely used at EDF for the expertise and the maintenance of power plants and electrical networks. 

Code_Saturne can be coupled to thermal software SYRTHES for conjugate heat transfer. It can also 
be used jointly with structural analysis software Code_Aster, in particular in the Salomé platform.  

All codes i.e. Code_Saturne, Code_Aster and SYRTHES are developed by EDF and distributed under 
the GNU GPL license. 
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Elmer [8] is open-source multiphysics simulation software developed by CSC - IT Center for Science 
in Helsinki, Finland. Elmer includes physical models of fluid dynamics, structural mechanics, 
electromagnetics, heat transfer, acoustics, etc. These are described by PDEs, which Elmer solves by 
the FEM. Currently Elmer has more than 5000 worldwide users. Elmer has shown excellent scaling on 
appropriate problems up to thousands of cores. Elmer developers focused on the implementation of a 
more robust solver, which enables further scaling of Elmer. The standalone tool ElmerSolver has 
implemented several types of solvers: time integration schemes for the first and second order 
equations, solution methods for eigenvalue problems, direct linear system solvers (Lapack & 
Umfpack), iterative Krylov subspace solvers for linear systems (GMRES, CG), multigrid solvers 
(GMG and AMG) for some basic equations, ILU preconditioning of linear systems, the discontinuous 
Galerkin method. Recently Elmer was extended by new FETI1 and TFETI domain decomposition 
methods implemented also via the FLLOP interface. For fluid flow ElmerSolver uses a stabilized 
(SUPG or residual free bubbles) Navier-Stokes equation. Elmer is suited for incompressible and 
compressible low Mach number flows. For turbulent flows Elmer includes some RANS models. 
Currently, the development of VMS LES models and segregated solvers is under way. The fluid flow 
may have coupling to thermal, electrostatic, magnetostatic or structural phenomena. For FSI-problems 
an ALE formulation is available also many different kinds of free surface models (Lagrangian and 
Eulerian) may be used. There is also a dimensionally reduced flow model, i.e. the Reynolds equation. 
Elmer may be used also in parallel and good scaling for CFD problems has been achieved up to 
hundreds of processors. 
 
FLLOP (Finite Element Tearing and Interconnect (FETI) Light Layer On top of PETSc) [4] is a novel 
software package developed at IT4Innovations, VSB-Technical University of Ostrava, Czech 
Republic, for solution of quadratic programming problems (QP). It is an extension of PETSc, which is 
a suite of data structures and routines for the parallel solution of scientific applications modelled by 
PDE. FLLOP is designed to be modular and easy-to-use but at the same time efficient and targeted to 
HPC. The typical workflow looks like this: natural specification of the QP by the user, a user-specified 
series of QP transforms automatic or manual selection of a suitable solver, solution of the most 
derived QP by the solver, a series of reconstruction functions to get a solution of the original QP. 
Additionally, any combination of these constraints can be prescribed: equality, inequality and box 
constraints. A QP transform derives from the given original QP a new QP which is simpler or has 
some better properties. Currently, the implemented transforms are dualization, homogenization of the 
equality constraints, enforcing of equality using a penalty or a projector onto the kernel of the linear 
equality constraint matrix. Current concrete solvers are CG, DCG, MPGP, and SMALSE. The 
algebraic part of the TFETI domain decomposition method is considered a special QP transform. The 
overall scheme of FLLOP components is shown in Figure 1. 
 
FllopAIF is a general pure C array based FLLOP interface. It is intended to be used within codes that 
do not use PETSc but can take advantage of the FLLOP solvers. The user which is going to apply 
FLLOP FETI solvers has to convert his/her matrices and vectors into standard arrays, include 
fllopaif.h, and then FLLOP solvers can be called from the (C or Fortran) code as shown below: 
 

FllopAIFInitialize(comm,argc,args); 
... 
FllopAIFSetArrayBase(1); 
FllopAIFSetFETIOperator(nb, i, j, A); 
FllopAIFSetRhs(nb, b); 
FllopAIFSetSolutionVector(nb,x); 
FllopAIFSolve(); 
... 
FllopAIFFinalize(); 

 
The final contribution is not only the scalability improvement of the code, but also functionality 
extension of the code enabling an efficient parallel solution QPs resulting from contact problems and 
other equality, inequality and box constrained QPs. 
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Figure 1: FLLOP components and PETSc integration 

3. Numerical experiments and link to exascaling 
  
We will demonstrate the capabilities of existing CFD and CSM solvers in term of solving real life 
multiphysics and multiscale problems on the example of a wind turbine – see Figure 2. Solving this 
very complex problem includes turbulence modelling, hence multiscale and deflection of propeller 
blades, an FSI problem. In our work we concentrated on the CFD (OpenFOAM) and CSM (FLLOP) 
simulation. We also performed very primitive one way FSI calculation where pressures on a blade in 
one particular time step were through I/O files passed to FLLOP as a loading for CSM calculation. As 
we mentioned earlier it was not the intention of our work to develop a coupler between two codes but 
this simple exchange of necessary data allowed us to use a real world example for our numerical 
experiments. 
 

 

Figure 2: Wind turbine benchmark 

Since our main interest is in identification of problems and solution methods for future exascale 
systems we focused on the strong scalability of CFD and CSM solvers. The reason is that in real 
engineering applications mesh size is usually fixed and computational time is of interest. Another 
typical feature mentioned already in this paper is that CSM meshes are much smaller than CFD 
meshes. In our case we modelled only one turbine blade for which approx. 10,000,000 of DOFS was 
needed to capture its physical behaviour. In contrast we needed more than 220,000,000 of cells 
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(1,300,000,000 of unknowns) on the CFD side to obtain results with requested accuracy. Figure 3 and 
Figure 4 show scalability of CFD (OpenFOAM) and CSM (FLLOP) solvers. 

 

 

Figure 3: Strong scalability of the CSM solver for the wind turbine 

 

 

Figure 4: Strong scalability of the CFD solver for the wind turbine 

From our numerical experiments we could observe almost ideal scalability of the CFD solver up to 
1024 cores. The CSM solver on the other hand shows good scalability only up to 16 cores. This 
phenomenon could be explained by fact that the CSM mesh is too small and more time is spent on 
communication instead of calculation. Since this is not the first case where we have observed such a 
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behaviour we have decided to investigate whether this is really due to a problem size or whether it 
comes from the nature of the problem i.e. whether all CSM simulations regardless of the problem size 
would exhibit the same behaviour.  
 
The team of researchers in Research Programme no. 3 at IT4Innovations is working in the field of 
efficient CSM algorithms development for many years. One of the successful classes of methods is 
based on domain decomposition into subdomains, definition of boundary problems, and an iterative 
process building the global solution from the local ones. FETI (Finite Element Tearing and 
Interconnecting) methods use the Lagrange multipliers and the original primal constrained problem is 
transformed into a significantly smaller and better conditioned dual constrained problem. For the dual 
problem solved by the conjugate gradient (CG) method the spectral condition number can be bounded 

by  ܿݐݏ݊݋
ு

௛
, with H denoting decomposition parameter and h the discretization parameter. This makes 

FETI methods the most efficient tool for the numerical solution of PDEs preserving both, high parallel 
and numerical scalabilities. The natural effort using the massively parallel computers is to maximize 
the number of subdomains (decrease ܪ) so that sizes of subdomain stiffness matrices are reduced 
which accelerates not only their factorization and subsequent pseudoinverse application but also 
improves conditioning and reduces the number of iterations. The negative effect of that is an increase 
of a dual and null space (kernel) dimension, which decelerates the coarse problem (CP) solution being 
so the bottleneck of the FETI method.  
 
To test the scalability of CSM solvers a numerical model of an elastic cube was used. There were two 
reasons for this decision. The elastic cube is the numerical model which could be fully controlled and 
obtained results won’t be affected by the complexity of its geometry. Another reason is that it’s very 
difficult or even impossible to create very large meshes on complex geometries using existing meshing 
tools. With our mesh generator PermonCube we were able to prepare large scale problems 
decomposed into thousands of subdomains. In our case, the loading was f_z = 77.0085  N/mm^3, 
Young's modulus E = 2.00e5 MPa, Poisson's ratio μ = 0.33. The model benchmark was decomposed 
into up to 13,824 subdomains and discretized up to 380M DOFs, the benchmark, its decomposition 
and total displacements are depicted in Figure 5.  
The weak scalability for 13,824; 8,000 and 4,096 elements per subdomain and the numerical 

scalability for these configurations (corresponding to the fixed ratios 
ு

௛
ൌ24, 20, 16) are then shown in 

Tables 1-3 and illustrated in Figure 6 and Figure 7 – the colour of each table corresponds with the line 
colour in the graphs. To investigate the strong scalability of CSM solvers we selected two different 
discretizations with 7,077,888  elements (approx. 22,000,000 unknowns) and 32,768,000 elements 
(approx. 100,000,000 unknowns), respectively, reported in Table 4, Table 5, Figure 8, and Figure 9. 
These results demonstrate the fact that the significant scaling for tens/hundreds cores can be reached if 
the local problems are sufficiently large.  
 
The numerical experiments were run on supercomputer HECToR at EPCC, the Phase 3 system is 
contained in 30 cabinets and comprises of a total of 704 compute blades. Each blade contains four 
compute nodes giving a total of 2816 compute nodes, each with two 16-core AMD Opteron 2.3GHz 
Interlagos processors. This amounts to a total of 90,112 cores. Each 16-core socket is coupled with a 
Cray Gemini routing and a communications chip. Each 16-core processor shares 16 GB of memory. 
The theoretical peak performance of the Phase 3 system is over 800 Tflops. 
 
 

  
 
 
 
 
 
 
 
 
 



 

8 

 

 
 
 
 
 
 
 

 

Figure 6: Weak scalability for 13,824; 8,000; 4,096 elements per subdomain 

 
 

 

Figure 7: Numerical scalability for 13,824; 8,000; 4,096 elements per subdomain 

NS1  NS  Ne all  prim.dim. 
#dofs 

dual dim.  ker. dim.  CP 
red 

CP 
proc
/sub

c 

K fact.  CP 
prep. 

total 
prep. 

all K+ 
act. 

CP 
sol. 

iter. 
sol. 

#ite
r. 

total 
fllop 

CP 
fact+sol 

2  8  110 592  375 000  30 912  48  1  8  12.8  0.0  13.8  12.4  0.0  12.5  40  26.3  0.01 

4  64  884 736  3 000 000  316 524  384  1  64  13.4  0.0  14.8  16.4  0.4  16.6  54  31.4  0.43 

6  216  2 985 984  10 125 000  1 149 000  1 296  1  216  13.2  0.2  14.6  18.5  0.3  18.8  61  33.4  0.50 

8  512  7 077 888  24 000 000  2 820 516  3 072  28  18  13.5  0.3  15.2  18.8  0.5  19.3  62  34.5  0.81 

13  2197  30 371 328  102 984 375  12 587 511  13 182  28  78  13.4  5.7  20.5  19.4  1.6  21.0  64  41.5  7.28 

20  8000  110 592 000  375 000 000  46 831 308  48 000  28  286  13.4  8.7  23.8  19.6  3.0  22.7  64  46.5  11.74 

Table 1: Weak scalability for 13,824 elements per subdomain 

Figure 5: Cube benchmark, its regular decomposition and total displacements 
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NS1  NS  Ne all  prim.dim. 
#dofs 

dual dim.  ker. dim.  CP 
red. 

CP 
proc/
subc. 

K 
fact. 

. 

CP 
prep. 

total 
prep. 

all K+ 
act. 

CP sol.  iter. 
sol. 

#ite
r. 

total 
fllop 

CP 
fact+s

ol 

2  8  64 000  222 264  21 936  48  1  8  5.3  0.0  5.8  5.6  0.0  5.6  37  11.4  0.01 

4  64  512 000  1 778 112  225 612  384  1  64  5.5  0.0  6.3  7.6  0.2  7.7  51  14.0  0.28 

6  216  1 728 000  6 001 128  820 248  1 296  1  216  5.4  0.2  6.3  8.3  0.2  8.5  56  14.8  0.41 

8  512  4 096 000  14 224 896  2 015 076  3 072  28  18  5.5  0.3  6.6  8.5  0.3  8.8  57  15.5  0.68 

12  1728  13 824 000  48 009 024  7 042 236  10 368  28  62  5.5  2.5  8.7  8.6  0.7  9.4  58  18.1  3.19 

20  8000  64 000 000  222 264 000  33 505 068  48 000  28  286  5.5  8.4  14.9  8.8  2.8  11.8  59  26.7  11.17 

Table 2: Weak scalability for 8,000 elements per subdomain 

 
 

NS1  NS  Ne all  prim.dim. 
#dofs 

dual dim.  ker. dim.  CP 
red. 

CP 
proc/ 
subc. 

K fact.  CP 
prep. 

total 
prep. 

all K+ 
act.t. 

CP sol.  iter. 
sol. 

#ite
r. 

total 
fllop 

CP 
fact+sol 

2  8  32 768  117 912  14 496  48  1  8  1.8  0.0  2.0  2.0  0.0  2.0  33  4.1  0.01 

4  64  262 144  943 296  150 060  384  1  64  1.9  0.0  2.3  2.8  0.1  2.9  47  5.2  0.15 

6  216  884 736  3 183 624  546 792  1 296  1  216  1.8  0.2  2.4  3.0  0.2  3.2  51  5.6  0.40 

8  512  2 097 152  7 546 368  1 344 804  3 072  28  18  1.9  0.4  2.6  3.2  0.3  3.5  53  6.1  0.60 

12  1728  7 077 888  25 468 992  4 705 116  10 368  28  62  1.8  2.6  4.8  3.2  0.7  4.0  54  8.8  3.29 

20  8000  32 768 000  117 912 000  22 406 028  48 000  28  286  1.8  8.7  11.2  3.3  2.3  5.8  55  17.0  10.97 

22  10648  43 614 208  156 940 872  29 936 136  63 888  20  532  1.8  14.4  16.9  3.3  2.3  5.8  55  22.7  16.70 

Table 3: Weak scalability for 4,096 elements per subdomain 
 

NS1  NS  Ne all  prim. pim. 
#dofs 

dual dim.  ker. dim.  CP 
red. 

CP proc/ 
subc. 

K fact.  CP 
prep. 

total 
prep. 

all K+ 
act.t. 

CP sol.  iter. 
sol.. 

#iter.  total 
fllop 

CP 
fact+sol 

8  512  7 077 888  24 000 000  2 820 516  3 072  28  18  13.5  0.3  15.2  18.8  0.5  19.3  62  34.5  0.81 

12  1728  7 077 888  25 468 992  4 705 116  10 368  28  62  1.8  2.6  4.8  3.2  0.7  4.0  54  8.8  3.29 

16  4096  7 077 888  26 996 736  6 853 332  24 576  28  146  0.6  10.8  11.8  1.2  1.0  2.2  50  14.0  11.85 

Table 4: Strong scalability for 7.7M elements 
 
 

NS1 NS Ne all prim. pim. 
#dofs 

dual dim. ker. 
dim. 

CP 
red. 

CP 
proc/ 
subc. 

K fact.  CP prep.  total 
prep.  

all K+ 
act. 

CP sol.  iter. sol.  #iter. total 
fllop 

CP 
fact+sol 

13  2197  32 768 000  102 984 375  12 587 511  13 182  28  78  13.4  5.7  20.5  19.4  1.6  21.0  64  41.5  7.28 

16  4096  32 768 000  113 799 168  16 980 948  24 576  16  256  5.4  3.6  10.0  8.8  1.1  9.8  59  19.8  4.68 

20  8000  32 768 000  117 912 000  22 406 028  48 000  28  286  1.8  8.2  10.7  3.3  1.5  5.0  55  15.7  9.70 

Table 5: Strong scalability for 33M elements 
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Figure 8: Graph of the strong scalability for 7.7M elements – total time [sec] 

 
 

 

Figure 9: Graph of the strong scalability for 33M elements – total time [sec] 

 

4. Conclusions 
 
In this paper several codes capable of solving multiphysics multiscale problems were discussed. Their 
limitations in term of solving really large problems together with limitations in term of a mesh 
generation for complex geometries creates a bottleneck for multiphysics multiscale simulations of real 
world problems. We have proven that we are able to solve efficiently large-scale CSM problems with 
billions of unknowns using FETI methods and algorithms implemented in our FLLOP library. These 
solvers unlike those contained in other CSM packages preserve high parallel and numerical 
scalabilities. The FLLOP library provides the general FLLOP_AIF interface to other libraries such as 
Elmer and OpenFOAM, so that the employed solvers can enjoy scaling up to ten thousands cores for 
CSM problems, especially if local problems are large enough. This is very promising for the scaling of 
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FSI applications. To solve FSI problems the CFD-CSM coupler has to be at a disposal. It will also 
require an efficient mesh generator to prepare large meshes. 
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