

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Application of CFD and CSM Open Source Codes for
Solving Multiscale Multiphysics Problems

Tomáš Karáseka, David Horáka, Václav Haplaa, Alexandros Markopoulosa,

Lubomír Říhaa, Vít Vondráka, Tomáš Brzobohatýa
aIT4Innovations, VŠB-Technical University of Ostrava (VSB)

Abstract

Solution of multiscale and/or multiphysics problems is one of the domains which can most benefit from use of
supercomputers. Those problems are often very complex and their accurate description and numerical solution requires use of
several different solvers. For example problems of Fluid Structure Interaction (FSI) are usually solved using two different
discretization schemes, Finite volumes to solve Computational Fluid Dynamics (CFD) part and Finite elements to solve the
structural part of the problem. This paper summarizes different libraries and solvers used by the PRACE community that are
able to deal with multiscale and/or multiphysic problems such as Elmer, Code_Saturne and Code_Aster, and OpenFOAM.
The main bottlenecks in performance and scalability on the side of Computational Structure Mechanics (CSM) codes are
identified and their possible extension to fulfill needs of future exascale problems are shown. The numerical results of the
strong and weak scalabilities of CSM solver implemented in our FLLOP library are presented.

1. Multiscale and muliphysics problem introduction

Let us start with the question “What is multiphysics?” and “What is multiscale?” The Wikipedia says
in [1] and [2]:

“Multiphysics treat simulations that involve multiple physical models or multiple simultaneous
physical phenomena. Multiphysics typically involve solving coupled systems of partial differential
equations.”

“In engineering, mathematics, physics, meteorology and computer science, multiscale modelling is
the field of solving physical problems which have important features at multiple scales, particularly
multiple spatial and(or) temporal scales. Multiscale modelling in physics is aimed to calculation of
material properties or system behaviour on one level using information or models from different
levels. On each level particular approaches are used for description of a system.”

A typical example of multiscale modelling in CFD calculations is modelling of turbulent flow. Solving
turbulent flow is quite a difficult task. There are an infinite number of degrees of freedom and
velocities fluctuate in all directions. The flow is chaotic, three dimensional, diffusive, dissipative and
intermittent. Governing equations describing it are elliptic, non-linear and coupled (pressure-velocity
and temperature-velocity). The main obstacle in modelling turbulent flows is a quite wide range of
length and time scales associated with turbulence which makes it a good example of multiscale
problems. There are several approaches how to address this problem and each of them comes with its

2

own computational cost and accuracy. To solve turbulent flow with high accuracy Direct numerical
simulation (DNS) has to be employed. In this case turbulence is numerically solved without any
turbulence model and all spatial and temporal scales of turbulence must be resolved. To resolve even
smallest turbulences a very fine grid must be created which makes DNS very computationally
expensive even at low Reynolds numbers.

Numerical solution of multiphysics problems needs a fundamentally different approach to solution
than multiscale problems. While multiscale problems combine different levels of scale, multiphysics
combines various physical models. Currently two main approaches are used for solution of such
problems: monolithic and partitioned one.

In case of the monolithic approach governing equations for all physics problems cast in terms of the
same primitive variables and single discretization scheme is applied to the entire domain. This leads to
solving of a single coupled matrix equation system. The monolithic approach is suitable for
multiphysics problems with very strong interaction between individual physical phenomena. The
advantage of the monolithic approach is its good stability and convergence properties. The
disadvantage is that in some cases it may lead to ill-conditioned matrices due to non-optimal
discretization and solution procedure of the unified spatial domain. Another disadvantage is that the
monolithic approach requires a code developed for this particular combination of physical problems.

The partitioned approach on the other hand uses separate governing equation for each individual
physical phenomenon. This allows us to separate the discretization scheme of each domain where
exchange of data between domains is done via the domain interface. This leads to solving of separate
matrix equations with distinct solvers for each domain. The advantage of the partitioned approach is
that it preserves software modularity because existing solvers could be employed. Moreover, the
partitioned approach facilitates solution with different, possibly more efficient techniques which have
been developed specifically for solving particular physical phenomena. On the other hand, the
development of a stable and accurate coupling algorithm is required in partitioned simulations.

Fluid structure interaction (FSI) is one of the multi-physics domains where the partitioned approach is
widely used. The main reason is that usually the Finite Volume Method (FVM) is used for solving
CFD problems and the Finite Element Method (FEM) is used for Computational Structure Mechanics
(CSM) calculations. There are several CFD and CSM software packages developed, for example
codes OpenFoam and Code_Saturne for CFD simulations or Code_Aster and Elmer for CSM
calculations.

Unfortunately, those codes have limited capability in term of FSI simulations. In OpenFOAM
icoFsiFoam solver could be used. The limitation of this approach is that it could be used only for
linear models with small displacements. Other options such as the combination of Code_Saturne with
Code_Aster or using Elmer for FSI simulation have similar limitations. In case of Elmer the main
bottleneck is the limitation in terms of problem size which could be solved.

This paper is not intended to deal with the problem of coupling CFD and CSM codes. The partitioned
approach is very well known and many research groups around the world are working on coupling of
different codes as a part of their own research activities.

In this paper another issue arising with FSI calculations is addressed instead. This issue could be found
in different domain sizes. It is very common that to solve accurately CFD problems meshes consisting
of hundred millions or even billions of cells are required. On the other hand it’s quite rare if CSM
numerical model consists of meshes bigger than tens of millions of cells. Historically solving of CSM
problems by numerical methods led to simplification and using of specially developed element types

3

such as shell elements for discretization of thin structures etc. This results in approaches where
complex problems could be solved by relatively small numerical models.

The disproportion in term of domain sizes is even more evident in case of exascale computing. While
solvers for CFD simulations are already capable of a parallel solution of very large problems with a
very good scalability, the same cannot be said about CSM codes. In this paper highly scalable
algorithms’ implementations were tested on problems with 380M DOFS and 14,000 subdomains.
These problem sizes are beyond the limits reachable by most of meshing tools, this is the reason, why
we have implemented for this purpose our own generator PermonCube.

2. PRACE CFD and CSM codes overview

The OpenFOAM® [11] (Open Field Operation and Manipulation) CFD Toolbox is an open source
CFD software package with an extensive range of features to solve anything from complex fluid flows
involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics. It
includes meshing tools for parallel mesh generation using complex CAD geometries. Almost
everything in OpenFOAM (including meshing, and pre- and post-processing) runs in parallel by
default, enabling users to take full advantage of computer hardware at their disposal. OpenFOAM
could be customized and its capability and functionality can be extended by users to solve their
specific problems. OpenFOAM includes over 80 solver applications that simulate specific problems in
engineering mechanics and over 170 utility applications that perform pre- and post-processing tasks,
e.g. meshing, data visualization, etc. This makes this code quite popular among users who created a
large community of engineers and scientists exchanging their knowledge and expertise in various
fields.

Code_Saturne [10] is a general purpose CFD software package based on FVM. It solves the Navier-
Stokes equations for 2D, 2D-axisymmetric and 3D flows, steady or unsteady, laminar or turbulent,
incompressible or weakly dilatable, isothermal or not, with scalars transport if required. Several
turbulence models are implemented, from Reynolds-Averaged models (a. k. a. RANS models) to
Large-Eddy Simulation models. In addition, a number of specific physical models are also available as
"modules": gas, coal and heavy-fuel oil combustion, semi-transparent radiative transfer, particle-
tracking with Lagrangian modelling, Joule effect, electrics arcs, weakly compressible flows,
atmospheric flows, rotor/stator interaction for hydraulic machines. Code_Saturne can handle any type
of cells tetrahedral, hexahedral, prismatic, pyramidal, polyhedral etc. or any type of grid such as
unstructured, block structured, hybrid, conforming or with hanging nodes etc.

Code_Aster [9] is a free and open source software package for civil and structural engineering based
on FEM. Most of the fields of the software have been validated by independent comparisons with
analytical or experimental results, benchmarks towards other codes. It is provided with about 2,000
tests and examples. Code_Aster is mainly a solver for mechanics. Its capability covers a large range of
applications: 3D thermal analyses and mechanical analyses in linear and non-linear statics and
dynamics, for machines, pressure vessels and civil engineering structures. Beyond the standard
functionalities of FEM software for solid mechanics, Code_Aster compiles specific research in various
fields: fatigue, damage, fracture, contact, geomaterials, porous media, and multi-physics coupling. It is
widely used at EDF for the expertise and the maintenance of power plants and electrical networks.

Code_Saturne can be coupled to thermal software SYRTHES for conjugate heat transfer. It can also
be used jointly with structural analysis software Code_Aster, in particular in the Salomé platform.

All codes i.e. Code_Saturne, Code_Aster and SYRTHES are developed by EDF and distributed under
the GNU GPL license.

4

Elmer [8] is open-source multiphysics simulation software developed by CSC - IT Center for Science
in Helsinki, Finland. Elmer includes physical models of fluid dynamics, structural mechanics,
electromagnetics, heat transfer, acoustics, etc. These are described by PDEs, which Elmer solves by
the FEM. Currently Elmer has more than 5000 worldwide users. Elmer has shown excellent scaling on
appropriate problems up to thousands of cores. Elmer developers focused on the implementation of a
more robust solver, which enables further scaling of Elmer. The standalone tool ElmerSolver has
implemented several types of solvers: time integration schemes for the first and second order
equations, solution methods for eigenvalue problems, direct linear system solvers (Lapack &
Umfpack), iterative Krylov subspace solvers for linear systems (GMRES, CG), multigrid solvers
(GMG and AMG) for some basic equations, ILU preconditioning of linear systems, the discontinuous
Galerkin method. Recently Elmer was extended by new FETI1 and TFETI domain decomposition
methods implemented also via the FLLOP interface. For fluid flow ElmerSolver uses a stabilized
(SUPG or residual free bubbles) Navier-Stokes equation. Elmer is suited for incompressible and
compressible low Mach number flows. For turbulent flows Elmer includes some RANS models.
Currently, the development of VMS LES models and segregated solvers is under way. The fluid flow
may have coupling to thermal, electrostatic, magnetostatic or structural phenomena. For FSI-problems
an ALE formulation is available also many different kinds of free surface models (Lagrangian and
Eulerian) may be used. There is also a dimensionally reduced flow model, i.e. the Reynolds equation.
Elmer may be used also in parallel and good scaling for CFD problems has been achieved up to
hundreds of processors.

FLLOP (Finite Element Tearing and Interconnect (FETI) Light Layer On top of PETSc) [4] is a novel
software package developed at IT4Innovations, VSB-Technical University of Ostrava, Czech
Republic, for solution of quadratic programming problems (QP). It is an extension of PETSc, which is
a suite of data structures and routines for the parallel solution of scientific applications modelled by
PDE. FLLOP is designed to be modular and easy-to-use but at the same time efficient and targeted to
HPC. The typical workflow looks like this: natural specification of the QP by the user, a user-specified
series of QP transforms automatic or manual selection of a suitable solver, solution of the most
derived QP by the solver, a series of reconstruction functions to get a solution of the original QP.
Additionally, any combination of these constraints can be prescribed: equality, inequality and box
constraints. A QP transform derives from the given original QP a new QP which is simpler or has
some better properties. Currently, the implemented transforms are dualization, homogenization of the
equality constraints, enforcing of equality using a penalty or a projector onto the kernel of the linear
equality constraint matrix. Current concrete solvers are CG, DCG, MPGP, and SMALSE. The
algebraic part of the TFETI domain decomposition method is considered a special QP transform. The
overall scheme of FLLOP components is shown in Figure 1.

FllopAIF is a general pure C array based FLLOP interface. It is intended to be used within codes that
do not use PETSc but can take advantage of the FLLOP solvers. The user which is going to apply
FLLOP FETI solvers has to convert his/her matrices and vectors into standard arrays, include
fllopaif.h, and then FLLOP solvers can be called from the (C or Fortran) code as shown below:

FllopAIFInitialize(comm,argc,args);
...
FllopAIFSetArrayBase(1);
FllopAIFSetFETIOperator(nb, i, j, A);
FllopAIFSetRhs(nb, b);
FllopAIFSetSolutionVector(nb,x);
FllopAIFSolve();
...
FllopAIFFinalize();

The final contribution is not only the scalability improvement of the code, but also functionality
extension of the code enabling an efficient parallel solution QPs resulting from contact problems and
other equality, inequality and box constrained QPs.

5

Figure 1: FLLOP components and PETSc integration

3. Numerical experiments and link to exascaling

We will demonstrate the capabilities of existing CFD and CSM solvers in term of solving real life
multiphysics and multiscale problems on the example of a wind turbine – see Figure 2. Solving this
very complex problem includes turbulence modelling, hence multiscale and deflection of propeller
blades, an FSI problem. In our work we concentrated on the CFD (OpenFOAM) and CSM (FLLOP)
simulation. We also performed very primitive one way FSI calculation where pressures on a blade in
one particular time step were through I/O files passed to FLLOP as a loading for CSM calculation. As
we mentioned earlier it was not the intention of our work to develop a coupler between two codes but
this simple exchange of necessary data allowed us to use a real world example for our numerical
experiments.

Figure 2: Wind turbine benchmark

Since our main interest is in identification of problems and solution methods for future exascale
systems we focused on the strong scalability of CFD and CSM solvers. The reason is that in real
engineering applications mesh size is usually fixed and computational time is of interest. Another
typical feature mentioned already in this paper is that CSM meshes are much smaller than CFD
meshes. In our case we modelled only one turbine blade for which approx. 10,000,000 of DOFS was
needed to capture its physical behaviour. In contrast we needed more than 220,000,000 of cells

PETSc

PC

TS

KSP

SNES

Vec

Mat

FllopDDM

FllopQP

QP

QPChain

QPS

QPTPrepareTFETI

FETIAssembler

QPTDualizeQPTPrepareHTFETI

FllopAIFFllopFile

MatBlockDiag

FLLOP

PCFETI

MatInv

QPSKSP

QPTHomogenizeEq

QPTEnforceEqByPenalty

QPTEnforceEqByProjector

QPSMPGP

QPSSMALSE

Non-member function

Class

Type

legend

association

inheritance

6

(1,300,000,000 of unknowns) on the CFD side to obtain results with requested accuracy. Figure 3 and
Figure 4 show scalability of CFD (OpenFOAM) and CSM (FLLOP) solvers.

Figure 3: Strong scalability of the CSM solver for the wind turbine

Figure 4: Strong scalability of the CFD solver for the wind turbine

From our numerical experiments we could observe almost ideal scalability of the CFD solver up to
1024 cores. The CSM solver on the other hand shows good scalability only up to 16 cores. This
phenomenon could be explained by fact that the CSM mesh is too small and more time is spent on
communication instead of calculation. Since this is not the first case where we have observed such a

0

100

200

300

400

500

600

4 8 16 32 64 128 256 512

number of cores (log2 scale)

ti
m
e
[s
ec
]

ti
m
e
[s
ec
]

0

5

10

15

20

25

128 256 512 1024

number of cores (log2 scale)

ti
m
e
[h
r]

7

behaviour we have decided to investigate whether this is really due to a problem size or whether it
comes from the nature of the problem i.e. whether all CSM simulations regardless of the problem size
would exhibit the same behaviour.

The team of researchers in Research Programme no. 3 at IT4Innovations is working in the field of
efficient CSM algorithms development for many years. One of the successful classes of methods is
based on domain decomposition into subdomains, definition of boundary problems, and an iterative
process building the global solution from the local ones. FETI (Finite Element Tearing and
Interconnecting) methods use the Lagrange multipliers and the original primal constrained problem is
transformed into a significantly smaller and better conditioned dual constrained problem. For the dual
problem solved by the conjugate gradient (CG) method the spectral condition number can be bounded

by ܿݐݏ݊݋
ு

௛
, with H denoting decomposition parameter and h the discretization parameter. This makes

FETI methods the most efficient tool for the numerical solution of PDEs preserving both, high parallel
and numerical scalabilities. The natural effort using the massively parallel computers is to maximize
the number of subdomains (decrease ܪ) so that sizes of subdomain stiffness matrices are reduced
which accelerates not only their factorization and subsequent pseudoinverse application but also
improves conditioning and reduces the number of iterations. The negative effect of that is an increase
of a dual and null space (kernel) dimension, which decelerates the coarse problem (CP) solution being
so the bottleneck of the FETI method.

To test the scalability of CSM solvers a numerical model of an elastic cube was used. There were two
reasons for this decision. The elastic cube is the numerical model which could be fully controlled and
obtained results won’t be affected by the complexity of its geometry. Another reason is that it’s very
difficult or even impossible to create very large meshes on complex geometries using existing meshing
tools. With our mesh generator PermonCube we were able to prepare large scale problems
decomposed into thousands of subdomains. In our case, the loading was f_z = 77.0085 N/mm^3,
Young's modulus E = 2.00e5 MPa, Poisson's ratio μ = 0.33. The model benchmark was decomposed
into up to 13,824 subdomains and discretized up to 380M DOFs, the benchmark, its decomposition
and total displacements are depicted in Figure 5.
The weak scalability for 13,824; 8,000 and 4,096 elements per subdomain and the numerical

scalability for these configurations (corresponding to the fixed ratios
ு

௛
ൌ24, 20, 16) are then shown in

Tables 1-3 and illustrated in Figure 6 and Figure 7 – the colour of each table corresponds with the line
colour in the graphs. To investigate the strong scalability of CSM solvers we selected two different
discretizations with 7,077,888 elements (approx. 22,000,000 unknowns) and 32,768,000 elements
(approx. 100,000,000 unknowns), respectively, reported in Table 4, Table 5, Figure 8, and Figure 9.
These results demonstrate the fact that the significant scaling for tens/hundreds cores can be reached if
the local problems are sufficiently large.

The numerical experiments were run on supercomputer HECToR at EPCC, the Phase 3 system is
contained in 30 cabinets and comprises of a total of 704 compute blades. Each blade contains four
compute nodes giving a total of 2816 compute nodes, each with two 16-core AMD Opteron 2.3GHz
Interlagos processors. This amounts to a total of 90,112 cores. Each 16-core socket is coupled with a
Cray Gemini routing and a communications chip. Each 16-core processor shares 16 GB of memory.
The theoretical peak performance of the Phase 3 system is over 800 Tflops.

8

Figure 6: Weak scalability for 13,824; 8,000; 4,096 elements per subdomain

Figure 7: Numerical scalability for 13,824; 8,000; 4,096 elements per subdomain

NS1 NS Ne all prim.dim.
#dofs

dual dim. ker. dim. CP
red

CP
proc
/sub

c

K fact. CP
prep.

total
prep.

all K+
act.

CP
sol.

iter.
sol.

#ite
r.

total
fllop

CP
fact+sol

2 8 110 592 375 000 30 912 48 1 8 12.8 0.0 13.8 12.4 0.0 12.5 40 26.3 0.01

4 64 884 736 3 000 000 316 524 384 1 64 13.4 0.0 14.8 16.4 0.4 16.6 54 31.4 0.43

6 216 2 985 984 10 125 000 1 149 000 1 296 1 216 13.2 0.2 14.6 18.5 0.3 18.8 61 33.4 0.50

8 512 7 077 888 24 000 000 2 820 516 3 072 28 18 13.5 0.3 15.2 18.8 0.5 19.3 62 34.5 0.81

13 2197 30 371 328 102 984 375 12 587 511 13 182 28 78 13.4 5.7 20.5 19.4 1.6 21.0 64 41.5 7.28

20 8000 110 592 000 375 000 000 46 831 308 48 000 28 286 13.4 8.7 23.8 19.6 3.0 22.7 64 46.5 11.74

Table 1: Weak scalability for 13,824 elements per subdomain

Figure 5: Cube benchmark, its regular decomposition and total displacements

9

NS1 NS Ne all prim.dim.
#dofs

dual dim. ker. dim. CP
red.

CP
proc/
subc.

K
fact.

.

CP
prep.

total
prep.

all K+
act.

CP sol. iter.
sol.

#ite
r.

total
fllop

CP
fact+s

ol

2 8 64 000 222 264 21 936 48 1 8 5.3 0.0 5.8 5.6 0.0 5.6 37 11.4 0.01

4 64 512 000 1 778 112 225 612 384 1 64 5.5 0.0 6.3 7.6 0.2 7.7 51 14.0 0.28

6 216 1 728 000 6 001 128 820 248 1 296 1 216 5.4 0.2 6.3 8.3 0.2 8.5 56 14.8 0.41

8 512 4 096 000 14 224 896 2 015 076 3 072 28 18 5.5 0.3 6.6 8.5 0.3 8.8 57 15.5 0.68

12 1728 13 824 000 48 009 024 7 042 236 10 368 28 62 5.5 2.5 8.7 8.6 0.7 9.4 58 18.1 3.19

20 8000 64 000 000 222 264 000 33 505 068 48 000 28 286 5.5 8.4 14.9 8.8 2.8 11.8 59 26.7 11.17

Table 2: Weak scalability for 8,000 elements per subdomain

NS1 NS Ne all prim.dim.
#dofs

dual dim. ker. dim. CP
red.

CP
proc/
subc.

K fact. CP
prep.

total
prep.

all K+
act.t.

CP sol. iter.
sol.

#ite
r.

total
fllop

CP
fact+sol

2 8 32 768 117 912 14 496 48 1 8 1.8 0.0 2.0 2.0 0.0 2.0 33 4.1 0.01

4 64 262 144 943 296 150 060 384 1 64 1.9 0.0 2.3 2.8 0.1 2.9 47 5.2 0.15

6 216 884 736 3 183 624 546 792 1 296 1 216 1.8 0.2 2.4 3.0 0.2 3.2 51 5.6 0.40

8 512 2 097 152 7 546 368 1 344 804 3 072 28 18 1.9 0.4 2.6 3.2 0.3 3.5 53 6.1 0.60

12 1728 7 077 888 25 468 992 4 705 116 10 368 28 62 1.8 2.6 4.8 3.2 0.7 4.0 54 8.8 3.29

20 8000 32 768 000 117 912 000 22 406 028 48 000 28 286 1.8 8.7 11.2 3.3 2.3 5.8 55 17.0 10.97

22 10648 43 614 208 156 940 872 29 936 136 63 888 20 532 1.8 14.4 16.9 3.3 2.3 5.8 55 22.7 16.70

Table 3: Weak scalability for 4,096 elements per subdomain

NS1 NS Ne all prim. pim.
#dofs

dual dim. ker. dim. CP
red.

CP proc/
subc.

K fact. CP
prep.

total
prep.

all K+
act.t.

CP sol. iter.
sol..

#iter. total
fllop

CP
fact+sol

8 512 7 077 888 24 000 000 2 820 516 3 072 28 18 13.5 0.3 15.2 18.8 0.5 19.3 62 34.5 0.81

12 1728 7 077 888 25 468 992 4 705 116 10 368 28 62 1.8 2.6 4.8 3.2 0.7 4.0 54 8.8 3.29

16 4096 7 077 888 26 996 736 6 853 332 24 576 28 146 0.6 10.8 11.8 1.2 1.0 2.2 50 14.0 11.85

Table 4: Strong scalability for 7.7M elements

NS1 NS Ne all prim. pim.
#dofs

dual dim. ker.
dim.

CP
red.

CP
proc/
subc.

K fact. CP prep. total
prep.

all K+
act.

CP sol. iter. sol. #iter. total
fllop

CP
fact+sol

13 2197 32 768 000 102 984 375 12 587 511 13 182 28 78 13.4 5.7 20.5 19.4 1.6 21.0 64 41.5 7.28

16 4096 32 768 000 113 799 168 16 980 948 24 576 16 256 5.4 3.6 10.0 8.8 1.1 9.8 59 19.8 4.68

20 8000 32 768 000 117 912 000 22 406 028 48 000 28 286 1.8 8.2 10.7 3.3 1.5 5.0 55 15.7 9.70

Table 5: Strong scalability for 33M elements

10

Figure 8: Graph of the strong scalability for 7.7M elements – total time [sec]

Figure 9: Graph of the strong scalability for 33M elements – total time [sec]

4. Conclusions

In this paper several codes capable of solving multiphysics multiscale problems were discussed. Their
limitations in term of solving really large problems together with limitations in term of a mesh
generation for complex geometries creates a bottleneck for multiphysics multiscale simulations of real
world problems. We have proven that we are able to solve efficiently large-scale CSM problems with
billions of unknowns using FETI methods and algorithms implemented in our FLLOP library. These
solvers unlike those contained in other CSM packages preserve high parallel and numerical
scalabilities. The FLLOP library provides the general FLLOP_AIF interface to other libraries such as
Elmer and OpenFOAM, so that the employed solvers can enjoy scaling up to ten thousands cores for
CSM problems, especially if local problems are large enough. This is very promising for the scaling of

0

5

10

15

20

25

30

35

40

512 1024 2048 4096
number of cores (log2 scale)

ti
m
e
[s
ec
]

0

5

10

15

20

25

30

35

40

45

2048 4096 8192

number of cores (log2 scale)

ti
m
e
[s
ec
]

11

FSI applications. To solve FSI problems the CFD-CSM coupler has to be at a disposal. It will also
require an efficient mesh generator to prepare large meshes.

References

[1] http://en.wikipedia.org/wiki/Multiphysics
[2] http://en.wikipedia.org/wiki/Multiscale_modeling
[3] http://www.mcs.anl.gov/petsc/
[4] http://industry.it4i.cz/produkty/fllop/
[5] http://icl.cs.utk.edu/magma/software/
[6] http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
[7] https://hpcforge.org/plugins/mediawiki/wiki/elmer/index.php/Docs
[8] http://www.csc.fi/english/pages/elmer
[9] http://www.code-aster.org/
[10] http://www.code-saturne.org/
[11] http://www.openfoam.org/

Acknowledgements

This work was financially supported by the PRACE-3IP project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-312763.
This publication was also supported by the Projects of major infrastructures for research, development and
innovation of Ministry of Education, Youth and Sports (LM2011033), the European Regional Development
Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

