

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Performance Analysis of Alya on a Tier-0 Machine using Extrae

Jorge Rodríguez a*

aBSC-CNS: Barcelona Supercomputing Center, Torre Girona, C/Jordi Girona, 31, 08034 Barcelona, Spain

Abstract

Alya [5] is a computational mechanics code capable of solving different physics. It has been extensively used in
MareNostrum III (BSC’s Tier-0 machine), and it has been also used as a benchmarking code in PRACE Unified
European Applications Benchmark Suite. In this document, Extrae will be used to collect and analyze
performance data during an Alya simulation in a petaflop environment.

As a result of the performance analysis using Extrae [2] [3], some potential improvements in Alya have shown
up, and if considered, exascale scalability could be achieved.

Application Code: Alya

1. Introduction

Alya is a computational mechanics code developed at BSC, which solves partial differential equations (PDEs) in
non-structured meshes, using finite element methods. Among the problems it solves are: convection-diffusion
reactions, incompressible flows, compressible flows, turbulence, bi-phasic flows and free surface, excitable
media, acoustics, thermal flow, quantum mechanics (DFT) and solid mechanics (large strain).

The source code is written in Fortran 90/95 and parallelized using MPI and OpenMP. Being a large scale
scientific code, Alya demands substantial I/O processing, which may consume considerable time and can
therefore potentially reduce speed-up at exascale.

Alya is organized in modules that solve different physical problems. These modules are now being used in
production, and scalability has been proven on 20,000 cores using meshes with billions of elements. The code
has been tested and proven to run efficiently on many Tier-0 machines such as JUGENE/JUQUEEN, FERMI
(BlueGene/Q), CURIE (Bull Cluster) and other Intel-based clusters around the world.

2. Code porting and tracing

In order to compile a stable release of Alya, firstly we have to adapt a configure file to tune compiler flags and to
use the available software components in MareNostrum III (Intel MPI, OpenMP, HDF5, METIS etc.). For the
current compilation, the following components will be used:

-Intel MPI version 4.1.1.036
-Third party library: Metis 4.0.1

* Corresponding author. E-mail address: Jorge.rodriguez@bsc.es

2

f90== mpif90 -module $O -c –O2
fpp90== mpif90 -fpp -module $O -c –O2
cpp== mpicc –c –O2
link== mpif90 -L../../Thirdparties/metis-4.0/ -lmetis

Note that mpif90 and mpicc are wrapper commands to ifort and icc Intel compilers:

icc -I/gpfs/apps/MN3/INTEL/impi/4.1.1.036/intel64/include
-L/gpfs/apps/MN3/INTEL/impi/4.1.1.036/intel64/lib -Xlinker --enable-new-dtags -Xlinker -rpath
-Xlinker /gpfs/apps/MN3/INTEL/impi/4.1.1.036/intel64/lib -Xlinker -rpath -Xlinker
/opt/intel/mpi-rt/4.1 -lmpigf -lmpi -lmpigi -ldl -lrt –lpthread

ifort -I/gpfs/apps/MN3/INTEL/impi/4.1.1.036/intel64/include/gfortran
-I/gpfs/apps/MN3/INTEL/impi/4.1.1.036/intel64/include
-L/gpfs/apps/MN3/INTEL/impi/4.1.1.036/intel64/lib -Xlinker --enable-new-dtags -Xlinker -rpath
-Xlinker /gpfs/apps/MN3/INTEL/impi/4.1.1.036/intel64/lib -Xlinker -rpath -Xlinker
/opt/intel/mpi-rt/4.1 -lmpigf -lmpi -lmpigi -ldl -lrt -lpthread

For the purpose of this study, we will use 2 of the modules provided by Alya: ‘nastin’ and ‘parall’. These
modules have to be configured and compiled following these steps:

configure -g -f=configure-linux-mn.txt nastin parall
make

After a successful compilation, the executable file Alya.g will be generated. The next step is to create a trace
file of the execution for the subsequent analysis. In order to achieve it, Extrae will be used to instrument the code
and to collect the performance data:

1. Selection of the PAPI hardware counters to be collected at runtime: Total instructions, Total cycles
and Level 1 data cache misses. An XML file with the following format should be edited:

<?xml version='1.0'?>
<trace enabled="yes"
 home="/apps/CEPBATOOLS/extrae/latest/impi/64"
 initial-mode="detail"
 type="paraver"
 xml-parser-id="Id: xml-parse.c 2327 2013-11-22 11:47:07Z harald $">
 <mpi enabled="yes"> <counters enabled="yes" /> </mpi>
 <openmp enabled="no"><locks enabled="no" /><counters enabled="yes" /></openmp>
 <pthread enabled="no"><locks enabled="no" /><counters enabled="yes" /></pthread>
 <callers enabled="yes"><mpi enabled="yes">1-3</mpi><sampling enabled="no">1-5</sampling>
 </callers>
 <user-functions enabled="no"><counters enabled="yes" /></user-functions>
 <counters enabled="yes">
 <cpu enabled="yes" starting-set-distribution="1">
 <set enabled="yes" domain="all" changeat-globalops="5">
 PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM
 <sampling enabled="no" frequency="100000000">PAPI_TOT_CYC</sampling>
 </set>
 <set enabled="yes" domain="user" changeat-globalops="5">
 PAPI_TOT_INS,PAPI_FP_INS,PAPI_TOT_CYC
 </set>
 </cpu>
 <network enabled="no" />
 <resource-usage enabled="no" />
 <memory-usage enabled="no" />
 </counters>
 <storage enabled="no">
 <trace-prefix enabled="yes">TRACE</trace-prefix>
 <size enabled="no">50</size>
 <temporal-directory enabled="no"></temporal-directory>
 <final-directory enabled="no"></final-directory>
 <gather-mpits enabled="no" />
 </storage>
 <buffer enabled="yes"><size enabled="yes">500000</size><circular enabled="no" />
 </buffer>
 <trace-control enabled="no">
 <file enabled="no" frequency="5M"></file>
 <global-ops enabled="no"></global-ops>
 <remote-control enabled="no">
 <signal enabled="no" which="USR1"/>
 </remote-control>
 </trace-control>
 <others enabled="no"><minimum-time enabled="no">10M</minimum-time></others>

3

 <bursts enabled="no">
 <threshold enabled="yes">500u</threshold>
 <mpi-statistics enabled="yes" />
 </bursts>
 <cell enabled="no">
 <spu-file-size enabled="yes">5</spu-file-size>
 <spu-buffer-size enabled="yes">64</spu-buffer-size>
 <spu-dma-channel enabled="no">2</spu-dma-channel>
 </cell>
 <sampling enabled="no" type="default" period="50m" />
 <merge enabled="no" synchronization="default" binary="Alya.g" tree-fan-out="16"
 max-memory="512" joint-states="yes" keep-mpits="yes" sort-addresses="yes"
 remove-files="no"
 >
</merge>
</trace>

2. Adapt a wrapper script that will be executed before the executable file. This wrapper depends on the
used MPI implementation (Intel MPI, OpenMPI), and on the programming language of the source code
(C, Fortran).

#!/bin/bash

export EXTRAE_HOME=/apps/CEPBATOOLS/extrae/latest/impi/64
export EXTRAE_CONFIG_FILE=extrae.xml
For C and Fortran apps
export LD_PRELOAD=${EXTRAE_HOME}/lib/libmpitrace.so:${EXTRAE_HOME}/lib/libmpitracef.so

Run the desired program
$*

3. Submit a job with the previous trace wrapper script in the following way:

mpirun ./trace.sh ./Alya.g input

4. Once the job has been successfully executed, the performance data per core must be collected and
merged into the single trace file (with the extension .prv). In order to do it, we must create a parallel
job in MareNostrum such as:

#!/bin/bash
#BSUB -n 256
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -R"span[ptile=16]"
#BSUB -W 1:00

mpirun /apps/CEPBATOOLS/extrae/latest/impi/64/bin/mpimpi2prv -e ./Alya.g -syn -f
./TRACE.mpits -o alya_4096.prv

5. The generated trace file can now be opened with Paraver [2][3] for performance analysis by
executing:

/apps/CEPBATOOLS/wxparaver/latest/bin/wxparaver alya_256.prv

3. Performance analysis

The code of Alya [1] is modular and it is developed using finite element methods, which makes it particularly
adaptable in terms of scalability.
For this study, we will focus on the MPI version of Alya; however, OpenMP support is also available to allow
shared memory parallelism within a compute node.
Basically, Alya uses mesh partitioning which is automatically done by METIS [4]. As a result, METIS creates a
set of subdomains that communicate via MPI with a typical Master-Slave strategy.
Within this strategy, the master process reads the mesh and performs the partition of the mesh into subdomains,
which will be managed by the rest of the processes (slaves). These processes will be in charge of solving the
resulting system solution in parallel.

4

In the assembling tasks, no communication is needed between the slaves, and the scalability depends only on the
load balancing.
In the iterative solvers, the scalability depends on the size of the interfaces and on the communication
scheduling.
During the execution of the iterative solvers, two main types of communications are required:

- Global communications via MPI_AllReduce, which are used to compute residual norms and scalar
products

- Point-to-point communications via MPI_SendRecv, which are used when sparse matrix-vector products
are calculated.

All solvers need both types of communications

In the current study, we will use Alya executions with Test Case B as input (a 27 million mesh representing the
respiratory system), which can be obtained from PRACE UEABS [6].

As we can see in a general Paraver window, the colour meanings are:

- Blue for computation
- Orange for collective calls
- Yellow for source and destination of MPI calls

In the following figure (Fig. 1), we have an Alya trace execution using 2048 processors in MareNostrum III.
Figure 1 represents the initialization steps of Alya, and we can see that there is some load imbalance between
tasks, as they have different duration depending on the workload.

5

Figure 1: Alya trace file with 2048 processes

Paraver is also able to show a timing table, called Histogram, in which the different timings for a certain
operation can be checked. In this case (Fig. 2), we can see a variation in compute time between threads in the
range of 57 ms – 760 ms. However, this specific part of the code is not iterative, as it is only executed at start-up,
hence optimization of this part of the code would not make a significant impact on the overall performance of the
code.

6

Figure 2: Histogram of an Alya execution with 2048 processes

Trace files obtained with Extrae collect a large amount of data (hardware counters, states, bursts, events), which
may lead to a trace file of several gigabytes in size (e.g. the 2048-core execution generated a 66 GB trace file).
As it is not possible to manage such an amount of data on an average computer, there are some options to reduce
the trace file size to a few gigabytes or even some megabytes in size. Among these options, a trace file can be cut
just for a specific time interval, or the trace file can be filtered to show some of the events in the trace.
However, in the next part of the study we will focus on the same Alya execution using 256 cores, as the
performance bottlenecks detected will also affect larger executions.

In Fig.3 we have a general Alya execution with 256 processes, and we will focus on the largest communication
part (in yellow).

Figure 3: Alya trace file with 256 processes

Consequently, if we zoom in the largest yellow part, we will see an iterative part of the code, show in Fig.4

7

Figure 4: Iterative part of Alya with 256 processes (zoom out)

After a close look, we can see some load imbalance in the par_operat()Fortran routine between the different
processes (Fig.5 in green). According to the histogram (Fig.6) at this part of the execution, the timings in
par_operat() calls vary from 106 ms to 292 ms.

If we look at the source code for subroutine par_operat() we can check that depending on the process rank
there are different loops and different MPI_AllReduce() calls to be executed, which will explain the mentioned
behaviour.

Figure 5: Iterative part of Alya with 256 processes (zoom in)

Figure 6: Histogram of an Alya execution with 256 processes

8

4. Conclusion

In this study, we have analysed the performance of a Tier-0 code (Alya) using Extrae and Paraver for collecting
and viewing the performance data.
Moreover, we have verified the powerful options provided by Extrae and Paraver in terms of detail, insight and
parallel behaviour.
Regarding the use of Extrae and Paraver, we confirm that they are very valuable tools when getting an in-depth
analysis of a code’s behaviour. We also conclude that it is a key toolset in the exascale path because of its low
level detail of hardware analysis. However, when generating trace files for a very large amount of cores (10,000
cores or above), we may have some intricacy in merging the performance data into one single trace file, or even
managing a trace file of several gigabytes.

References
[1] G. Houzeaux, R. de la Cruz, M. Vázquez, Parallel Uniform Mesh Subdivision in Alya, PRACE deliverable
[2] BSC Performance Tools , Paraver internals and details,

http://www.bsc.es/ssl/apps/performanceTools/files/docs/W2_Paraver_details.pdf
[3] BSC Performance Tools, Tools Scalability,

http://www.bsc.es/ssl/apps/performanceTools/files/docs/T1_Scalability.pdf
[4] METIS, Family of Multilevel Partitioning Algorithms, http://glaros.dtc.umn.edu/gkhome/views/metis
[5] Alya System, http://www.bsc.es/computer-applications/alya-system
[6] PRACE UEABS, Unified European Applications Benchmark Suite, http://www.prace-ri.eu/ueabs?lang=en

Acknowledgements
This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-312763.
The work is achieved using the PRACE Research Infrastructure resources MareNostrum III (BSC-CNS),
Barcelona.

