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Abstract 

This study has profiled the application Code Saturne, which is part of the PRACE benchmark suite. The profiling has been 
carried out with the tools HPCtookit and Tuning and Analysis Utilities (TAU) with the target of finding compute kernels 
suitable for autotuning. 
Autotuning is regarded as a necessary step in achieving sustainable performance at an Exascale level as Exascale systems 
most likely will have a heterogeneous runtime environment. A heterogeneous runtime environment imposes a parameter 
space for the applications run time behavior which cannot be explored by a traditional compiler. Neither can the run time 
behavior be explored manually by the developer/code owner as this will be too time consuming. 
The tool Orio has been used for autotuning idenitified compute kernels. Orio has been used on traditional Intel processors, 
Intel Xeon Phi and NVIDIA GPUs.The compute kernels have a small contribution to the overall execution time for Code 
Saturne. By autotuning with Orio these kernels have been improved by 3-5%.. 
 

1. Introduction 

The goals of this task have been to apply profiling tools and autotuning techniques to a real application 
important in PRACE. The application selected is Code Saturne, a Computaional Fluid Dynamics software 
package which is developed by Électrcité de France (EDF). Code Saturne is part of combined the PRACE and 
DEISA Unified European Application Benchmark Suite (UEABS). 

Profiling and auto tuning is regarded as important and necessary steps for enabling a software for an exascale 
future. While profiling give insight to application behaviour, in an exascale environment will be highly 
dependent upon the input dataset. Autotuning offer methods to explore the parameter space governing the run 
time behavior for an exascale application in the combination with the dataset. As an application on an exascale 
system will be executed in a heterogeneous environment, the optimal execution path will not necessarily be 
known or found at a compile time. Search through different combinations of memory, cache and thread use, to 
mention a few parameters, needs to be carried out to find an optimal execution path, combining the best use of 
the different run time environments available. 

1.1. On the road to exascale 

State of the art multi-petascale systems comes in three hardware varieties[7] 

 multicore systems like the Japanese K-computer 
 manycore  systems like JUQUEEN or the U.S Sequoia 
 heterogeneous systems which combines traditional processor cores with accelerator processing units like the 

U.S systems Titan or Stampede 
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Of these technologies, only the line with accelerators seems to offer a path to Exascale. An Exascale system 
based on multicore technology does not seem feasible due to power requirements. The product line with 
embedded/manycore processors seems to end with the Blue Gene/Q design, which is the end of the Blue Gene 
line. This leaves us with the heterogeneous technology as the path forward towards Exascale performance. 

Increasing application performance implies increased thread level-parallelism in the application. Huge 
performance gains can only be achieved by utilizing the abundance of threads which are offered by accelerator 
technologies like Graphic Processor Units (GPU) or many-core architectures like the Intel Xeon Phi. As pointed 
out in our previous report[8], adding an accelerator on to a compute node, increases the complexity of the run 
time system many fold. As heterogeneous systems contain two run time environments, the questions become 
what part of the application to run where, in what proportion.  

Consequently code developers are faced with a landscape where the optimal executable cannot be produced by a 
traditional compiler alone. Different executions strategies needs to be considered, loops needs to be 
unrolled,possibly resulting in statements that can be executed in parallel by several  threads, costly memory 
operations need to be minimized, and cache needs to be properly used both among traditional multi-core 
processors as well as co-processing. Hence, profiling becomes necessary for understanding code behaviour and 
identifying parts suitable for acceleration and autotuning becomes necessary for finding the executable with best 
performance. The search done with autotuning, may for a specific application even yield different executables 
for different workloads.   

The profiling has been done with two different tools, HPCToolkit[3] and Tuning and Analysis Utilities 
(TAU)[5]. Auto-tuning has been carried out with Orio[6]. 

2. System setup and profiling 

The work has been carried out on local workstations or on the Norwegian HPC-cluster “vilje”.”vilje” is a SGI 
ICE X system consisting of 1404 nodes connected with a Infiniband FDR fabric and a Lustre parallel file system. 
Each node has 32 GB of memory and two eight-core processors, giving a total of 16 cores per node. The 
processors are Intel Xeon 2670, running at 2.6 GHz with 20 MB L3-cache. The nodes are diskless. 

SGI MPT 2.06 and MPT 2.09 have been used as MPI library for Code_Saturne. All our results are based on a 
standard build of Code_Saturne version 3.0.1, compiled with Intel compilers (version 14.0.1). We configured 
Code_Saturne for Intel MKL and large mesh support (--with-blas --enable-long-gnum). For profiling with 
HPCToolkit, a fully optimized debug build has been used (-g -O3 -debug inline-debug-info). 

The software tools which have been employed are Tuning and Analysis Utilities (TAU) version 2.23, 
HPCToolkit version 5.3.2 and,Orio version 0.2.2. 

2.1. The application Code Saturne 

Code Saturne is an open source software package which can be used for CFD simulations. It solves the Navier-
Stokes equations for different types of flow. For turbulence simulations can Renynolds-Averaged Navier-Stokes 
(RANS) metods or Large Eddy Simulations (LES) be used. The software have also specific modules for 
modelling combustion of coal or oil, semi-transparent radiative transfer, particle-tracking with Lagrangian 
methods, Joule effect, electrics arcs, weakly compressible flows, atmospheric flows, rotor/stator interaction for 
hydraulic machines  

The software is developed by EDF. 

2.2. Tuninig and Analysis Utilities (TAU) 

TAU Performance System is a portfolio of tools for doing performance analysis of parallel programs written in 
Fortran, C, C++, UPC, Java, Python. TAU is capable of gathering performance information through 
instrumentation of functions, methods, basic blocks, and statements as well as event-based sampling. After a 
successful installation, TAU provides these scripts: tau_f90.sh, tau_cc.sh, and tau_cxx.sh to instrument and 
compile Fortran, C, and C++ programs respectively.  TAU is developed by University of Oregon, Los Alamos 
National Laboratory and Forschungszentrum Jülich.  
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2.3. HPCToolkit 

HPCToolkit is a suite of tools for performance measurement and analysis which is based on statistical sampling 
of timers and hardware performance counters. Program instrumentation is done by using the hpcrun launch 
script which inserts profiling code via LD_PRELOAD. To have performance information attributed to loops and 
source code lines (and not only on a function-level), debugging information needs to be included into the binary. 
Apart from that, no additional changes to the source code or to the build process are required. HPCToolkit is 
particularly well suited for performance analysis of compute kernel functions. It introduces low instrumentation 
overhead (approx. 3-5%) and yields accurate and detailed (source-line-level) performance information [3], [4]. 

2.4. Orio 

Orio is a tool for auto-tuning of performance critical regions of code - typically at the level of C or Fortran loops. 
Orio focuses on thread-level (“intra-node”) optimization and is therefore well suited for optimization of 
computation kernel functions.  

Conceptionally, the input to Orio is an annotated computation specification written in some domain specific 
language. The output is an implementation of the given computation specification in a selected target language 
(currently C/C++, CUDA or OpenCL supported) which is optimized for a specific problem size and system 
architecture with respect to the given annotations. 

As input language, currently just the so-called loop-language is implemented, which is a basically C with certain 
restrictions on how loop bounds and index increments may be formulated. However, future extensions of Orio 
may as well support higher-level input languages such as for example Matlab. Such languages allow concise 
representations of more complex computations (e.g. operations on matrices and vectors) and make possible the 
implementation of powerful higher-level code transformations, resulting ideally in both, reduced code 
development time and better runtime performance. 

The typical workflow for performance optimization with Orio is as follows: Given an existing application and 
some run-time critical region of code, first a computation specification for Orio has to be created. In case that the 
original application is written in C, this step usually involves only marginal adaptations to the given original 
code.  

Second, the computation specification has to be annotated in order to instruct Orio which code transformations to 
apply (e.g. loop unrolling) and which optimization parameters to use for these transformations (e.g. loop unroll 
factors). All optimization parameters together with their associated allowed value ranges give rise to an 
(exponentially large) optimization parameter space. 

According to the given computation specification and optimization parameter space, Orio generates, compiles, 
executes and times many different program versions. As output it reports the optimization parameter 
configuration which led to the best observed performance as well as the associated generated code, which may 
manually be reintegrated back to the original application. 

For this empirical tuning process, different search heuristics (e.g. Exhaustive search, random search, simulated 
annealing, etc.) and search limitations (e.g. maximum search time) can be selected. However, not all of them are 
currently implemented [6] and [11]. 

3. Performed work and results 

3.1. Testing and benchmark cases 

For identification of critical kernel functions which may serve as candidates for auto-tuning, two benchmark 
cases for Code_Saturne have been prepared. The first benchmark case, “T-junction”, has been used for 
preliminary scalability and profiling results and for comparison and validation of the results obtained with the 
final (larger) “Tube bundle” case. 

3.1.1. The T-junction case 
We followed the official Code_Saturne tutorial case “Turbulent mixing in a T-junction”,[2]. The modeled 
physical problem is turbulent mixing between hot and cold water inside a pipe which is composed of a T-
junction and an elbow.  

Two variants of this case have been created. For the first variant, we used the precise tutorial parameters and 
geometry, i.e. pipes with circular cross-sectional area. This yields an unstructured mesh with mixed cell types. 
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Unfortunately, refinement of this mesh beyond 4 million cells turns out to be problematic. For this reason, the 
mesh geometry has been simplified. By using cuboid building blocks, we obtain an easily scalable purely 
hexahedral mesh. Note that the area of the tube cross-section is roughly the same for both geometries and the 
physical parameters are the same for both test cases. 

 

 

Figure 1: Tubular (left) and hexahedral (right) T-junction mesh geometry. 

3.1.2. The Tube bundle case 
The chosen benchmark case was based on the simulation of the flow over a staggered tube bundle as a part of a 
nuclear reactor with Large Eddy Simulation (LES). The benchmark problem has been selected for evaluation of 
the parallel performance of PRACE Tier-0 systems and the comparative results can be found in Moulinec et al. 
[9].  
Figure 2 shows the computational domain, a subset of the tube bundle simulation. The tube diameter is D=22.7 
mm and length is L= 64 mm. Reynolds number based on the bulk velocity and tube diameter (Re=UD/ν) is 
18,000. The computational domain is created by extracting only one tube and the surrounding fluid part from 
flow field around the tube bundle. The faces of this domain are considered as periodic faces as seen in the figure.  

 

 

Figure 2: Flow over tube bundle 
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Figure 3: Mesh for one tube (left) and multiplied (3x3) mesh (right) 

 
The resulting domain and the created mesh can be seen in Figure 3(left). In this example, the mesh contains 
12,805,120 hexagonal cells. The mesh for a single tube is copied in a formation (3x3) to create a bundle which 
can be seen in Figure 3(right). With this methodology, it is possible to reach over 200 million cells with a small 
effort. Code_Saturne is able to copy or multiply one single mesh zone to create larger domains or merge 
different mesh zones which are created separately. This process can be done in parallel to avoid memory 
overflows. More details about the flow parameters and mesh can be found in Moulinec et al. [9]and 
Benhamadouche and Laurence [10]. In these benchmark tests, 4x4 (51 Million) and 16x16 (204 Million) 
configurations are used as seen inTable 1. 
 

Type of mesh Number of cells 

Single tube(original) 12,805,120 

2x2 full tubes 51,220,480 

4x4 full tubes 204,881,920 

Table 1: Mesh sizes for Tube bundle case 

3.1.3. Preliminary scalability results 
Code_Saturne is implemented as hybrid application, i.e. it offers parallelism at the level of message passing 
(MPI) and optionally threading (OpenMP.) In order to find a good ratio between number of MPI ranks and 
OpenMP threads for optimal computation efficiency, we first examined the T-Junction case with tubular pipe 
geometry, 218k cells mesh, running on 1 computation node. Varying the number of MPI ranks while leaving the 
total number of OpenMP threads (16) constant shows that the best efficiency is achieved with a purely MPI-
parallelized version of Code_Saturne  (seeTable 2). We therefore simply disabled OpenMP in the build process 
for all our further investigations. 

 

MPI ranks Threads per MPI rank Wall clock (s) 

16 1 105 

8 2 120 

4 4 143 

2 8 172 

1 16 325 

Table 2: Parallel efficiency comparison when utilizing all 16 cores of one computation node: 
Best efficiency is achieved when using a non-hybrid (MPI-only) version of Code_Saturne. 
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3.2. Profiling and identification of performance critical kernel routines 

3.2.1. TAU results 
Simulations are performed for 100 time steps for each simulation. The time step size is 2×10-5 seconds. In Figure 
4 and Figure 5, profiling results based on 2048 and 4096 CPUs are showed for the case for 204 million cells 
Tube bundle test case. For both calculations, _mat_vec_p_l_native and _iterative_scalar_gradient functions 
have the highest exclusive time disregarding MPI routines. The total wall clock time is around 1200 and 700 
seconds for the cases with 2048 and 4096 cores respectively. Note that the profile figures show only the essential 
section of  the profile listings, as a complete profile listing is to large, see Appendix B for a full profile listing. 
 

 

Figure 4: Profiles of functions (averaged on 2048 cores-128 nodes) fromCode_Saturne, in decreasing order of exclusive time, 204M case. 

 

Figure 5: Profiles of functions (averaged on 4096 cores-256 nodes) from Code_Saturne, in decreasing order of exclusive time, 204M case. 

In Figure 6, Figure 7 and Figure 8, profiling results based on 1024, 2048 and 4096 CPUs are showed for the case 
for 51 million Tube bundle test case. For both calculations, _mat_vec_p_l_native and _iterative_scalar_gradient 
functions again have the large exclusive time than the others. The total wall clock time is around 527, 368 and 
302 seconds for the cases with 1024, 2048 cores and 4096 cores respectively. The exclusive time for MPI calls 
are highly increasing by CPU number  and _mat_vec_p_l_native and _iterative_scalar_gradient functions has 
very small exclusive time for 51 million mesh especially when 4096 CPUs is used.  

 
 

Figure 6: Profiles of functions (averaged on 1024 cores-64 nodes) from Code_Saturne, in decreasing order of exclusive time, 51M case. 
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Figure 7: Profiles of functions (averaged on 2048 cores-128 nodes) from Code_Saturne, in decreasing order of exclusive time, 51M case. 

 

Figure 8: Profiles of functions (averaged on 4096 cores-256 nodes) from Code_Saturne, in decreasing order of exclusive time, 51M case. 

3.2.2. HPCToolkit results 
As a simple metric for identification of performance critical kernel routines, we select the number of processor 
cycles (PAPI_TOT_CYC) spent within a given routine R, excluding those cycles which are spent in routines 
called by R. We call this metric the exclusive time of a routine. 

With HPCToolkit we examined both, the T-junction and the Tube bundle case. For the T-junction case, we use 
the purely hexahedral variant, meshed with 54 million cells. The mesh size for the Tube bundle case is 200 
million cells. The functions with highest exclusive time for these two test cases are listed in Table 3 and Table 4. 
In both cases, the routine _mat_vec_p_l_native has a relative high contribution to the overall runtime. The 
routine _iterative_scalar_gradient seems to be the most critical only for the Tube bundle test case. The 
explanation for this seems to lie in the fact that _iterative_scalar_gradient is significantly faster for perfectly 
orthogonal meshes than for more typical meshes with moderate non-orthogonality, like the Tube bundle case. 

 256 512 1024 2048 

pthread_spin_lock 3.5% 6.2% 13.9% 17.3% 

poll_quicks 3.6% 6.0% 7.1% 8.8% 

MPI_SGI_shared_progress 3.9% 6.4% 7.0% 8.4% 

_mat_vec_p_l_native 20.8% 16.2% 8.9% 4.5% 

_iterative_vector_gradient 4.6% 4.2% 3.6% 2.4% 

_iterative_scalar_gradient 2.7% 2.4% 2.1% 1.4% 

_conjugate_gradient 7.2% 4.1% 1.5% 0.8% 

_polynomial_preconditionning 4.6% 2.9% 1.2% 0.5% 

_diag_vec_p_l 4.5% 3.4% 1.3% 0.4% 

cs_dot_xy_yz 3.1% 2.2% 0.9% 0.4% 

Table 3: Hotspot routines by exclusive time for the 54M T-junction test case for different numbers of MPI processes. 
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 1024 2048 4096 8192 

pthread_spin_lock 7.7% 11.1% 13.9% 17.9% 

~unknown-proc~ 4.0% 5.8% 7.3% 9.5% 

MPI_SGI_shared_progress 3.7% 5.5% 6.7% 9.3% 

_iterative_scalar_gradient 17.3% 15.3% 13.3% 8.3% 

poll_quicks 3.1% 4.2% 5.5% 6.5% 

_mat_vec_p_l_native 16.1% 13.1% 10.1% 4.6% 

_initialize_scalar_gradient 3.4% 2.8% 2.3% 1.3% 

_jacobi..0 3.3% 2.2% 1.5% 0.6% 

_conjugate_gradient 2.9% 1.6% 0.8% 0.5% 

Table 4: Hotspot routines for the 200M Tube bundle case for different numbers of MPI processes. 

 

Figure 9: Visual comparison of hotspot routines for T-Junction (top) and Tube bundle (bottom) testcase. 

3.2.3. Selected kernel routines for optimization 
The above profiling results suggest putting our focus on the two kernel routines _mat_vec_p_l_native and 
_iterative_scalar_gradient. For the following, we introduce the abbreviations MVN (_mat_vec_p_l_native) and 
ISG (_iterative_scalar_gradient) for these two routines. 

 

 

Figure 10: Runtime critical loop within the kernel routine _mat_vec_p_l_native. 

MVN computes a matrix vector product y = Ax for a sparse n-by-n matrix A, where n corresponds to the number 
of cells in the process local part of the mesh. Note that the matrix entries ai,j of A are nonzero only if i = j or if 
the cells with indices i and j are adjacent. The most time-consuming part of MVN is the calculation of the off-
diagonal portion of the matrix vector product, where there exist two different code paths for the symmetric and 
general case respectively. For our test cases, both code paths account for approximately half of the total runtime 
of MVN. For Orio optimization, we looked at the symmetric case only and selected the critical loop listed in 
Figure 10- the asymmetric case can be handled in a completely analogous way. 

for (face_id = 0; face_id <= n_faces-1; face_id++) { 
ii = face_cel_p[2*face_id] -1; 
   jj = face_cel_p[2*face_id + 1] -1; 
   y[ii] += xa[face_id] * x[jj]; 
   y[jj] += xa[face_id] * x[ii]; 
} 
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ISG serves for the computation of cell gradients. A special iterative method is employed for non-orthogonal 
meshes. ISG consists of more than 500 lines of C code, making it hard to apply Orio to the whole routine. We 
therefore only concentrate on the most runtime-critical nested loop within ISG, listed in Figure 11 and 
accounting for approximately 60% of the total runtime of ISG. 

 

Figure 11: Runtime-critical loop within the kernel routine _iterative_scalar_gradient. 

4. Optimization with Orio 

4.1. Optimization for CPU 

Following Orio’s standard workflow, we isolated the two performance critical loops of MVN and ISG 
(seeFigure 10 and Figure 11) in two separate input files for Orio and annotated the code with appropriate auto-
tuning instructions.  

In order to provide representative input data for the optimization process, we additionally inserted code into 
MVN and ISG for the file output of the relevant runtime data. We rebuilt this modified version of Code_Saturne 
and ran the 200 million cells Tube bundle test case with 1024 MPI processes, which we consider to be 
representative for typical use cases. The generated data files served as input for the Orio auto-tuning process. 

In a first step, we applied only loop-unrolling to the selected loops of MVN and ISG. For MVN, the annotated 
code for Orio is listed in Figure 12. The Orio-generated code - Orio reported 5 as optimal unroll factor - can be 
seen in Figure 13. Note that both code snippets have been shortened. Indeed the tuned code is measurably faster 
than the original code. However the speedup is not particularly high: For both routines, MVN and ISG, the total 
speedup ranges approximately between 3 and 5%, comparing generated and original code with full compiler 
optimization (-O2 or -O3). 

for (g_id = 0; g_id < n_i_groups; g_id++) { 
 
# pragma omp parallel for private(face_id, ii, jj, pfac, fctb) 
  for (t_id = 0; t_id < n_i_threads; t_id++) { 
 
    for (face_id = i_group_index[(t_id*n_i_groups + g_id)*2]; 
       face_id < i_group_index[(t_id*n_i_groups + g_id)*2 + 1]; 
       face_id++) { 
 
       ii = i_face_cells[face_id][0] - 1; 
       jj = i_face_cells[face_id][1] - 1; 
 
       pfac  =       weight[face_id]  * rhsv[ii][3] 
              + (1.0-weight[face_id]) * rhsv[jj][3] 
              + ( dofij[face_id][0] * (dpdxyz[ii][0]+dpdxyz[jj][0]) 
              +   dofij[face_id][1] * (dpdxyz[ii][1]+dpdxyz[jj][1]) 
              +   dofij[face_id][2] * (dpdxyz[ii][2]+dpdxyz[jj][2])) * 0.5; 
       fctb[0] = pfac * i_face_normal[face_id][0]; 
       fctb[1] = pfac * i_face_normal[face_id][1]; 
       fctb[2] = pfac * i_face_normal[face_id][2]; 
       rhsv[ii][0] += fctb[0]; rhsv[ii][1] += fctb[1]; rhsv[ii][2] += fctb[2]; 
       rhsv[jj][0] -= fctb[0]; rhsv[jj][1] -= fctb[1]; rhsv[jj][2] -= fctb[2]; 
 
    } /* loop on faces */ 
  } /* loop on threads */ 
} /* loop on thread groups */ 
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Figure 12: Orio input file for optimization (loop-unrolling) of _mat_vec_p_l_native. 

 

Figure 13: Orio-generated code for _mat_vec_p_l_native. 

Unfortunately, despite the kind help and advice of Orio’s main developer, Boyana Norris, we did not succeed in 
getting any further performance improvement by applying additional code transformations other than loop 
unrolling. Due to the irregular data access pattern in both selected loops, loop vectorization is not applicable. 
Moreover, loop parallelization has been excluded in the first place, because our initial investigations showed that 
Code_Saturne performs best when running with single-threaded MPI processes. 

Indeed, a deeper analysis of MVN and ISG shows that both routines suffer from the same fundamental problem: 
Both selected loops iterate exactly once over all internal faces of the process-local part of the mesh. Note that the 
loop in ISG is a bit more advanced in that the iteration is partitioned into multiple passes, where in each pass 

/*@ begin PerfTuning (   
  def build { ... } 
  def performance_counter { ... } 
  def performance_params { 
 param UF[] = range(1,8); 
  } 
  def search { 
 arg algorithm = 'Exhaustive'; 
  } 
  def input_params { } 
  def input_vars 
  { 
 arg decl_file = 'decl.h'; 
 arg init_file = 'init.c';  
  } 
) @*/ 
 
  int face_id, ii, jj; 
/*@ begin Loop( transform Unroll(ufactor=UF) 
 
  for (face_id = 0; face_id <= n_faces-1; face_id++) { 
ii = face_cel_p[2*face_id] -1; 
     jj = face_cel_p[2*face_id + 1] -1; 
     y[ii] += xa[face_id] * x[jj]; 
     y[jj] += xa[face_id] * x[ii]; 
} 
 
) @*/ 
/*@ end @*/ 
/*@ end @*/ 
 

for (face_id=0; face_id<=n_faces-5; face_id=face_id+5) { 
ii=face_cel_p[2*face_id]-1; 
   jj=face_cel_p[2*face_id+1]-1; 
   y[ii]=y[ii]+xa[face_id]*x[jj]; 
   y[jj]=y[jj]+xa[face_id]*x[ii]; 
   ii=face_cel_p[2*(face_id+1)]-1; 
   jj=face_cel_p[2*(face_id+1)+1]-1; 
   y[ii]=y[ii]+xa[(face_id+1)]*x[jj]; 
   y[jj]=y[jj]+xa[(face_id+1)]*x[ii]; 
   ... 
   ii=face_cel_p[2*(face_id+4)]-1; 
   jj=face_cel_p[2*(face_id+4)+1]-1; 
   y[ii]=y[ii]+xa[(face_id+4)]*x[jj]; 
   y[jj]=y[jj]+xa[(face_id+4)]*x[ii]; 
} 
for (face_id=n_faces-((n_faces-(0))%5); face_id<=n_faces-1; face_id=face_id+1) { 
   ii=face_cel_p[2*face_id]-1; 
   jj=face_cel_p[2*face_id+1]-1; 
   y[ii]=y[ii]+xa[face_id]*x[jj]; 
y[jj]=y[jj]+xa[face_id]*x[ii]; 
} 
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independent groups of faces are treated in parallel by multiple threads.1 However, in our single-threaded testing 
setup, this degenerates essentially to same type of iteration as in MVN. The total number of iterations for the 
outer two loops in ISG is exactly one; the innermost loop iterates over all internal local mesh faces for our test 
case.  

For both, MVN and ISG, the indices ii and jj refer to the two mesh cells which are adjacent to the mesh face of 
the current iteration. Analysis of the exported runtime data shows that these indices jump very arbitrarily from 
iteration to iteration. Consequently, the (read and write) access of associated cell data is very inefficient because 
cache misses occur with very high probability. It seems that things get even worse if this irregular data access 
pattern is carried out by multiple threads in parallel. Here, in addition to expensive load and store operations 
from/to main memory, also false sharing effects are observable (threads are frequently invalidating each others 
cache lines). We assume that this observation might be a possible explanation for the decreased efficiency when 
comparing the hybrid (MPI + OpenMP) variant of Code_Saturne with a purely MPI-parallelized version. 

We come to the conclusion that for a further optimization of MVN and ISG, a smart reorganization of the 
involved data structures (such as for example the introduction of a thread-level mesh decomposition) as well as 
appropriate algorithmic reformulations are required. Clearly such fundamental changes to the code lie beyond 
the capabilities of Orio (and most likely beyond the capabilities of any other fully-automated tool available in the 
foreseeable future). 

4.2. Optimization for GPU 

In our benchmarks, we were unable to find any functions in Code_Saturne suitable for speedup on the GPU. The 
main problem was that the execution on GPU implies relatively slow data transfers between the host memory 
and the GPU memory, i.e. transfer of function arguments and results, which require the calculation to be very 
dense and long running on CPU in order to gain performance on the GPU. However, all the hotspots we 
identified in Code_Saturne were short running functions which are called many times. Also, Orio’s code 
transformation that supports CUDA is still under development and there are significant problems when trying to 
process anything more complex than the demo codes. Thus we have tried Orio’s GPU features on a synthetic 
test, which is the usual matrix-matrix multiplication. Even though the test does not have a direct relation to 
Code_Saturne, it can demonstrate Orio’s GPU features well while maintaining simplicity. 

Orio provides kernel and host code generation and performance tuning for CUDA. In the latest revisions, at the 
time of this writing, there is also a skeleton for OpenCL support. Both features are implemented as submodules 
of the loop transformation module.  

CUDA loop transformation takes the following parameters: 

 threadCount - number of threads per block. 

 blockCount - number of thread blocks 

 cacheBlocks - boolean that controls whether to copy data that thread uses into shared memory.  

 pinHostMem - whether to pin memory on the host, so it won’t be paged out. This can speed up 
memory transfers because there is no need to copy data in host memory to a pinned buffer, but it should 
be used with care because the unpageable memory can fill up host memory pretty quickly. 

 streamCount - number of streams for overlapped computation and communication. 

 unrollInner - unroll inner loops. 

 preferL1Size - on devices where L1 cache and shared (local) memory are in the same hardware, 
this configures the size of L1 cache.  

 dataOnDevice - at the time of this writing this parameter is unused. 

Value ranges for these parameters are specified in the Orio’s performance tuning annotation and can be explored 
using the standard autotuning feature. The performance tuning part is specified in the same way as for other 
transformation (e.g. previously mentioned Loop unrolling), with the addition of build_command argument in the 
build definition, which specifies how the CUDA compiler is to be invoked. 

 

1In this context we call two faces independent, if they have no adjacent cell in common. 
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Figure 14: Matrix multiplication code annotated for Orio's CUDA transformation. 

Figure 14 shows the annotated code which is used as an input to Orio’s CUDA transformation. Because of the 
way CUDA transformation generates the code, the variables declared in PerfTuning annotation as input_vars (m, 
n, p) become global host variables, and those in input_params (M, N, P) become defined as macros. This 
complicates the transformation since not all global variables used inside code loops are recognized as arguments 
for the device kernel, and that is the reason why the N used in the code was actually the macro for input 
parameter N. There are other inconveniences in working with the CUDA transformation, such as some 
unsupported parts of the C syntax, but these can be expected to improve since the feature is still being developed. 

The generated CUDA kernel code is shown inFigure 15. Also a function for kernel launch is generated, but its 
contents are omitted for brevity. Depending on the performance tuning specification, Orio tries out many 
versions of the kernel code and launch dimensions, and generates the best performing ones along with the 
comments on their performance and selected parameters. 

 

Figure 15: Generated CUDA kernel and kernel launch function signature. 

We conclude that this feature shows a lot of promise to eliminate much of the hard work around programming 
for CUDA, especially in searching for the optimal parameters for the underlying GPU. Unfortunately, as in the 
CPU optimization case, the organization of code and algorithms in Code_Saturne remain beyond capabilities of 
this automated transformation. 

 

/* 
 * A – m x N matrix of doubles. 
 * B – N x p matrix of doubles. 
 * C – m x p matrix that holds A*B 
 */ 
 
/*@ begin Loop(transform CUDA(threadCount=256, blockCount=24,  
                              preferL1Size=16, cacheBlocks=False) 
for (i = 0; i <= m-1; i++) { 
  for (j = 0; j <= p-1; j++) { 
    s = 0.0; 
    for (k = 0; k <= N-1; k++) { 
      s += A[i*N+k]*B[k*p+j]; 
    } 
    C[i*N+j] = s; 
} 
) @*/ 
/*@ end @*/ 

__global__ void orcu_kernel146(const int m, const int p, double* A, double* B, 
double* C) { 
  const int tid=blockIdx.x*blockDim.x+threadIdx.x; 
  const int gsize=gridDim.x*blockDim.x; 
  double s; 
  int j, k; 
  for (int i=tid; i<=m-1; i+=gsize) { 
    for (j=0; j<=p-1; j++ ) { 
      s=0.0; 
      for (k=0; k<=N-1; k++ ) { 
        s=s+A[i*N+k]*B[k*p+j]; 
      } 
      C[i*N+j]=s; 
    } 
  } 
} 
 
void MatMatMult(double* A, double* B, double* C, int m, int n, int p) { 
... 
kernel launch code 
... 
} 
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4.3. Acceleration of kernel functions for Intel Xeon Phi 

Our latest attempt for increasing the performance of Code_Saturne’s kernel functions has been acceleration 
using Intel Xeon Phi coprocessors. For estimation of the optimization potential using this technology, we 
examine the performance of Code_Saturne running as single MPI process, which executes certain selected 
kernel routines on the coprocessor card. Unfortunately, Orio’s code generation support for Xeon Phi is still very 
preliminary. Therefore we manually inserted OpenMP 4.0 pragmas for offloading into Code_Saturne.  

We selected Code_Saturne’s kernel routine _jacobi as a good candidate for offloading, as it shows a significant 
contribution to the total runtime when profiling the 200 million cells Tube bundle test case (seeFigure 16). 
Moreover, its call hierarchy is not too complex which enables a relatively straight-forward migration to Xeon 
Phi. It is important to note that there is one fundamental limitation connected to our choice: Execution of the 
function _jacobi involves an MPI reduction, which is not supported in an offload region[12]. For this reason, our 
modified code only runs in the case when MPI parallelization is disabled. Nevertheless, we consider our results 
as useful in that they yield an upper bound for the acceleration potential lying in the routine _jacobi. 

 

Figure 16: HPCToolkit profile for 200M Tube bundle test case for (1.) 1024, (2.) 2048, (3.) 4096 and (4.) 8192 processes. 

For migration of _jacobi to Xeon Phi, we annotated all functions called by _jacobi with the OpenMP’s “declare 
target” pragma accordingly (#pragma omp declare target and #pragma omp end declare target), which instructs 
the compiler to additionally emit code for execution on Xeon Phi. A limitation connected to offload functions is 
that only “plain old data” types (i.e. primitive datatypes as well as structs or fixed-sized arrays and combinations 
of those) are supported as function arguments. This makes it necessary to decompose more complex data 
structures (like the Code_Saturne’s mesh data structures) into their primitive components prior to passing them 
as parameters to the offload function. In our case, this decomposition is done directly in our modified version of 
the _jacobi function. The actual computation then is delegated to a newly introduced function _jacobi_mic 
(seeFigure 17) which is executed on the coprocessor.  

In addition to these changes to the source code, also a slight modification to the standard build process is 
necessary, specifying Intel’s xiar archiving tool and the parameter -qoffload-build in order to generate shared 
library variants for Xeon Phi execution[13]. 
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Figure 17: Offloading of _jacobi to Intel Xeon Phi using OpenMP 4.0. 

 

  

Figure 18: Total runtime (s) of T-junction testcase with single-threaded host-process.  

The number of OpenMP threads for Xeon Phi is varied. 

At the time of writing, we have approximate results for the overall runtime. Exact detailed profiling results have 
proven more challenging to achieve with our modified version of Code Saturne. Figure 18 shows the wall-clock 
time for the 1 million cells hexahedral T-junction case, running on 1 MPI rank (host process) with varying 
number of threads for the Xeon Phi card. As can be seen, the runtime not change significantly depending on the 
chosen number of Xeon Phi threads. Moreover, the best performance is still achieved by the reference run with 
the original (host-only) version of Code_Saturne. From these observations we deduce that the runtime of the 
modified _jacobi function is completely dominated by data transfer operations from and to the coprocessor. 
Clearly this data transfer overhead could be reduced by copying constant mesh data (the arrays xa, ad and 
face_cel_p) to the coprocessor only once. 

According to our profiling results on the original (host-only) code version, 266 seconds (out of the total 
execution time of 332 seconds) are spent in routines other than _jacobi. The best observed runtime for the Xeon 
Phi code variant was 447 seconds (at 16 threads). Assuming that the execution time of the code outside _jacobi 
(which has not been changed) is the same for the original and modified code version, the times for _jacobi are 
332-266 = 66s (host-only) vs. 447-266 = 181s (Xeon Phi). The constant mesh data structures (the arrays xa, ad 
and face_cel_p) currently make up about 70% of the total data transferred to/from the coprocessor. When 
copying this mesh data to the coprocessor only once at the initialization phase, we therefore would obtain 54 
seconds (30% of 181s, disregarding the time spent in actual computation) as estimated lower bound for the best 
achievable runtime of _jacobi on Xeon Phi. Comparing this with the time of the host-only execution (66 
seconds), we therefore do not expect any significant acceleration potential within _jacobi using Intel Xeon Phi. 

5. Conclusion and Outlook 

In this work we aimed for the optimization and acceleration of certain selected computation kernel routines of 
Code_Saturne. This goal is quite ambitious because as part of the PRACE application benchmark suite, 

#pragma omp target \ 
map(to:\ 
var_name[0:strlen(var_name)+1],\ 
   sles_name[0:strlen(sles_name)+1],\ 
   xa[0:(symmetric ? n_faces : 2 * n_faces)],\ 
   ad[0:n_rows],\ 
face_cel_p[0:2*n_faces],\ 
rhs[0:n_rows])\ 
map(tofrom:\ 
   convergence[0:1],\ 
   vx[0:n_rows]) 
cvg = _jacobi_mic(var_name, sles_name, xa, n_cols, n_rows, ad, 
                  n_faces, n_cells_ext, symmetric, face_cel_p, 
                  convergence, rhs, vx); 

threads 
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Code_Saturne already shows a very good performance and scalability behaviour compared to other widely 
known high-performance CFD codes. 

Indeed we observed that the major performance limiting factor for Code_Saturne lies within MPI 
communications, which is not uncommon for typical well-performing HPC applications. Still, our investigations 
also revealed some optimization potential in kernel routines for sparse matrix vector products or gradient 
calculation. According to our insights, this optimization potential lies mostly in a smart reorganization of 
Code_Saturne’s mesh data structures as well as in an appropriate algorithmic reformulations which allow more 
cache friendly data access patterns. Unfortunately, such a kind of optimization lies beyond the capabilities of 
auto-tuning tools such as Orio. 

Nevertheless, we believe that code generation and auto-tuning tools such as Orio will get more and more 
essential for the development of HPC applications. Having future multi-petascale and (possibly) exascale 
systems in mind, the unbroken trend to higher degrees of heterogeneity and architectural complexity will impose 
a huge challenge to application programmers. The task of performance optimization, in particular keeping track 
of the ever-rising number of relevant optimization parameters, will be practically undoable without appropriate 
and widely automated tool support. Another trend, founded on architectural considerations for future HPC 
systems, is the increasing importance of alternative optimization objectives, such as memory accesses and 
energy efficiency [7].  

With respect to heterogeneity, there is still much ground to cover for Orio. Its support for CUDA and OpenCL is 
still quite preliminary. Another yet unsolved challenge for Orio is its extension to a tool which covers not only 
thread-level optimization, but also optimization of MPI communications. Here, a promising approach might be 
the integration of higher-level input languages which allow more abstract formulations of distributed-memory 
algorithms. Regarding optimization with respect to memory accesses and energy efficiency, Orio seems to be on 
a track: The support of autotuning with respect to hardware performance counters has been announced. 
Additional studies for multi-objective optimization with Orio have already been carried out.[11]. 
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Appendix A 

Installation of Code Saturne with TAU implementation 

Code_saturne can be compiled with different options/parameters as linear algebra libraries, partitioning methods, 
mesh importing formats, MPI/OpenMP by using several different external libraries. This document helps to 
develop and profile the code after a successful installation. In this page, practical information will be 
documented for installation on Linux. Users can download the source code and third part libraries from the links 
and follow the instructions.  The detailed installation guide can be found on the official website of EFD: 
http://code-saturne.org/cms/sites/default/files/install-3.2.pdf 

Downloading necessary files 

The instructions at this page are based on the version 3.2.2 and the source files can be downloaded from here 
http://code-saturne.org/cms/download/3.2, for all other versions: http://code-saturne.org/releases/ 
Several optional libraries can be linked with the code for a more complete experience of Code_Saturne. These 
are: 

Graphical Interface(GUI) 

This option is not necessary for VILJE. It should be installed for local computers to use GUI. 
 Libxml2 must be installed. (Can be downloaded here: http://xmlsoft.org/downloads.html) 

 PyQt and Qt must be installed.(http://www.riverbankcomputing.co.uk/software/pyqt/intro)  

 

Mesh format for pre- and post-processing 
 CGNS, is library and generic file format for CFD data, It is useful for importing mesh files from 

ANSYS. The binary files for version ( can be downloaded from http://cgns.sourceforge.net/ ) 

 MED is library and file format for the tool SALOME which is an open-source software that provides a 

generic platform for Pre- and Post-Processing for numerical simulations. The binary files for version, 

can be downloaded from here http://www.salome-platform.org/ 

 HDF5 is a data model, library, and file format for storing and managing data. It supports an unlimited 

variety of data types, and is designed for flexible and efficient I/O and for high volume and complex 

data. It can be downloaded from here http://www.hdfgroup.org/HDF5/ 

The only compulsory pre-requisites needed are compilers for C/C++/Fortran (like GNU or Intel compilers) and a 
Python interpreter.  

Parallel computing 
 MPI, is necessary for parallel computations. OpenMPI, MPICH2, Intel MPI or MPT (from SGI) must 

be installed in the system. VILJE has MPT installed. For installation at a local computer, OpenMPI is 

recommended. The library should be compiled with same compiler which will be used for building 

Code_Saturne in order to avoid possible compilation errors. 

 ParMETIS/METIS, is a set of programs for partitioning graphs, partitioning finite element/volume 

meshes. METIS is serial and ParMETIS is MPI based parallel version. 

(http://glaros.dtc.umn.edu/gkhome/views/metis) 

 PT-Scotch/Scotch, is another partitioning library. PT-Scotch works in parallel. 

(http://www.labri.fr/perso/pelegrin/scotch/scotch_en.html) 

The last versions of these libraries can be downloaded from their official website and built the binaries through 
the system compiler (it should be the same compiler that is used for building Code_Saturne). However the 
binary versions which is built for suitable Linux version can be downloaded from SALOME’s website (it 
requires a free registration): http://www.salome-platform.org/downloads/current-version 
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After downloading and installing the SALOME, the binaries of libxml2, CGNS, MED, HDF5, METIS and 
Scotch will be created. Those libraries will be used to built the Code_Saturne which will be described later in 
more detail.  

Profiling tool: TAU 
TAU(Tuning and Analysis Utilities) and PDT (Program Database Toolkit) tools should be installed in the 
system. TAU Performance System is a portable profiling and tracing toolkit for performance analysis of parallel 
programs written in Fortran, C, C++, UPC, Java, Python.TAU is capable of gathering performance information 
through instrumentation of functions, methods, basic blocks, and statements as well as event-based sampling. 
After a successful installation, TAU provides these scripts: tau_f90.sh, tau_cc.sh, and tau_cxx.sh to instrument 
and compile Fortran, C, and C++ programs respectively. PDTis used for insertion of instrumentation for 
performance profiling and tracing for TAU. 

Compiling 

The libraries and source file should be copied in a folder that is accessible as a user and be extracted from the 
source tar file. The following script is prepared as an example to configure the Code_Saturne by using TAU 
scripts tau_cc.sh, tau_cxx.sh and tau_f90.sh 
module load intelcomp/14.0.1 mpt/2.09 
SOURCE=/home/ntnu/user/code_saturne/intel_mpt/ptscotch/mk_hd_cg_io_omp/code
_saturne-3.0.1 
TARGET=/home/ntnu/user/code_saturne 
${SOURCE}/configure --
prefix=${TARGET}/intel_mpt/ptscotch/mk_hd_cg_io_omp/target_v3.2.2 \ 
--with-mpi \ 
--with-blas=/sw/sdev/Modules/intelcomp/14.0.1/mkl \ 
--with-zlib \ 
--with-med-include=/home/ntnu/user/med-3.0.6/include \ 
--with-med-lib=/home/ntnu/user/med-3.0.6/lib \ 
--with-hdf5=/home/ntnu/user/hdf5-1.8.10 \ 
--with-cgns-include=/home/ntnu/user/cgnslib-3.1.3/include \ 
--with-cgns-lib=/home/ntnu/user/cgnslib-3.1.3/lib \ 
--disable-gui \ 
--enable-mpi-io \ 
--enable-long-gnum \ 
--enable-openmp \ 
--with-scotch=/home/ntnu/user/scotch/6.0.0 \ 
CC=tau_cc.sh FC=tau_f90.sh CXX=tau_cxx.sh | tee config.log 
At this script the Intel compiler which is used to compile for TAU/PDT and SGI’s MPT for MPI should be 
loaded as a module. The configuration options should be CC=tau_cc.shCXX=tau_cxx.sh 
FC=tau_f90.sh.It is recommended to build the version in a folder with a name representing the 
configuration options. Several builts with different options help to try several types of configurations.  The GUI 
is disabled without using ‘libxml2’ option. ‘--enable-mpi-io’ and ‘--enable-openmp’ options 
activate MPI-IO and OpenMP.--with-blasoption activates the BLAS (Basic Linear Algebra Subprograms) 
librarieswhich a set of low-level kernel subroutines that perform common linear algebra operations. Intel MKL 
library is installed at VILJE. Building Code_Saturne with this option may affect the performance of the code. 
Partition method is selected as Scotch by --with-scotch option.  
After running the script, the logs can be tracked the configuration output at the log_config.txt and config.log files 
which is the default output.  After configuring the options, for to build the code, run the two scripts below 
respectively and follow the log files (make.log,makeInstall.log) 
module load mpt/2.09 
module load intelcomp/14.0.1 
make CC=tau_cc.sh FC=tau_f90.sh CXX=tau_cxx.sh | tee make.log 
module load mpt/2.09 
module load intelcomp/14.0.1 
make installCC=tau_cc.sh FC=tau_f90.sh CXX=tau_cxx.sh | tee makeInstall.log 
After a successful compilation, the environment setting should be set in .bashrc file as follows: 
PATH=${PATH}:/home/ntnu/user/code_saturne/ptscotch/mk_hd_cg_io_omp/target_v
3.2.2/bin/:$PATH 
where the path is pointing the binary file of the Code_Saturne based on the target at configuration options. Now 
‘code_saturne’ is ready as a command. 
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Appendix B 
The profile figure lists all the profiled functions for the case with 51 million cells executed over 1024 cores. 
picture 
 
 


