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Abstract 

ExaFMM is a highly scalable implementation of the Fast Multipole Method (FMM) – an O(N) algorithm for 
solving N-body interaction with applications in gravitational and electrostatic simulations. The authors report 
scaling on large systems with O(100k) cores with support for MPI, OpenMP and SIMD vectorization. The 
library also includes GPU kernels capable of running on a multi-GPU system. The objective of the project is to 
enable the use of the ExaFMM solver in the MIC architecture by performing porting, verification, scalability 
testing and providing configuration suggestions to its potential users. 
 

1. Introduction 

Determining the motions of N bodies that interact via long-distance forces is a classical problem in 
gravitational and electrostatic calculations. It has a conceptually very simple solution, but computationally a very 
intensive one – evaluating all pair-wise interactions between interacting bodies, resulting in O(N2) computational 
complexity. Using an algorithm with such complexity is not reasonable for large systems comprising millions of 
bodies. The usual strategy in such cases is to trade precision for performance by approximating the solution with 
a computationally less complex algorithm. Gravitational and electrostatic interactions follow inverse-square 
laws, thus contributions from distant bodies quickly diminishes proportional to the square of the spatial 
separation involved. This allows splitting of the effect into near-field, where interactions are precisely calculated, 
and far-field, where interactions are approximated. Far-field approximation can be done by performing series 
expansion (multipole expansion) of distant interactions, limiting the number of terms in the series based on the 
precision required, and summing the expansion coefficients of neighboring sources into a single series, 
effectively treating a cluster of source particles as a single body. The complexity of such scheme depends on the 
nature of the expansion, the number of terms used and on the mechanism of clustering the particles, but is in 
general O(N logN) [1], [2]. By applying the same idea in reverse – clustering target particles, applying far-field 
contributions to the cluster as a whole (local expansion), and then distributing the resulting total contributions 
among the clustered particles, O(N) complexity is achieved [3]. The Fast Multipole Method (FMM) is a family 
of such O(N) schemes, which may differ in various details such as the force law being approximated, nature of 
the expansions being used (e.g. Fourier Series, Taylor series in Cartesian coordinates, Spherical harmonics, etc.), 
criteria for achieving the required precision, etc. 

ExaFMM [4], [5], [6] is a highly scalable FMM implementation. The authors report scaling on large systems 
with O(100k) cores with support for MPI, OpenMP and SIMD vectorization. The library also includes GPU 
kernels capable of running on a multi-GPU system. It is actively being developed and this research is based on 
the version of the source code that was current at the start of the project, continuously merging2 with the 
upstream source code repository (https://bitbucket.org/rioyokota/exafmm-dev). 

The objective of the project is to enable the use of the ExaFMM solver in the MIC architecture by performing 
porting, verification, scalability testing and providing configuration suggestions to its potential users. 
 

                                                           
1 vpavlov@rila.bg 
2The last such merge was on 11/05/2013. 
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2. ExaFMM Algorithm Analysis 

The algorithm, as described in [3] requires that the spatial domain of the problem is hierarchically split into 
cells, each cell containing either sub-cells or a cluster of bodies. This is represented by a tree structure, which in 
3D is an oct-tree (the original paper treats a problem in 2D and thus a quad-tree is built instead). The algorithm 
starts by building the oct-tree, then performing an upward, followed by a downward pass. During the upward 
pass the multipole expansion of each cell is calculated. During the downward pass the multipole expansions are 
turned into local expansions, which at the leaf level are applied to the target bodies. Finally, near-field 
interactions are calculated directly. This requires the presence of several routines (kernels). The authors of the 
ExaFMM library came up with a convenient naming for these kernels, which we will follow throughout the 
paper. The kernels and their corresponding functionality is as follows: 
 P2P kernel (particle to particle) – this is the original pair-wise interaction between near-field bodies. It is 

applied on all particles inside a given cell or between particles in cells that are not well separated (not far 
enough of each other in order to satisfy the accuracy requirements); 

 P2M kernel (particle to multipole) – given the collection of bodies inside a cell, calculates the multipole 
expansion attributed to that cell. This kernel is applied on every leaf cell of the tree during the upward pass. 

 M2M kernel (multipole to multipole) – applied on non-leaf cells, this kernel calculates the multipole 
expansion for each cell by considering the multipole expansions of its children (8 in the case of 3D). This 
kernel is applied during the upward pass. 

 M2L kernel (multipole to local) – this kernel is applied on a pair of cells and converts the multipole 
expansion of the source cell to a local expansion of the target cell. In the original paper [3], this is done during 
the downward pass, by constructing for each visited cell an interaction list of well separated cells for which 
far-field approximation is valid. In the ExaFMM implementation this is done different, in a separate in-
between pass that uses dual tree traversal technique which considers each pair of cells in the tree. If they are 
well separated, the M2L kernel is applied; otherwise direct summation (P2P) is performed. 

 L2L kernel (local to local) – during the downward pass the local expansion of each non-leaf cell is distributed 
to its child cells (8 in the case of 3D). 

 L2P kernel (local to particle) – during the downward pass, local expansions at the leaf level are applied to the 
target particles, forming the sum of the far-field contributions. 
 
An important deviation point between the original algorithm and the ExaFMM implementation is in the way 

the oct-tree is built. In the original algorithm a balanced oct-tree is used. The depth of tree is an input parameter 
to the algorithm, usually some function of N. When dealing with balanced oct-tree of known depth, the 
interaction list of a cell (that is, the list of cells with which M2L needs to be applied) is independent of the actual 
charge distribution and can be exactly calculated using only arithmetic operations on cell indices in some form of 
space-filling curve indexing scheme. M2L is then made part of the downward pass, as described in [3]. However, 
this approach has the disadvantage that with non-uniform charge distributions the leaf-cells end up with greatly 
varying number of particles which at the end compromises the performance of the algorithm. 

To counter this, ExaFMM builds the oct-tree adaptively: starting from the root of the tree (the whole domain), 
each cell is recursively split into sub-cells only if the number of particles in it is larger than a given threshold 
(parameter ncrit in the code). This leads to a situation in which regions of space containing small number of 
bodies are represented by larger cells, while densely populated regions are represented by many smaller cells. In 
this scheme the interaction list for a cell depends on the charge distribution, which means that pairs of cells has 
to be considered and the possibilities for M2L evaluated based on the spatial separation between corresponding 
cells. If the two cells are well separated, M2L can be applied; otherwise P2P for each particles in the two cells 
has to be applied. In ExaFMM this evaluation is performed in an additional in-between pass, implemented as a 
dual tree traversal. 
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Thus, while the original algorithm has two passes, the ExaFMM has three: 
 Post-order traversal (upward) pass, in which P2M is applied at leaf cells and M2M is applied at non-leaf cells. 

The post-order ensures that when a given cell is considered for M2M, the multipole expansions of its children 
cells are already calculated, which is necessary for the correct operation. 

 Dual tree traversal in which pairs of cells in the tree is considered. If the cells are well separated, M2L is 
applied; otherwise P2P is applied. 

 Pre-order traversal (downward) pass in which L2L is applied at non-leaf cells and L2P is applied at leaf cells. 
The pre-order ensures that when a given cell is considered for L2L, the local expansion of its parent is already 
calculated, which is necessary for the correct operation. 
Even without knowing the details of the kernels involved, it can be intuitively inferred that the middle pass 

would take the majority of time, since it acts on pairs of cells, while the first and third pass consider each cell 
only once. Indeed, as shown in [6], the two most time-consuming operations are the P2P and M2L kernels, 
which are exactly the operations that occur in the middle pass. As such, they are identified as the focus of our  
optimization work. 

The algorithm 'skeleton' possesses natural recursive description. It is independent on the actual interaction 
calculated by the kernels and the expansion method being used, as long as the kernels obey the interface and 
produce physically meaningful results. The version of the library being investigated contains Laplacian kernels, 
applicable for gravitational and Coulombic interactions, in two variants: Taylor series expansion in Cartesian 
coordinates and Spherical Harmonics expansion in spherical coordinates. In this project we consider the 
Cartesian expansion, while the Spherical expansion can be the subject of a future work. 

The parallelization strategy employed by ExaFMM involves three hierarchical levels: 
 distributed-memory parallelization using MPI tasks; 
 shared-memory multi-threading inside each MPI task; 
 SIMD vectorization of some of the kernel operations; 

For MPI parallelization, the oct-tree is built in parallel, each rank operating on its local sub-tree during the 
first and third passes. Body and cell exchanges occur during the dual tree traversal, each rank calculating its 
locally essential tree (LET) – portions of the global tree that resides in other ranks and which may be involved in 
M2L and P2P calculations. Analysis of the code shows that the chosen method for calculating the LET requires 
the domain to be split between 2k ranks in a recursive bisection fashion. This means that the code can only be 
correctly executed on number of processes that is power of 2. This is a hard limitation that cannot be overcome 
without major redesign of the LET calculation. 

On the level of multi-threading, the library uses task-based parallelism for building and traversing the tree in 
the various passes. This is an obvious choice given the recursive nature of the algorithm. The other possibility 
would be to utilize work-sharing constructs in the actual calculation kernels. This would not be efficient given 
that each kernel is executed great many times, since thread spawning overhead will be massive. For example, a 
5-level oct-tree would have around 35,000 cells; M2L and P2P would be executed several million times and 
spawning work-sharing threads on each execution would definitely swamp any potential multi-threading 
performance gain. 

The library uses manual SIMD vectorization only for the P2P kernel and the direct summation used only for 
validation purposes. In all other instances it relies on compiler supplied auto-vectorization. 
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3. MIC Architecture Specifics 

The defining feature of the MIC architecture that sets it apart from other modern HPC architectures is its 512-
bit SIMD registers, which, combined with the fused multiply add (FMA), theoretically allows the simultaneous 
execution of 32  floating point operations. This is clearly stated in [7] where the theoretical peak performance in 
single precision is shown to be 

 
Clock Frequency x Number of Cores x 16 lanes x 2 (FMA) FLOPs/cycle 
 
While this is certainly beneficial for vector and matrix operations, it is clear that without applying 

vectorization techniques most of the codes will not benefit from its massive performance. A program that is not 
vectorized cannot utilize more than 3 – 6% of the massive computational power of a MIC in single precision. 
Thus, our main optimization effort was focused on vectorizing the most time-consuming calculations.  

Vectorization can be performed either automatically by the compiler, or manually, for example by using 
SIMD instruction intrinsics. While auto-vectorization is very helpful for optimizing simple loops, it does have its 
limits and programs should be (re-)factored in a way as to allow the compiler to infer possible vectorization. 
Moreover, it is not applicable in situations where loops are not present. Computationally intensive areas that are 
not organized as loops cannot be auto-vectorized, as are loops that involve functionally dependent indices. In 
these cases manual vectorization should be considered. 

Another specific of the architecture is that the MIC acts as a co-processor, which means that data exchange 
between CPU and MIC happens before and after each work unit. The two possible execution modes – offload 
and native, should be considered when porting an application or library code. Additionally, in native mode, the 
60+ cores of the MIC can be organized as a shared-memory (multi-threading), as distributed memory (MPI), or 
as a hybrid MPI+multi-threading machine. There is also the possibility to treat all cores, CPU and MIC, as 
equally participating in a heterogeneous MPI cluster. 

 

4. Porting and verification of ExaFMM 

Considering the algorithm analysis and architecture specifics outlined above, the following activities were 
planned and executed: 
 
Compilation of the library code in CPU, native MIC and hybrid setups 

In order to experiment with the three different modes of execution (offload, native and hybrid), we compiled 
the library in all three setups. Compilation was straightforward due to the excellent icc compiler that cross-
compiles for the MIC with just a simple switch setting. Only the Cartesian Laplace kernel was considered in this 
project, but compiling the Spherical Laplace kernel should be of no significant effort as well. 
 
OpenMP fix 

While the authors claim support for OpenMP, its implementation for spawning tasks was fixed in the 
development version of the library that we used. In fact, the OpenMP didn't work at all, and turning it on made 
the library slower. That is also mentioned in the Makefile. However, it turned out that the problem was not in the 
OpenMP implementation, but in the library code itself. The fix was very simple and boils down to the fact that 
#pragma omp task will ony spawn new thread only if hit inside a parallel section, which the authors didn't 
properly set. After properly setting up a parallel section around the code, OpenMP task-based parallelization 
became functional. 
 
Offloading mode 

The offloading mode was quickly abandoned after confirmation as being non-optimal. For offloading we 
considered offloading only the computational kernels and offloading the some of the dual traversal section. 

Offloading computational kernels is not effective for the same reasons for which work-sharing OpenMP 
parallelization is not. Each kernel is executed great many times and the overhead of data transfer between CPU 
and MIC would outweigh the potential performance benefits of executing the code on the MIC. We confirmed 
that with a simple test of offloading the P2P kernel and achieving much worse performance than in the original 
code executed on the CPU without offloading. 
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We also abandoned offloading the dual tree traversal section because of its recursive nature. We can only 
offload the complete traversal routine; and if we were to offload the piece of code that takes 90% of the whole 
time, we might as well compile the application in native mode and “offload” the other 10% as well. 

 
Hybrid MPI mode 

Hybrid MPI mode was abandoned because the library's MPI parallelization strategy does not allow 
differentiating of workload between different kinds of cores. In hybrid MPI mode, both CPU and MIC cores are 
involved on equal basis in the MPI communicator and since their performance is quite different, when hitting 
collective operations, the MIC cores will have to idle waiting for CPU cores to finish. This could be counteracted 
by dynamically distributing load between worker nodes or by special domain decomposition techniques that 
distribute more load to the MICs than to the CPUs, but such techniques are not implemented in the library and 
their implementation is out of scope of this project because of their complexity. 
 
Thus, native execution mode was selected as the only feasible execution mode of the library in the MIC 
architecture. 
 
SIMD Vectorization 

We reviewed the SIMD vectorization of the two most time-consuming kernels in Cartesian Laplace mode: 
P2P and M2L. 

The P2P kernel had the option of being hand-vectorized or auto-vectorized by the compiler. This option was 
controlled by a compile-time directive. Starting with the auto-vectorization mode, we found out that the compiler 
could not auto-vectorize the P2P kernel, because the inner loop was coded in a way that prevented the compiler 
from properly inferring the dependencies between iterations. After refactoring the code, the compiler was able to 
auto-vectorize the P2P inner loop. We compared the result to the hand-crafted vectorization mode, and found out 
that the auto-vectorization performs slightly better than the hand-crafted one (in the order of 2-3%). 

The M2L kernel does not contain any loops and thus cannot be auto-vectorized by the compiler. Still, the 
kernel contains many constructs of the form C[10]*M[10] + C[11]*M[11] + C[45]*M[23] + .... in its 
getCoeff routine, which gets recursively called for conversion between multipole and local expansions. The 
library includes a template class for vectors of 16 floats that uses 512-bit MIC intrinsics and  by using this class 
we were able to vectorize the getCoeff functions of the M2L kernel. 

 
Verification of the port 

Verification of the port was done by calculating the mean squared error (MSE) of a randomly chosen subset 
of 1,000 bodies between potentials obtained by running FMM calculations on 1,000,000 bodies and the 
potentials obtained for the test subset using direct pair-to-pair interaction.  For 10-order multipole expansion we 
got MSE of the order O(10-6), which is in accordance with the expectations. The same test was run on non-MIC 
architecture and showed similar MSE. 
 
Scalability testing 

For scalability testing we used the following approach: we testing the code using a fixed number of bodies 
and time steps on single MIC co-processor using different MPI-OpenMP configurations that result in maximum 
240 threads on the MIC. The domain decomposition technique used in the library and the related building of 
locally essential tree for communication with other ranks restricts the number of MPI ranks to be a power of 2. 
We used scattering affinity for the threads, which proved to be more efficient than the compact one. The results 
are shown in Table 1. Maximum performance is achieved when running 32 MPI tasks each spawning 3 threads. 
We interpret this result as being due to the fact that 1) at least two threads per core are needed to satisfy the MIC 
scheduling another thread every cycle (as explained in [7], p. 31, last paragraph); and 2) scheduled threads are 
computationally intensive and saturate their respective cores, so using more than 2 threads per core is not 
efficient. 

Table 2 shows the parallel speedup for the same configuration. Figure 1 displays the thread speedup for 
different MPI sizes. It is seen that thread speedup drastically falls with increasing the number of threads, which 
we interpret as being caused by the recursive task-based thread-spawning employed by the code and consequent 
poor cache hit/miss ratio. Figure 2 shows the same data from perpendicular direction. As seen, when using 1 
thread per MPI rank parallel speedup is almost perfect. That means that this FMM implementation is better at 
scaling on distributed memory architectures than on shared memory ones and MPI parallelism should be 
preferred to the OpenMP one. 
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Regarding the scalability with respect to the data size, the algorithm behaves quite well. Increasing the data 
size 10 times resulted in exactly 10 times increase of the execution times. This shows no major downgrading of 
parallel speedup due to large data sets. 

It should be noted that the ncrit parameter plays a very important role for achieving good performance. 
Setting it too low results in fewer bodies per cell; this defeats the vectorization of the P2P kernel, the most time-
consuming computation. Setting it too high results in more bodies per cell and that defeats the main idea of the 
algorithm to avoid too much P2P. Unfortunately the exact setting of this parameter heavily depends on the size 
of the system and its charge distribution and cannot be pre-determined. Instead, users are advised to experiment 
with the system until the optimal value is found and then setting this on a per-system basis. 

 
 

 Number of OpenMP threads per MPI rank 

MPI 
ranks 1 3 7 15 30 60 120 240 

1 375.581494 143.347597 75.3670261 51.9568591 44.3464229 42.023947 46.34463 62.369422 

2 193.641072 74.3009682 40.4539099 30.7897701 27.4091301 30.0856111 39.7556181  

4 95.805001 38.223681 22.9141769 18.5868499 19.2526939 25.8137479    

8 50.334491 20.816978 13.426976 13.27795 16.746649     

16 23.3726511 10.257725 8.4499819 10.245769      

32 11.798099 6.9972742 7.5422869       

64 25.4168686 29.7153339         

128 35.8164809           

Table 1. Execution time (in seconds) for a system of 1,000,000 uniformly distributed bodies on a single MIC in native 
execution mode, using scattering thread affinity, for different MPI and thread counts. Only setups that do not exceed a total 

of 240 threads are considered. 
 
 

 Number of OpenMP threads per MPI rank 

MPI 
ranks 1 3 7 15 30 60 120 240 

1 1 0.87335842 0.71190946 0.48191455 0.28230875 0.14895535 0.06753416 0.02509119 

2 0.96978779 0.84247779 0.66315591 0.40660853 0.2283798 0.10403132 0.03936357  

4 0.98006756 0.81882375 0.58538541 0.33678066 0.16256664 0.06062362    

8 0.93271405 0.75175316 0.49950282 0.23571755 0.09344693     

16 1.00432952 0.76280213 0.39685365 0.15273845      

32 0.99481465 0.55911875 0.22230699       

64 0.23088843 0.06582977         

128 0.08192403           

Table 2. Parallel speedup for a system of 1,000,000 uniformly distributed bodies on a single MIC in native execution mode, 
using scattering thread affinity, for different MPI and thread counts. Only setups that do not exceed a total of 240 threads are 

considered. 
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Figure 1. Thread speedup for different number of MPI ranks. The speedup drastically falls, which shows poor thread 
scalability. Moreover, the more MPI ranks there are, the less is the speedup. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. MPI speedup for different number of OpenMP threads per rank. Scalability is almost perfect for 1 thread per 
rank and gradually falls with increasing the thread number. 
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