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Abstract 

In this whitepaper, we propose outer-product-parallel and inner-product-parallel sparse matrix-matrix 
multiplication (SpMM) algorithms for the Xeon Phi architecture. We discuss the trade-offs between these two 
parallelization schemes for the Xeon Phi architecture. We also propose two hypergraph-partitioning-based 
matrix partitioning and row/column reordering methods that achieve temporal locality in these two 
parallelization schemes. Both HP models try to minimize the total number of transfers from/to the memory while 
maintaining balance on computational loads of threads. The experimental results performed for realistic SpMM 
instances show that the Intel MIC architecture has the potential for attaining high performance in irregular 
applications, as well as regular applications. However, intelligent data and computation reordering that considers 
better utilization of temporal locality should be developed for attaining high performance in irregular 
applications. 

 

1. Introduction 

Sparse matrix-matrix multiplication (SpMM) is an important operation in a wide range of scientific applications 
such as finite element simulations based on domain decomposition (e.g. finite element tearing and interconnect 
(FETI) [1]), molecular dynamics (e.g. CP2K [2]), computational fluid dynamics [3], climate simulation [4], and 
interior point methods [5]. All of these applications exploit parallel processing technology to reduce running 
times. There exist several software packages that provide SpMM computation for distributed memory 
architectures such as Trilinos [6], Combinatorial BLAS [7] and for GPUs such as CUSP [8] and CUSPARSE[9]. 

The objective of this work is to investigate the performance of the Xeon Phi coprocessor for SpMM 
computations. In order to attain maximum performance on the Xeon Phi architecture, our objective is also to 
investigate intelligent matrix partitioning and row/column reordering schemes for better utilization of temporal 
locality to reduce cache misses in the fully-coherent cache implementation of the Xeon Phi architecture. 

In this whitepaper, outer-product-parallel and inner-product-parallel SpMM algorithms are proposed and 
implemented, and the trade-offs between these two parallelization schemes for a single Xeon Phi coprocessor are 
discussed. Two hypergraph-partitioning (HP) based models and methods that achieve temporal locality in these 
two parallelization schemes are also proposed and implemented. 
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2. Work done 

In the following discussion, we consider the SpMM computation of the form ܥ ൌ ܣ ൈ  denote ܤ and ܣ where ,ܤ
the input matrices, and ܥ denotes the output matrix. 

2.1. Outer-product-parallel SpMM 

Outer-product-parallel sparse SpMM is based on one-dimensional columnwise and one-dimensional rowwise 
partitioning of the input matrices ܣ and ܤ as follows: 

ҧܣ ൌ ܲܣ ൌ ሾܣଵ
௖ܣଶ

௖ ௄ܣ …
௖ ሿ     and      ܤത ൌ ܤܲ ൌ ൦

ଵܤ
௥

ଶܤ
௥

 ڭ
௄ܤ

௥

൪ 

Here, ܭ denotes the number of parts and ܲ denotes the permutation matrix obtained from partitioning. The use 
of the same permutation matrix for column reordering of ܣ and row reordering of ܤ enables conformable 
columnwise and rowwise partitioning of matrices ܣ and ܤ. In this input partitioning, the SpMM computation is 
performed as follows: 

௞ܥ ൌ ௞ܣ
௖ ൈ ௞ܤ

௥   where   ݇ ൌ 1, … ,  .ܭ

Each outer product ܥ௞ ൌ ௞ܣ
௖ ൈ ௞ܤ

௥ will be assigned to a thread that will be executed by an individual core of the 
Xeon Phi architecture. The nice property of the outer-product formulation is that all nonzeros of the ܣ and ܤ 
matrices are read only once from the memory. However, multiple writes to the memory will be needed since the 
output matrix ܥ is computed as follows in terms of the results of thread computations: ܥ ൌ ଵܥ ൅ ڮ ൅ ௞ܥ ൅ ڮ ൅
 .௄ܥ

We propose and implement an HP-based method to attain temporal locality in the multiple writes to memory 
during the outer-product-parallel SpMM. In this proposed scheme, input matrices ܣ and ܤ are partitioned 
recursively and conformably until the size of each output matrix ܥ௞ drops below the size of Level 2 cache of the 
cores of the Xeon Phi architecture. The objective in this partitioning is to allocate ܣ-matrix columns and ܤ-
matrix rows that contribute to the same ܥ-matrix entries into the same parts as much as possible. This in turn 
corresponds to forcing the execution of the outer-product computations that contribute to the same output ܥ-
matrix entries on the same core. The proposed hypergraph model encodes this objective successfully thus 
leading to exploiting the temporal locality in multiple writes to the memory. In the proposed HP model, the 
partitioning constraint corresponds to maintaining balance on computational loads of threads and the partitioning 
objective of minimizing cutsize corresponds minimizing the total number of writes to the memory.  

2.2. Inner-product-parallel SpMM 

Inner-product-parallel sparse SpMM is based on one-dimensional rowwise partitioning of the input matrix ܣ and 
the output matrix ܥ as follows: 

ҧܣ ൌ ܣܲ ൌ ൦

ଵܣ
௥

ଶܣ
௥

 ڭ
௄ܣ

௥

൪        and      ܥҧ ൌ ܥܲ ൌ ൦

ଵܥ
௥

ଶܥ
௥

 ڭ
௄ܥ

௥

൪ 

As in the outer-product parallelization scheme, ܭ denotes the number of parts and ܲ denotes the permutation 
matrix obtained from partitioning. The use of the same permutation matrix for row reordering of ܣ and row 
reordering of ܥ shows that the rowwise partition on the input matrix ܣ directly induces a rowwise partition on 
the output matrix ܥ. In this partitioning scheme, the SpMM computation is performed as follows: 

௞ܥ
௥ ൌ ௞ܣ

௥ ൈ ݇   where   ܤ ൌ 1, … ,  .ܭ
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Each product ܥ௞
௥ ൌ ௞ܣ

௥ ൈ  will be assigned to a thread that will be executed by an individual core of the Xeon ܤ
Phi architecture. The nice property of the inner-product formulation is that all nonzeros of the ܣ and ܥ matrices 
are respectively read and written only once. However, multiple reads of rows of the input matrix ܤ will be 
needed. 

We propose and implement an HP-based method to attain temporal locality in the multiple reads from the 
memory during the inner-product-parallel SpMM computation. In this proposed scheme, input matrix ܣ is 
partitioned recursively until the storage size of ܣ௞

௥  together with the required rows of the input matrix ܤ drops 
below the size of Level 2 cache of the cores of the Xeon Phi architecture. The objective in this partitioning is to 
allocate ܣ-matrix rows that require the same rows of the ܤ-matrix into the same parts as much as possible. This 
in turn corresponds to forcing the execution of the SpMM computations that require the same input ܤ-matrix 
rows on the same core. The proposed hypergraph model encodes this objective successfully thus leading to 
exploiting the temporal locality in multiple reads. In the proposed HP model, the partitioning constraint 
corresponds to maintaining balance on computational loads of threads and the partitioning objective of 
minimizing cutsize corresponds minimizing the total number of reads from the memory. 

3. Results 

In order to evaluate the validity of the proposed models for outer-product-parallel and inner-product-parallel 
SpMM algorithms, we compare the performances of our hypergraph-partitioning (HP) based methods to that of 
the binpacking (BP) method that only considers balancing the computational loads of threads. Here, the BP 
method is selected as the baseline method for the sake of performance comparison. The BP method uses the best-
fit-decreasing heuristic [16]. This heuristic can be effectively used for the solution of the number partitioning 
problem. So it can be used for load balancing problem. In adapting this heuristic for  our purpose, outer/inner 
products are considered for assignment in decreasing order of their multiply-and-add operation counts. The best-
fit criterion is the assignment of the outer/inner products to the minimally loaded bins (parts). The bin capacity 
constraint is not used in the BP method. Note that number of resulting parts becomes much larger than the 
number of threads thus enabling the utilization of dynamic part-to-thread scheduling for further load balancing in 
both methods.  

Table 1 displays the properties of the three realistic test matrices used in experimental performance evaluation. 
The two matrices, cp2k-h2o-.5e7 and cp2k-h2o-e6 are obtained from CP2K [2]. These matrices are used for 
calculating the sign matrix via the Newton-Schulz iterations during water molecule simulations based on Kohn-
Sham Density Functional Theory calculations [11]. The feti-B03 matrix belongs to car engine block simulations 
based on Finite Element Tearing and Interconnecting (FETI) [12,13] type domain decomposition method. In the 
table, “SpMM type” shows the type of the SpMM computation utilized in the respective application. In the table, 
“nrows”, “ncols”, “nnz”, and “sp” denote the number of rows, columns, nonzeros, percent sparsity of the 
respective test matrices  

Table1: Properties of test matrices 

Matrix name Application SpMM 
type 

nrows ncols nnz(A) sp(A)% nnz(C) sp(C)% 

cp2k-h2o-.5e7 Molecular 
dynamics [2] 

AA 279,936 279,936 3,816,315 0.005 17,052,039 0.022 

cp2k-h2o-e6 Molecular 
dynamics [2] 

 0.010 7,846,956 0.003 2,349,567 279,936 279,936 ܣܣ

feti-B03 Finite 
element [10] 

 0.699 258,816 0.105 3,004,692 472,320 6,084 ்ܣܣ

 

The performance results on a single Xeon Phi P5110 coprocessor are displayed and discussed in the following 
subsections. We used our local machine which has the same Xeon Phi coprocessor that EURORA has. We used 
offload mode instead of native mode to enable future vertical integration that involves hybrid parallelization on a 
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Xeon Phi cluster. The Xeon Phi coprocessor provides 59 cores in offload mode and each core can handle up to 
four hardware threads. Each core has 512KB Level 2 cache. 

3.1. Outer-product-parallel SpMM 

Figure 1 shows the performance of the HP and BP methods for the outer-product-parallel SpMM algorithm with 
increasing number of threads on the Xeon Phi coprocessor. The performance of the outer-product-parallel 
SpMM algorithm is tested only for the multiplication of the feti-B03 matrix. This is because, if the output ܥ 
matrix is stored in compressed sparse format, the sparse accumulation operations required to compute the ܥ 
matrix from the results of thread computations necessitate complex indexing schemes to efficiently identify the 
contributions to the same ܥ-matrix entries by different threads. However, the indexing schemes proposed in the 
literature [7,14] degrade the performance of the outer-product-parallel SpMM computations. Since our main 
objective was to investigate relative performance of these two parallel schemes, we experimented only with the 
outer-product-parallel SpMM computation (feti-B03) that leads to the smallest ܥ matrix that can fit into Xeon 
Phi’s device memory with dense storage (i.e., zeros are explicitly stored). 

As seen in Figure 1, the proposed HP scheme performs considerably better than the baseline scheme BP. In 
Figures 1(a) and 1(b), full cache size (512KB) and quarter cache size (128KB) are used as thresholds during the 
recursive bipartitioning operation. Note that the number of resulting parts obtained for the 128KB threshold is 
approximately four times that for the 512KB threshold. As seen in the figure, the proposed HP scheme attains 
the maximum performance for three threads per core case, which utilizes 177 threads. 

 

(a) Full cache size threshold (512KB)  (b) Quarter cache size threshold (128KB) 

 Figure 1: Outer-product-parallel SpMM performance for feti-B03 matrix  

3.2. Inner-product-parallel SpMM 

Figures 2, 3, and 4 show the performance of the HP and BP methods for the inner-product-parallel SpMM 
algorithm with increasing number of threads. As seen in these figures, the proposed HP scheme performs 
considerably better than the baseline BP scheme. The performance gap between the HP and BP schemes 
decreases when four threads per core are used but HP still performs slightly better than the BP scheme for this 
case. As also seen in the figures, the HP scheme attains its peak performance for the three threads per core case 
except for one-sixteenth cache size threshold of feti-B03 matrix. 
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(a) Quarter cache size threshold (128KB) (b) One-sixteenth cache size threshold (32KB) 

Figure 2: Inner-product-parallel SpMM performance for cp2k-h2o-.5e7 matrix 

 

 

(a) Quarter cache size threshold (128KB) (b) One-sixteenth cache size threshold (32KB) 

Figure 3: Inner-product-parallel SpMM performance for cp2k-h2o-e6 matrix 
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(a) Quarter cache size threshold (128KB) (b) One-sixteenth cache size threshold (32KB) 

Figure 4: Inner-product-parallel SpMM performance for feti-B03 matrix 

3.3. Comparison of outer-product-parallel and inner-product-parallel SpMM algorithms 

Comparison of Figures 1 and 4 for the feti-B03 matrix shows that the inner-product-parallel SpMM algorithm 
performs significantly better than the outer-product-parallel SpMM algorithm. As seen in these two figures, the 
inner-product-parallel SpMM algorithm that utilizes the HP scheme attains a peak performance of 4.82 GFlops/s, 
whereas the peak performance of the outer-product-parallel SpMM algorithm that utilizes the HP scheme is only 
1.64 GFlops/s. This experimental finding can be attributed to the locking overhead introduced by the 
accumulation operations involved in the outer-product-parallel scheme. Depending on these experimental 
findings, we recommend the use of inner-product-parallel SpMM algorithm. 

3.4. Computing power and bandwidth considerations 

Here, we present a discussion on the comparison of performance of SpMM computation with respect to the 
expected peak performance of the Xeon coprocessor in order to provide an insight on the limiting factor of the 
coprocessor for SpMM computation. Since SpMM computation is not suitable for auto-vectorization provided 
by the compiler, the peak computing power of the Xeon Phi coprocessor without vectorization is 1.053 ݖܪܩ ൈ
݈݁ܿݕܿ/ݏ݌݋݈ܨ 2 ൈ ݏ݁ݎ݋ܿ 59 ൌ  The peak memory bandwidth of the Xeon Phi coprocessor is .ݏ/ݏ݌݋݈ܨܩ 124
כ ݈݄݁݊݊ܽܿ/ݏ݁ݐݕܾ 4 כ ݏ݈݄݁݊݊ܽܿ 16  ൌ ݏ/ܶܩ 5.0   Table 2 is introduced to investigate performance .ݏ/ܤܩ 320 
bottlenecks of the Xeon Phi coprocessor for SpMM computation. In the table, Flop-to-byte ratio is computed as 
the total number of multiply and add operations divided by the total number of transfers from/to memory for the 
respective SpMM instance. The “Max bandwidth” and “Max GFlops/s” columns denote the maximum 
bandwidth and maximum computing power that can be attained by the Xeon Phi coprocessor depending on the 
Flop-to-byte ratio.  

For the outer-product-parallel SpMM algorithm, maximum bandwidth value attained is 2 GB/s for feti-B03, 
whereas for the inner-product-parallel SpMM algorithm, they are 12, 15, and 9 GB/s for cp2k-h2o-.5e7, cp2k-
h2o-e6, and feti-B03, respectively. Comparison of these attained values with the values displayed in the “Max 
bandwidth” column shows that attained bandwidth values are well below the theoretical bandwidth values. This 
analysis shows that the memory latency is the bottleneck for not attaining the peak performance rather than the 
memory bandwidth.  
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As seen in Figures 1, 2, 3, and 4, the maximum performance of 5 GFlops/s obtained by the SpMM algorithms 
remains well below the peak computing power of 124 GFlops/s most probably due to the memory latency 
overhead. As seen in Table 2, the values displayed in the “Max GFlops/s” column are significantly larger (3.35 
times larger on the average) than the peak computing power of 124 GFlops/s. This finding shows that parallel 
SpMM computations will benefit from vectorizing the source code by hand.  

Table 2: Theoretical peak performance of the Xeon Phi coprocessor for SpMM computation 
 

  
Flop-to-byte 

ratio 
Max 

bandwidth  Max GFlops/s 

cp2k-h2o-.5e7 1.46 85 GB/s 466 GFlops/s 

cp2k-h2o-e6 1.41 88 GB/s 451 GFlops/s 

feti-B03 1.03 121 GB/s 329 GFlops/s 
 

4. Conclusion 

Outer-product-parallel and inner-product-parallel sparse matrix-matrix multiplication (SpMM) algorithms were 
designed, developed, and implemented for the Xeon Phi architecture.  Hypergraph-partitioning-based models 
and methods are proposed to achieve temporal locality in these two parallelization schemes. Experimental results 
on realistic datasets showed that the proposed hypergraph-partitioning-based matrix partitioning methods 
achieve considerable performance improvement over a baseline scheme that only considers balancing the 
computational loads of threads. The inner-product-parallel SpMM algorithm was found to perform significantly 
better than the outer-product-parallel SpMM algorithm in our tests. Further work is needed to develop efficient 
indexing schemes for the sparse accumulation operations required in the outer-product-parallel scheme. 
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