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Abstract 

We have optimized an implementation of a massively parallel algorithm for solving the Poisson equation using a 
27-stencil discretization scheme based on the stabilized biconjugate gradient method. The code is written in the 
C programming language with OpenMP parallelization. The main objective of this whitepaper lies in the 
optimization of the code for native Intel Xeon Phi execution, where we observe nearly linear scalability on the 
MIC architecture for the bigger problem sizes. 
 

Introduction 
The treatment of electrostatics is crucial for the modelling of biologically important interactions at atomistic and 
molecular level by means of molecular dynamics simulations. We investigate the possibility of doing this by 
discretely solving the Poisson equation. 

 
The divergence of the electrostatic field in vacuum is specified by the differential form of Gauss' law 
      ∇. E��⃗ (𝑟) = 𝜌(𝑟)

𝜖
 ,    (1) 

 
where 𝜌(𝑟) is the charge density and 𝜖 is the dielectric constant of vacuum. 
The curl of the electrostatic field is specified by the static form of Faraday’s law 
 

∇ × 𝐸�⃗ (𝑟) = 0 .    (2) 
 
By Helmholtz' theorem, these two first-order vector differential relations completely determine the electrostatic 
field vector 𝐸�⃗ (𝑟) in any specified region of space given as a consequence of (2). The electrostatic field may be 
expressed as 
 

𝐸�⃗ =  −∇𝜙(𝑟),     (3) 
where 𝜑(𝑟) is the scalar potential. 
Substitution of (3) into Gauss' Law (1) yields Poisson's equation 
 

∇2𝜙 =  −𝜌
𝜖

 𝑜𝑟 �𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧� =  −𝜌/𝜖.   (4) 
 

* Corresponding author. E-mail address: dgrancharov@phys.uni-sofia.bg. 
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In a discretized form this can be written as 
 

(𝜙𝑥𝑥)𝑖𝑗𝑘 + �𝜙𝑦𝑦�𝑖𝑗𝑘 + (𝜙𝑧𝑧)𝑖𝑗𝑘 = −𝑓𝑖𝑗𝑘.    (5) 
 
Let us denote (𝑖, 𝑗,𝑘) three-dimensional lattice indices and (𝜙𝛼𝛼)𝑖𝑗𝑘 is an approximation to the second partial 
derivative with respect to the coordinate direction 𝛼𝛼. 
Denote second-order difference operator as 

(𝜙𝛼𝛼)𝑖𝑗𝑘 = 1
ℎ𝛼2

𝛿𝛼2𝜙𝑖𝑗𝑘,     (6) 
 
where ℎ𝛼 is the grid spacing in direction 𝛼 and 𝛿𝛼2 is the second-order difference operator 
 

δx2 =  𝜙𝑖−1,𝑗,𝑘 −  2𝜙𝑖,𝑗,𝑘 + 𝜙𝑖+1,𝑗,𝑘, 
δy2 =  𝜙𝑖,𝑗−1,𝑘 −  2𝜙𝑖,𝑗,𝑘 + 𝜙𝑖,𝑗+1,𝑘, 
δz2 =  𝜙𝑖,𝑗,𝑘−1 −  2𝜙𝑖,𝑗,𝑘 + 𝜙𝑖,𝑗,𝑘+1. 

 
Standard and high-order finite difference operators of the Poisson’s equation are derived from the approximation 
 
𝜕2𝜙
𝜕𝛼2

|𝛼=𝑖ℎ𝛼 = 4
ℎ𝛼2

�sinh−1 δ𝛼
2
�
2

= 1
ℎ𝛼2

𝛿𝛼2 �1 −
1
12
𝛿𝛼2 + 1

90
𝛿𝛼4 −

1
560

𝛿𝛼6 ± … �𝜙𝑖𝑗𝑘,   (7) 
 
where 𝛼 is 𝑥,𝑦 or 𝑧.To solve the three dimensional Poisson’s equation in Cartesian coordinate systems using 
finite difference approximations; see e.g. [1] 
 
We have developed an approximation using central difference scheme to obtain a 19-point stencil and a 27-point 
stencil with some modification in the right hand side terms. 
The grid size along the x, y and z directions is   h=0.5Å(Angstrom);  i= 1,2,3,…….m;   j=1,2,3…n; k= 1,2,3,….p;   
m = x/h;   n = y/h;   p = z/h;  𝜌 = 𝑞

ℎ3
, where q is the point electric charge. 

In the 27-point stencil finite difference approximation, for the unknowns φ(i,j,k) the following equation is 
obtained, when the finite difference operator from (6) is used: 
 
144ℎ2𝜌 =  −600𝜑𝑖,𝑗,𝑘   + 60�𝜑𝑖,𝑗,𝑘−1 + 𝜑𝑖,𝑗,𝑘+1�  +  60�𝜑𝑖−1,𝑗,𝑘 +  𝜑𝑖+1,𝑗,𝑘 + 𝜑𝑖,𝑗−1,𝑘 + 𝜑𝑖,𝑗+1,𝑘�  +
 18�𝜑𝑖−1,𝑗−1,𝑘 + 𝜑𝑖−1,𝑗+1,𝑘 + 𝜑𝑖+1,𝑗−1,𝑘  +  𝜑𝑖+1,𝑗+1,𝑘�  + 18�𝜑𝑖−1,𝑗,𝑘−1 + 𝜑𝑖+1,𝑗,𝑘−1 + 𝜑𝑖−1,𝑗,𝑘+1 +
 𝜑𝑖+1,𝑗,𝑘+1 + 𝜑𝑖,𝑗−1,𝑘−1 + 𝜑𝑖,𝑗+1,𝑘−1 + 𝜑𝑖,𝑗−1,𝑘+1 +   𝜑𝑖,𝑗+1,𝑘+1�  +  3�𝜑𝑖+1,𝑗−1,𝑘−1 + 𝜑𝑖−1,𝑗−1,𝑘−1 +
 𝜑𝑖+1,𝑗+1,𝑘−1 + 𝜑𝑖+1,𝑗+1,𝑘+1 + 𝜑𝑖−1,𝑗−1,𝑘+1 + 𝜑𝑖+1,𝑗−1,𝑘+1  +  𝜑𝑖−1,𝑗+1,𝑘−1 + 𝜑𝑖−1,𝑗+1,𝑘+1� (8) 

 
The maximum absolute error of this approximation for 𝜑(𝑟) is 𝑂(ℎ−6). 

 
Taken in the X-, Y- and Z-direction from eq. (8) we get a large system of linear equations (the number of 

equations actually depends on the size of the lattice). This system of equations can be written in a matrix form 
as: 

𝐴𝑢(𝑠) =  𝑏(𝑠),     (9) 
where 

𝐴 =  

⎝

⎜
⎜
⎜
⎛

𝑅 𝑆
𝑆 𝑅 𝑆

𝑆 𝑅 𝑆
⋱

𝑆 𝑅 𝑆
𝑆 𝑅⎠

⎟
⎟
⎟
⎞
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𝑅 =

⎝

⎜
⎜
⎜
⎜
⎛

𝑅1 𝑅2
𝑅2 𝑅1 𝑅2

𝑅2 𝑅1 𝑅2
⋱

𝑅2 𝑅1 𝑅2
𝑅2 𝑅1⎠

⎟
⎟
⎟
⎟
⎞

 

𝑆 =

⎝

⎜
⎜
⎜
⎜
⎛

𝑆1 𝑆2
𝑆2 𝑆1 𝑆2

𝑆2 𝑆1 𝑆2
⋱

𝑆2 𝑆1 𝑆2
𝑆2 𝑆1⎠

⎟
⎟
⎟
⎟
⎞

 

Matrix A has p blocks and each block is of order mn x mn. R and S have n blocks and each block is of order m x 
m. 

𝑅1 =

⎝

⎜
⎜
⎜
⎛

−600 60
60 −600 60

60 −600 60
⋱

60 −600 60
60 −600⎠

⎟
⎟
⎟
⎞

 

𝑅2 =

⎝

⎜
⎜
⎜
⎛

60 18
18 60 18

18 60 18
⋱

18 60 18
18 60⎠

⎟
⎟
⎟
⎞

 

𝑆1 =

⎝

⎜
⎜
⎜
⎛

60 18
18 60 18

18 60 18
⋱

18 60 18
18 60⎠

⎟
⎟
⎟
⎞

 

𝑆2 =

⎝

⎜
⎜
⎜
⎛

18 3
3 18 3

3 18 3
⋱

3 18 3
3 18⎠

⎟
⎟
⎟
⎞

 

𝑢 =

⎝

⎜
⎛

𝑈1
𝑈2
𝑈3
…
𝑈𝑝⎠

⎟
⎞

      𝑏 =

⎝

⎜
⎛

𝐵1
𝐵2
𝐵3
…
𝐵𝑝⎠

⎟
⎞
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𝑈𝑘 =  ( 𝑢1,1,𝑘 ,𝑢2,1,𝑘 , … ,𝑢𝑚,1,𝑘 ;  𝑢1,2,𝑘 ,𝑢2,2,𝑘 . .𝑢𝑚,2,𝑘  … 𝑢1,𝑛,𝑘 ,𝑢2,𝑛,𝑘 ,𝑢𝑚,𝑛,𝑘 ) 

𝐵𝑘  =  ( 𝑏1,1,𝑘,𝑏2,1,𝑘 , … , 𝑏𝑚,1,𝑘 ;  𝑏1,2,𝑘 ,𝑏2,2,𝑘 , … , 𝑏𝑚,2,𝑘 … . 𝑏1,𝑛,𝑘 ,𝑏2,𝑛,𝑘 ,𝑏𝑚,𝑛,𝑘 );   

If in the point with lattice indices t, s, v the charge is q, then the charge density is 𝑏𝑡,𝑠,𝑣   =  𝜌 =  𝑞/ℎ3.  

Methods 

Biconjugate gradient stabilized method  

We suggest a new parallel BiCGSTAB algorithm to find the solution of the aforementioned system of linear 
algebraic equations. A classical BiCGSTAB algorithm is described in [2]. 
The multiplications of the matrix A with the vectors of the solution φ and the search directions s are the most 
time consuming part of the algorithm. The number of arithmetic operations “multiplication and addition” is 
27mnp for each of the two multiplications.  
 
 Parallel BiCGSTAB solver [3] 
We assume that the number of Intel Xeon Phi coprocessors is at least equal to the number of rows of matrix A, 
which is p. Then, the solver construction is as follows: 

 

 
Each slice is calculated on one Xeon Phi. Below is given the description of the parallel algorithm: 

• 1. The row Ak of matrix A and block bk of vector b as well as the initial value of blocks xk-1, xk, xk+1 of 
vector x are sent to the k-th Xeon/Xeon Phi node.  

• 2. All Xeon Phi's simultaneously calculate δ0k=S*xk-1 +R*xk +S*xk+1, by parallel treatment of n threads, 
each with length m. The maximum number of threads depends on the coprocessor type. 

• 3. r0k = bk - δ0k, rk = r0k, pk = rk  and the constant ρk = (rk , r0k) are obtained.  
• 4. Each Phi sends the vectors r0k, rk and the constant ρk to the corresponding Xeon. Afterwards the 

Xeons communicate and the vectors r = r0 and p=r and the constant ρ = ∑ ρk are obtained by collective 
communication. 

• 5. The Xeons send the blocks pk-1, pk, pk+1 of vector p and rk-1, rk, rk+1 of vector r to the Xeon Phi's. 
k=1,2….p. 

• 6. All Xeon Phi's simultaneously calculate the blocks uk=S*pk-1 +R*pk +S*pk+1 by parallel treatment of 
n threads, each of length m. The constant γk = (r0k, uk) is calculated. 

• 7. The Xeon (master) calculates the constant α = ρ/∑ γk and sends it to other Xeon's and then they send 
it to Xeon Phi's. The latter calculate sk = rk - α uk. 

• 8. sk  are sent to the Xeon (master), which constructs the vector s and sends the triplet sk-1 , sk , sk+1 to the 
k-th Xeon and then they send it to Xeon Phi's. k=1, 2….p. 

• 9. The same way as in step 5, tk= S*sk-1 + R*sk + S*sk+1. The constants τk=(tk, tk) and σk = (tk, sk) are 
sent to the Xeon (master), which calculates τ = ∑ τk, σ = ∑ σk  and ω = σ/τ. 

• 10. The k-th Xeon Phi calculates the new xk, rk.Then xk, rk and uk are sent to the Xeons and then to the 
Xeon (master). 

• 11. The constants β and ρ and then the new vector p are calculated.  
• 12. If the error abs(r) is greater than ε, than the cycle repeats from point 3. Else 
• 13. STOP 
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If the number of coprocessors is at least equal to p, and the number of threads is ≤ n, then the number of 
arithmetic operations is proportional to 54m. Hence, the acceleration of the Parallel BiCGSTAB solver in 
comparison to the classical BiCGSTAB method is proportional to pn. If the number of Xeon Phi cards is equal to 
K, and the threads n > 240, then the acceleration is proportional to pn/(Res+1)(L+1)), where Res = int(p/K) and 
L = int(n/240). 

Work done and results 
Implementation of the BiCGSTAB solver for native execution on Xeon Phi coprocessors 
 
We have developed a parallel implementation of the algorithm described in section “Methods” in the C 
programming language with the OpenMP parallelization model for Xeon Phi systems. Here we present 
characteristics and results with the code written for native execution on the Xeon Phi.  
All necessary vectors are allocated dynamically as 3-dimensional arrays with sizes equal to the dimensions of the 
lattice – charges, residuals, search directions and their conjugates, as well as the potentials. Since we work with 
3-dimensional arrays and use direct indexation, it is easy to account for boundary elements that do not have full 
amount of neighbours. The matrix of the 27-stencil approximation is represented only by the coefficients in eq. 
8. 
The calculations in the current implementation are dominated by a matrix vector multiplication that appears two 
times per iteration. The other calculations consist of four vector dot multiplications and some multiplications of 
vectors with scalars. Therefore, it is decisive to have a scalable and efficient matrix vector multiplication code 
for Xeon Phi. The matrix vector multiplication is done in a subroutine that takes the vector as an argument 
without storing the matrix explicitly. It should be emphasized, that there are no loops over the matrix, only the 
coefficients in eq. 8 are used. 
Our general idea for the parallelization of the code consists of splitting the 3-dimensional lattice in slices along 
the z axis. Then we could divide the work between multiple Xeon Phi coprocessors by giving a certain amount 
of slices to each of them. Further calculations are divided between threads in the current slice. We have written 
and tested an MPI communication scheme for halo exchange previously and the combination of these two seems 
a promising alternative. However, here we focus on the optimization of the Xeon Phi part of the code. 
The code consists of around 760 lines and contains 6 functions. Finally, the potentials are returned to the main 
function after reaching convergence with a threshold of 10-4 or user specified. In this way the code may also be 
used as a library, attached to another application. 
 
Optimization for MIC architecture 
 
The most important characteristics of an application in order to perform well on the Xeon Phi are the 
vectorization and scaling capabilities of the code [4]. The vectorization of loops is embedded in the compiler and 
is done automatically with a certain level of optimization. But helping the compiler to understand which loops 
are vectorizable is far from trivial. We have invested a lot of effort in vectorization of the most time-consuming 
loops in the code. The main instruments turned out to be the well-structured data and some pragma directives. 
Loops that contain several statements in their body or statements that are not dependent only on indexes and 
constants are less likely to be classified as vectorizable by the compiler. It is also not recommended to call 
functions inside the body of the loop because this confuses the compiler as well. In this context we have defined 
and allocated a supplementary array that we used only to supply the loop with better structured data. It was a key 
to vectorization. 
Last but not least, it is not recommended to try to vectorize an OpenMP parallel for-loop. In our implementation 
we have discovered that a combination of an outer openmp parallel loop and vectorized inner loop works best. 
In addition, we encountered problems with data allocation and memset operations. As written in [4], the code 
runs better if the data is aligned at 64 bytes, according to the MIC architecture, which can be achieved by the 
_mm_malloc call. Nevertheless, our observation is that data allocation is relatively slow. It is the same situation 
with the memset call: it is slow and scales poorly. 

Results 
We have tested our code on different problem sizes on various amounts of threads on Intel Xeon Phi cluster 
Eurora at Cineca. It is important to emphasize that for small-scale problems - 30x30x30 and 60x60x60 grid 
points, the speedup curve flattens, because of thread saturation – a sign of an under-load situation. For larger-
scale problems - 120x120x120 and 240x240x240 grid points, we observe good scaling. The time per iteration 
drops with the increase of the total amount of threads and speedup is nearly linear as shown in fig. 1 and fig. 2. 
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The same code was compiled also for native Intel Xeon execution and results show very good scaling up to 16 
threads. Still, the performance of the code is 7 to 10 times better on the Xeon, than on the Xeon Phi. A possible 
explanation of this behaviour might be the slightly lower L1 cache bandwidth, as well as the less bandwidth per 
peak floating point operations for the Xeon Phi compared to the Xeon. The Xeon Phi has no L3 cache, so the 
total amount of cache is lower and since the most time consuming subroutine uses elements of the arrays, that 
are not only adjacent or close to each other, there is a lot of data transfer and possibly increased amount of cache 
misses. 

Conclusions 
In conclusion, we would like to stress out that vectorization is crucial to performance on the Xeon Phi 
coprocessor but it is not a free gift. One must pay attention to the way one stores and accesses data. Often it is 
necessary to allocate extra variables only to maintain clean data access. The vectorization can be enforced by 

Figure 1. Speedup as a function of the number of the Intel Xeon Phi threads for one iteration for different 
problem size (dimensions of the grid) 30x30x30 (blue line), 60x60x60 (red line), 120x120x120(yellow line) and 
240x240x240 (green line). 

Figure 2. Execution time as a function of the number of the Intel Xeon Phi threads for one iteration for different 
problem size (dimensions of the grid) 30x30x30 (blue line), 60x60x60 (red line), 120x120x120(yellow line) and 
240x240x240 (green line). 
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explicit directives in the code, but one should be careful, because it might change the meaning of the code and 
affect the results, as advised in [4]. 
In addition, we would like to emphasize that scaling is only one half of the goal and it comes second after 
performance. We have achieved good scaling, following all the MIC programming recommendations, yet our 
code still lacks performance, when compared to the more standard Xeon architecture. 
The library source can be found at http://phys.uni-sofia.bg/~peicho/poisson-solver-mic-1.0.tgz . 
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