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In this paper, we demonstrate the presence of a photonic band gap for a diamond lattice structure
made of particles with normal anchoring inside a cholesteric liquid crystal. As is typical for liquid
crystals, there is considerable contrast between the dielectric constant parallel ε‖ and perpendicular
ε⊥ to the director, with ε‖/ε⊥ ∼ 4 here. It is shown that the size of the photonic band gap is
directly related to the size of colloidal particles and the contrast between the dielectric constant
in the particles and the extreme values of ε in the LC medium (one needs either ε in the particle
much smaller than ε⊥ or much bigger than ε‖). No opening is seen in the band diagrams for small
particles. For larger particles a partial gap opens when the particles are composed of very low
dielectric material, but never a complete gap. On the other hand, a complete gap starts to be
revealed when the size of the colloidal particles is increased and when a high dielectric constant is
used for filling inside the particles. The maximum size of the gap is observed when the particles are
large enough so that their surfaces overlap.

PACS numbers: 61.30.Jf 47.57.J

I. INTRODUCTION

Periodic arrays of colloids can be viewed as periodic
dielectric structures, and have been considered as prime
candidates for photonic crystals [1–3]. Colloidal crystals
are composed of particles of one material, such as silicon,
inside a matrix made of another material, such as water.
As these macroscopic media typically have differing di-
electric constants, the result is a substance with a peri-
odic dielectric function [4]. The periodicity in dielectric
constant of a photonic crystal gives them the capability of
controlling propagation of photons due to the refraction
and reflection of light from different interfaces. In these
structures, the light waves are similar to electron waves
in atomic crystals. As a result, one of the possible fea-
tures of photonic crystals is forbidding a certain range of
frequencies to be propagated inside the periodic lattice.
This feature makes a photonic crystal an ideal candidate
to control, confine, and manipulate light propagation [4].

In 1990, it was demonstrated theoretically that a di-
amond lattice structure of spheres can show a com-
plete band gap whereas an fcc lattice structure should
not[5]. The kind of structure studied were spheres
filled with air inside a dielectric medium. A prac-
tical face-centered-cubic dielectric structure with non-
spherical “particles”and a complete gap was introduced
in Ref. [6]. These sort of dielectric lattice structures have
attracted considerable interest among researchers in the
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past decades [7–10].

One powerful and effective route to fabricate ordered
colloidal particle structures is self-assembly of colloids in
2D and 3D in a fluid[11–15]. However, it is a challenge
to generate a non-closed packed structure, which has the
ability to show a complete band gap, meaning there is a
forbidden range of frequencies for electromagnetic waves
for all directions of wave propagations[4, 16]. The col-
loidal particles need to experience anisotropic forces in
order to self-organize into such non-closed packed crys-
tals. Therefore, a liquid crystal (LC) is potentially an
ideal medium for the colloids to self-assemble in be-
cause it has unique anisotropic properties which result in
colloidal particles experiencing anisotropic interactions.
When the colloids are added into a LC medium, the par-
ticles are coupled to the director field orientation by spe-
cific orientational anchoring of LC molecules on the par-
ticle surface. As a result, the director is distorted from its
uniform orientation close to the surface of particles. This
director distortion generates topological defects close to
the surface of particles [17]. The existence of defects in-
side the LC increases the elastic free energy [18, 19]. In
order to minimize the elastic free energy, the distorted
regions are shared between the particles, and anisotropic
interactions are induced between them [20–23].

The preferred LC molecules orientation on the surface
of colloidal particles, typically either tangential or nor-
mal, indicates the type of induced interactions. Here,
we will use normal anchoring which can lead to two
possible defect structures. The possible structure can
be either a hyperbolic defect point [24], which is cre-
ated near the surface of the particle and induces dipo-
lar interaction between the colloids, or a Saturn-ring de-
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fect line [25, 26] surrounding the colloid associated with
quadropolar forces [17, 27]. It is seen that the Saturn-
ring defect line is stable for small particles [28] like we
use here.

In a LC medium, self-assembled structures are formed
due to the induced forces between the particles at close
ranges [29–32], where the regions of distortions are
shared. A wide variety of colloidal structures have been
observed [33–42]. In a cholesteric LC, the defect lines
associated with colloidal inclusions are twisted depend-
ing on the value of the pitch [43, 44]. In Ref. [45] it
is demonstrated that a locally stable diamond colloidal
crystal can be obtained in a cholesteric. In this reference,
several pitch values in a cholesteric LC were used in order
to choose a pitch value generating the most energetically
favorable diamond crystal built of colloids with normal
surface anchoring. It was shown that the defect lines
travel along the symmetry axis and a diamond crystal
can be created. In addition, its stability was demon-
strated by examining its phonon frequency spectrum.

The application to photonics is often cited as motiva-
tion for studying colloidal structures in liquid crystals but
the photonic band structure that might be obtained has
not been examined. It is known that there is a complete
band gap in the band structure of a diamond crystal in
an isotropic medium. In particular, it is known that the
dielectric contrast between the dielectric constant inside
the particles and the dielectric constant of the matrix is
an important factor in determining whether a band gap
occurs[4]. However, a LC medium is optically active due
to its anisotropic nature and typically has a dielectric
permeability that can change by a large factor depend-
ing on the direction of polarization relative to the liquid
crystal’s director field. As a result, it may change the
band structure of such a colloidal diamond lattice. In
this paper we analyze the photonic band structure of a
diamond lattice made of colloidal particles immersed in-
side a cholesteric LC. The liquid crystal director is ori-
ented normal to the particles surface and we selected the
pitch value corresponding to the stable diamond struc-
ture found in Ref. [45].

II. MODELING

The hydrodynamics of a LC is mathematically de-
scribed by considering a tensor order parameter Q based
on the Landau-de Gennes theory [46]. The tensor order
parameter has components defined as:

Qij = 〈3
2
m̂im̂j −

1

2
δij〉 . (1)

which depends on the direction of individual molecules
m̂, and the angular brackets denote a coarse-grained av-
erage. Q is a symmetric traceless matrix. Its largest
eigenvalue is 2

3q (0 < q < 1), and shows the magnitude
of order along the corresponding eigenvector, which de-
fines the director field n̂.

The evolution of the tensor order parameter Q can be
described by:

(∂t + u · ∇)Q− S(W,Q) = ΓH . (2)

Here, S(W,Q) = (ξD+Ω)(Q+I/3)+(Q+I/3)(ξD−Ω)
− 2ξ(Q+ I/3)Tr(QW ) , where D = (W +W T )/2 and
Ω = (W −W T )/2 is related to the symmetric and anti-
symmetric velocity gradient components Wαβ = ∂βuα. ξ
denotes the aspect ratio of LC molecules, and Γ is the col-
lective rotational diffusion constant. Here, the primary
purpose of the dynamics is just to take us to a minimum
in the free energy. H is the functional derivative of the
free energy of the system, ensuring the system evolves
towards equilibrium and is given by:

H = −δF
δQ

+

(
I

3

)
δF

δQ
. (3)

The Landau-de Gennes free energy is:

Fbulk =
A0

2
(1−γ

3
)Q2

αβ−
A0γ

3
QαβQβγQγα+

A0γ

4

(
Q2
αβ

)2
,

(4)
where γ > 2.7 yields a liquid crystalline phase, and A0

is a constant. The distortion of the LC director field can
be controlled by an elastic free energy:

Felastic =
L1

2
(∂αQβγ)2 +

L2

2
(∂αQαγ)(∂βQβγ)

+
4πL1

P
εαβγQαν(∂βQγν) , (5)

The distortion cost in a nematic LC is expressed through
the first two terms and the last term is present to pro-
duce a helical pitch, P , in a cholesteric LC. The elastic
constants L1 and L2 are easily mapped onto Frank elastic
constants, K1,K2,K3 [47].

Moreover, Fsurface is also present to model the in-
teraction of the surface of colloidal particles with LC
molecules. The applied surface boundary conditions and
the anchoring strength αs indicate the preferred orienta-
tion of LC director close to the surface of particles. We
only use normal boundary conditions on the surface of
spherical colloids here, which is dictated by:

Fsurface =
αs
2

(Qij −Q0
ij)

2 , (6)

where Q0
ij = q0(n̂i

0n̂j
0 − 1

3δij), n̂0 is the normal to the

particles’ surface, and q0 is the the equilibrium bulk value
of q. Like all fluids, the LC also satisfies Navier-Stokes
and continuity equations.

It this paper, we work primarily near the minimum
found for the diamond colloidal crystal in the cholesteric
found in Ref. [45]. As such, we just use the dynamics
to take us to this already established stable minima. As
such, the colloidal particles are placed in the previously
found location and the configuration of the liquid crys-
tal is then minimized around that. As such, the colloids
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are held fixed in all simulations (in equilibrium the forces
in this configuration are all zero, as previously found in
Ref. [45]). All the above equations are mathematically
modeled using a lattice Boltzmann algorithm on a uni-
form mesh [48–50]. The surface of the colloids are dis-
cretized into a set of nodes (6252 nodes), and are inter-
polated onto the LC grid to the nearest LC lattice sites,
so the forces and the fluid stresses can be calculated. It
is worth mentioning that the algorithm is mainly used
for evolving through the steady state and it was imple-
mented inside LAMMPS [51]. The details about how
this method is implemented are described in references
[52–56].

A liquid crystal has an anisotropic dielectric constant
which is different along and perpendicular to the direc-
tor. The LC dielectric is dependent on the tensor order
parameter as follows [46]:

εαβ =
2

3
εaQαβ + εmδαβ , (7)

where

εa =
3

2q

(
ε‖ − ε⊥

)
,

εm =
2

3
ε⊥ +

1

3
ε‖ .

(8)

ε‖ and ε⊥ are the relative permittivity along and per-
pendicular to the director. The values used are shown
in table I and are typical of readily available liquid crys-
tals. Note that the ratio ε‖/ε⊥ ≈ 4 is comparable or
larger than the typical dielectric contrast of, say, previ-
ously studied systems of a diamond lattice of dielectric
spheres in air [4](where the contrast is usually between
the sphere contents and the surrounding matrix, whereas
in our case this will be a variation within the matrix sur-
rounding the spheres). This is why we cannot just assume
that the band structures seen using a matrix with an
isotropic dielectric constant will be comparable to what
we will find here.

In this paper, photonic band structures of periodic di-
electric spherical particles in a diamond lattice structure
are calculated using Maxwell equations through the MIT
Photonic-Bands (MPB) package. The package was modi-
fied slightly to take ε input from the order parameter and
colloids obtained from the lattice Boltzmann simulations
but was otherwise used as given. Similar to the assump-
tions mentioned in reference [4], the dielectric material is
assumed to be only dependent on the position r, and the
value of charge and current density are set to be zero as
there are not any light sources. Another assumption is
that the electric displacement D and electric field E are
linearly proportional to each other as follows:

Dα(r) = ε0εαβ(r)Eβ(r) , (9)

where ε(r) is the tensor dielectric function. There is also
linear proportionality between the magnetic field H(r)
and the magnetic induction field B(r) as given by:

Bα(r) = µ0µαβ(r))Hβ(r) ≈ µ0Hβ(r) , (10)

TABLE I: Simulation parameters

Symbol Value Units
A0 0.5 atm
γ 3.103 —
K1 15 pN
K2 6.7 pN
K3 15 pN
Γ 0.33775 atm−1.µm−1

ξ 0.52 —
∆x 0.0625 µm
∆t 0.5 µs
P0 1.0 atm
ε‖ 19.0 —
ε⊥ 5.2 —
a 5.5 µm

where the magnetic permeability µ(r) is close to unity
so we will ignore its tensor nature and spatial variation
(The diamagnetic susceptibility, 1 − µ of liquid crystals
is very small, typically around 10−6 [57]). Moreover, the
dielectric tensor ε(r) is a real, and positive definite tensor
based on its dependence on Q in Eq.(7).

In the MPB program, the following harmonic modes
are used for electric and magnetic fields as the Maxwell
equations are linear and the temporal and spatial depen-
dence can be separated. So the fields are given as:

H(r, t) = H(r)e−iωt

E(r, t) = E(r)e−iωt
(11)

The transversality condition can be determined by con-
sidering the following divergence equation:

∂αHα(r) = 0

∂αεαβ(r)Eβ(r) = 0
(12)

Furthermore, we have the following curl equations for
electric and magnetic fields:

εαβγ∂βEγ − iωµ0Hα(r) = 0

εαβγ∂βHγ + iωε0εαβ(r)Eβ(r) = 0
(13)

where εαβγ is the Levi-Civita tensor (εαβγ∂βEγ is the
α component of ∇ × E). The above equations can be
written to obtain a master equation depending only on
H(r) as follows:

εαβγ∂β
[
ε−1γη (r)εηµν∂µHν(r)

]
=
(ω
c

)2
Hα(r) (14)

where ε−1 is the matrix inverse of ε, and c is the speed
of light.

We can use the master equation to obtain the frequen-
cies corresponding to each states H(r) for a defined di-
electric function. Using Bloch’s theorem, we can consider
H(r) as a plane wave:

H(r) = eik·ru(r) (15)
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a)

FIG. 1: High, ε = 70, contour of ε for the particles of radius
17∆x (∼1.1 µm). The blue contour shows the regions inside
of which ε is isotropic and its value is set to 70. The liq-
uid crystal, with anisotropic ε, given by Eq. 7, fills the space
outside this contour.

u(r) and ε(r) can be expanded as Fourier series as they
are periodic functions on the lattice:

uk(r) =
∑
G

cG(k)eiG·r

εk(r) =
∑
G

cG(k)eiG·r ,

(16)

where G is reciprocal lattice vector (G ·R = 2πn). As a
result, the master equation can be solved as an eigenvalue

problem in which
(
ω
c

)2
is the eigenvalues corresponding

to each discrete harmonic modes. Further details can be
found in reference [4].

III. RESULTS

In our work, different diamond lattices constructed
from 8 particles were considered inside a cholesteric LC.
In reference [45], it was found that the most energetically
favorable stable colloid diamond crystal can be formed
in a cholesteric LC with pitch value equal to the lattice
constant a. Therefore, we use the same pitch value. The
simulation box is periodic in x, y, and z directions, and
its dimensions is (88× 88× 88)∆x, which is commensu-
rate with the chosen pitch value (5.5 µm). The applied
boundary condition for the director on the surface of each
of these 8 spherical colloids is perpendicular. As a result,
Saturn-ring like defects are created around each of them
when located in a nematic LC, but the rings are twisted
around the particles when they are inside a cholesteric
LC [44].

FIG. 2: Irreducible Brillouin zone for the simple cubic lattice.

In ref. [45], different initial states were used in or-
der to investigate the effect of the initialization of the
cholesteric LC on the possible defect structures formed
in the colloidal diamond lattice. We used the configura-
tion leading to the lowest free energy that was found in
Ref. [45]. For the case where the matrix is isotropic it
was found that varying the particle size relative to the
lattice constant had a very significant effect on the size
of the band gap [4]. Here we use a few different parti-
cles sizes and assume that the low energy structure and
stability is similar to that found in [45] for the particles
of radius 17∆x (∼1.1 µm). This is probably not true for
the smallest diameter spheres (10∆x) studied here, as
the resulting defect structure ends up noticeably differ-
ent from that found for the 17∆x case. However, we shall
see that the smaller particles do not have a band gap so it
is probably not worthwhile studying the stability of that
case further. The defect structure for the larger spheres
were all very similar so they should have comparable sta-
bility properties to the case studied in [45].

In order to generate the periodic dielectric lattice
structure, the dielectric tensor outside the spheres is
set using Eq. (7) and inside the colloidal particles an
isotropic dielectric tensor is set as follows:ε 0 0

0 ε 0
0 0 ε

 , (17)

where ε is the interior dielectric constant. We chose a
range of values between low (ε = 1), and high (ε = 70)
dielectric constant value for the isotropic dielectric inside
each particle to get a high dielectric contrast with the LC
medium. The contour of isotropic ε can be seen in figure
1 for one such case.

In order to study the photonic bands, a simple cubic
irreducible Brillouin zone with its corresponding recipro-
cal lattice points is considered which is shown in figure 2.
This figure illustrates the path on the edge of the Bril-
louin zone, labeled by points Γ, X, R, M corresponding
to different wave-vectors. We chose the points Γ, X, M,
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FIG. 3: The diamond lattice made of colloids with radius
10∆x with a (yellow) contour of the scalar order parameter
(14% below the bulk value) showing the Saturn-ring-like de-
fects surrounding each colloid.

R with 4 interpolated points in between of each point
along the path Γ X M R, and calculated the eigenvalues
of Eq. (14) using the MPB package and plotted the band
diagrams for the lattice.

First, we start with small particles of radius 10∆x
(0.625 µm) as shown in Figure 3. In this figure, rep-
resenting the equilibrated state of the liquid crystal (i.e.
the liquid crystal was evolved to the steady state), the
yellow tube-like lines indicate the location of disclination
lines surrounding the colloids. They show a contour of
the locations where the scalar order parameters (largest
eigenvalue of Q) drops about 14% from its bulk value. In
this case, the surface separations between the closest par-
ticles is about 18∆x; therefore, the particles are far from
each other and the defect lines do not join each other.

The dielectric constant inside the sphere is set to ε = 1
and then the band structure is evaluated from a corre-
sponding set of 20 eigenvalues at the edge of the Brillouin
zone. Figure 4(a) demonstrates that no band gap is seen
in this case and some of the frequencies are degenerate in
the photonic band structure. We then set the dielectric
constant inside the sphere to a higher value (ε = 70) and
repeat the band structure calculation. Again, as seen in
Fig. 4(b), there is also no gap seen in the band diagrams.
This example is somewhat of the extreme case and so
the result is perhaps not that surprising given that an
isotropic matrix with such small colloidal inclusions or-
ganized into a diamond crystal would not be expected
to have a band gap either [4]. However, given that our
LC matrix has a dielectric permeability that varies by
nearly a factor of four (ε⊥ versus ε‖) it is not necessar-
ily expected to behave in the same way as an isotropic
matrix.

Next, we examined the eigenvalues at reciprocal lat-
tice points when the particle radius is increased to 17∆x
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FIG. 4: The photonic band structures for particles of radius
10∆x filled with a) ε = 1, and b) ε = 70.

(∼ 1.1 µm). This situation is identical to the one stud-
ied in Ref. [45] where it was established that it was a
stable minimum of the free energy. In this case, the clos-
est particle separation is now 4∆x, and the defect lines
are joined to each other and travel along symmetry lines
of the lattice, which is shown in Figure 5. The pho-
tonic band structure is shown in Figure 6 for three dif-
ferent values of the dielectric constant inside the spheres.
When the lowest dielectric constant (ε = 1) is used in
the sphere, no gap is seen in the photonic band diagram.
When the particle’s dielectric constant is increased to
(ε = 48) a narrow partial gap opens in the band dia-
gram (we also checked ε = 45 and found the bands just
touching). When the higher dielectric constant (ε = 70)
is used, we see that bands open partially which means
we must tunnel through the bands to control the propa-
gation of specific chosen frequencies. Also, when ε = 70
the range of calculated frequencies narrows compared to
the lower values.

When the radius of particles is increased to 19∆x, the
closest neighbor particle’s surfaces touch each other. The
contour of the maximum eigenvalue of tensor order pa-
rameter is shown in Figure 7 where it dips below the bulk
value, indicating the presence of a disclination. This fig-
ure illustrates that when the particles get too close to
each other a second small ”defect” ring appears where
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FIG. 5: The diamond lattice made of colloids with radius
17∆x with a (yellow) contour of the scalar order parameter
showing the disclination lines traveling along symmetry lines
of the lattice.

the colloids meet (the sphere in the front-center is drawn
transparently in order to make this visible). This is prob-
ably related to the slight mismatch of the surface direc-
tors on the two colloids as one moves away from the exact
point of contact and is not a true disclination, just a soft-
ening of the local order to avoid a “kink”in the director
field.

The band structure for different ε values for the particle
interior is shown in Figure 8. At the lowest value of ε = 1,
as seen in Fig. 8(a), there is now a slight partial gap,
something not seen for the smaller spheres. This partial
gap disappears when ε is increased, as seen in the results
for ε = 2.31 (Fig. 8b). As ε is increased further a partial
gap reopens near ε ≈ 40. Increasing ε inside the spheres
further still, when ε = 70, Figure 8c demonstrates that
there is now a complete, but narrow, gap between band
8 and 9, and its size is about 4.2%. The size of the
gap is identified through the gap-midgap ratio, defined
as the ratio of ∆ω/ωm, where ∆ω is the frequency width
of photonic band gap, and ωm is the frequency at the
middle of the gap [4].

Finally, we evaluate the photonic band diagram for
slightly larger colloidal particles, so that they overlap
each other. This can be practically done by making the
spheres out of elastic material and compressing the sys-
tem slightly. The resulting band structure is shown in
Fig. III. At a particle radius of 20∆x, the size of the
gap in band structure increases to 6.3% when the higher
dielectric constant is used (ε = 70). When ε is set to
it’s lowest value (ε = 1), a partial gap appears in the
photonic bands which must be tunneled through the cor-
responding frequencies to prevent light propagation for
the specific frequency range. Though there is a larger
partial gap at ε = 1 than was seen for the particles of
radius 19∆x, this partial gap again disappears when ε is
increased to 2.31. So, overall, the onset of the appearance
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FIG. 6: The photonic band structures for particles of radius
17∆x filled with a) ε = 1, b) ε = 48, and c) ε = 70.

of the (partial) gaps is similar to the 19∆x spheres, but
the gaps grows slightly faster as the dielectric constant
of the sphere moves away from these onset points.

These sort of photonic band diagram examinations il-
lustrate that using spheres in a cholesteric liquid crystal is
a promising method to build non-closed packed colloidal
lattices with a desirable photonic band gap by adjusting
two important factors: particle size and proper dielectric
constant of the sphere to generate appropriate dielectric
contrast ratio with the LC medium.
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FIG. 7: The diamond lattice made of colloids with radius
19∆x with the contour plot of scalar order parameter showing
the line defects surrounding each colloid. The front-center
sphere is drawn transparently so that the circular distortion
where the spheres meet is visible.

IV. DISCUSSION AND CONCLUSIONS

In Ref.[45] it was demonstrated that a diamond col-
loidal crystal could be stable in a cholesteric liquid crys-
tal. Here, we have demonstrated the dielectric properties
of the colloids that would be necessary for such a crystal
to exhibit a photonic band gap. We demonstrate that
the photonic response of the diamond array of colloids
inside a LC depends on two main features: the dielectric
constant of colloids inside the LC, and the size of colloids.

We considered Maxwell equations and used Bloch’s
theorem assuming the magnetic field as a plane wave,
and a Fourier series expansion for periodic functions on
the lattice such as the dielectric function(εk(r)), and the
periodic function used for magnetic function(uk(r)). We
calculated the frequencies for 20 bands at the edge of the
SC irreducible BZ to explore the photonic band structure
for the diamond colloidal crystal immersed in LC.

Comparing the band diagrams for different particle
sizes and the dielectric constants of colloids, it was found
that small spherical particles (r = 10∆x) do not show
any gaps in the photonic band structures and the bands
cross each other at some reciprocal lattice points on the
edge of Brillouin zone. There is no opening in the band
diagram for small particles at the low or high dielectric
constants used for colloids.

The photonic band structures reveal different results
for larger colloids. When the particles with r = 17∆x
and a higher dielectric constant are used in the diamond
array inside the LC, we see a partial band gap across
the reciprocal lattice points, meaning there is a local fre-
quency range in which the light wave cannot be propa-

a)

b)

c)

FIG. 8: The photonic band structures for particles of radius
19∆x filled with a) ε = 1, a) ε = 2.31, and b) ε = 70.

gated. On the other hand, no local opening is seen in the
band diagram when the lower dielectric constant value is
used and there is degenerate frequencies at some points.

Even more interesting results are explored when even
larger particles are used to form a diamond crystal.
When the particles are large enough in order for their
surfaces to touch each other, a narrow complete band
gap with size 4.2% appears at the highest dielectric con-
trast. There is a small partial gap at the lowest ε, but
no complete gap. A larger complete band gap is ob-
served when the size of colloids are larger so the parti-
cle’s surfaces overlap. Therefore, our work offers a means
to produce the desired photonic diamond colloidal crys-
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a)

b)

FIG. 9: The photonic band structures for particles of radius
20∆x filled with a) ε = 1, and b) ε = 70.

tals with different complete band gaps sizes, which have
useful applications in photonics. The optimum particle
size (preferably large particles) with high dielectric ratio
contrast in the medium reveal a complete band gap.
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