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In this paper, we model a number of both closed-packed and non-closed packed crystals inside
a cholesteric LC with different pitch values and nematic LC through the Landau-de Gennes free
energy method. We used binary boundary conditions (normal and planar anchoring) applied on the
surface of colloids as we are interested in investigating the stability of binary crystals. The results
indicate that BCC crystals has a lower energy lattice defect structure than the diamond crystal,
and the most energetically favourable BCC lattice can be formed in a cholesteric liquid crystal with
a pitch value commensurate with the lattice spacing. Furthermore, it is shown that a pair of binary
colloids can be self-assemble into a stable FCC lattice structure inside a nematic LC, as it has the
lowest energy comparing to diamond and BCC crystals.

PACS numbers: 61.30.Jf 47.57.J

I. INTRODUCTION

Liquid crystals(LC) are widely used in a variety of ap-
plications [1–3]. One potential application is as a photo-
nic material when combined with a self-assembled colloi-
dal crystal inside the LC. Photonic crystals are formed
from a periodic organization of particles, of size compa-
rable to the wavelength of light, which represents a pe-
riodic dielectric pattern in space. Colloidal crystals are
composed of a periodic lattice of colloids within a ma-
croscopic media resulting a periodic dielectric function.
As a result, they can be used as the basis of photonic
crystals. Therefore, self-assembly of colloidal particles in
a fluid has been studied as a potentially efficient method
to generate photonic crystals [4–6]. The resulting pho-
notic band structures can be used to control and confine
electromagnetic waves due to refraction and reflection
of light from different interfaces in the periodic dielectric
medium. This behavior is similar to electron propagation
in semiconductors [7]. For this purpose, the presense of
a photonic band gap is desirable, meaning there is a cer-
tain range of frequencies for EM waves that is forbidden
to be propagated in all directions of wave propagation
[8]. Closed packed crystals’s photonic band structure ty-
pically do not possess with photonic band gaps, but in
1990 it was found that a diamond structure of spheres in
empty space does show a complete band gap [9]. This
makes it particularly interesting to investigate colloidal
crystal structures that are stable in a non-closed packed
configuration.

Self-assembly of particles inside a LC provides a met-
hod to generate colloidal photonic crystals [4–6, 10]. A
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simple fluid is not an ideal medium to produce a non-
closed packed structure as most colloidal interactions are
isotropic and spherically symmetric (which typically le-
ads to close-packed crystal structures). However, a po-
tentially ideal host medium for generating non-closed
packed structures is a liquid crystal. As LCs have aniso-
tropic properties, long-range anisotropic interactions ex-
ist between the colloidal particles. When particles are
immersed in LCs, the LC molecules are distorted around
the particles from their preferred uniform orientation due
to the imposed boundary conditions on the particle’s
surface. The distortions often produce topological de-
fects, and the director distortion increases the elastic free
energy of the system [11, 12]. The long range anisotropic
forces are induced between the particles as sharing the
distortion volumes around the particles helps minimize
the elastic free energy [13–17]. The imposed boundary
conditions on the surface of the particles dictates the type
of topological defects and the induced interactions.

In a nematic, when the preferred orientation of LC
molecules on the surface of colloids is parallel (planar
anchoring), a pair of defects are generated at the poles of
particles, called boojums [11]. The boojum cores can be
single, split, and double cores [18]. The stable single core
can be found at weak anchoring, small particles, and high
temperature. The split cores are a pair of +1/2 point
defects connected by a defect line of the same strength.
If the defect line connecting a pair of split core boojums is
not developed completely, the defect structure is known
as a double boojum. In contrast, when there is normal
anchoring of LC molecules on the surface of colloids two
possible defect structures can be generated in nematic
LC. One possible defect is a Saturn ring defect, which is
a disclination defect line surrounding around the particle
inducing a long range quadropolar interaction and stable
for small particles, and another possibility is a -1 point
defect, called a hyperbolic hedgehog, inducing far-field
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dipolar interaction [11, 19–23].
When the colloids are immersed inside a cholesteric

LC, the associated defect lines become twisted around
them. Depending on the size of the pitch in cholesteric
LC and size of colloid, a broad range of defect structure
can be seen [14]. Considering colloids with strong planar
anchoring inside a cholesteric LC, a defect-bonded chains
is generated by connecting the boojum handles from ad-
jacent particles [17]. Moreover, a blue phase LC can pro-
duce a 3D disclination network. As a result, colloidal-
blue phase composites can be generated as the colloids
are attracted to the 3D defect network depending on the
anchoring strength [24, 25]. Also, the stability of a di-
amond colloidal crystal with normal anchoring inside a
cholesteric LC through its phonon spectrum is investi-
gated in ref. [26]. In this 3D self-assembled structure,
the defect lines travel along the symmetry axes of the
diamond crystal.

Binary particles with normal and planar anchoring in-
side a nematic LC can self-assemble into 2D crystals, such
a 2D square crystal [27, 28]. The anisotropic interactions
between colloids with heterogeneous boundary conditi-
ons inside both nematic and cholesteric LC are studied
in ref. [28]. In this paper, it was found that multiple local
minima exist in 3D space when binary colloids are pla-
ced inside cholesteric LC with different pitch values and
there are short range attractive forces induced between
colloids. So we can conclude that a variety of potential
crystals including closed-packed and non-closed packed
structures could potentially be formed inside cholesteric
LC using these binary particles as the basis for the lat-
tice.

In this paper, we examine binary colloidal crystal
structures, and in particular diamond and BCC lattices,
inside a cholesteric LC. We test different helical pitch
values commensurate with our system size, in order to
measure the binary adavantage energy for each of the
colloidal crystals, find the pitch value at which the most
energetically favorable defect structure occurs and then
compare the stability of closed-packed and non-closed
packed crystals. We also investigate the defect structure
of diamond, BCC, and FCC lattices inside a nematic LC
to find the potential stable crystal.

II. MODELLING

Using the Landau-de Gennes formalism [29], the LC
is modeled by a tensor order parameter Q to describe
the LC molecules orientation. This tensor is defined as
Qij = 〈m̂im̂j − 1

3δij〉, which is the ensemble average of
the individual molecular orientation m̂. Q is a symmetric
traceless matrix. Its largest eigenvalue is 2

3q (0 < q < 1)
and represents the magnitude of order along the corre-
sponding eigenvector n̂, which defines the director field.
The evolution of Q can be tracked using Beris and Ed-
wards theory [30] as follows:

(∂t + u · ∇)Q− S(W,Q) = ΓH , (1)

where H is the molecular field, u is the fluid velocity,
and Γ is a rotational diffusion constant. Also S(W ,Q) is
related to the symmetric and antisymmetric component
of velocity gradient as:

S(W,Q) = (ξD + Ω)(Q + I/3) + (Q + I/3)(ξD −Ω)

− 2ξ(Q + I/3)Tr(QW ) , (2)

where the symmetric and antisymmetric velocity gra-
dient components, D = (W + W T )/2 and Ω = (W −
W T )/2, are related to Wαβ = ∂βuα. ξ is related to the
effective aspect ratio of LC molecule.

The right hand side of Equation (1) drives the system
towards a free energy minimum through the functional
derivative of the free energy:

H = −δF
δQ

+

(
I

3

)
δF

δQ
. (3)

. In our work, the whole free energy of the system is
composed of the bulk free energy, elastic, and surface
energies:

F =

∫
{Fbulk + Felastic} dV +

∫
Fsurface dS . (4)

The bulk free energy of the system is described as :

Fbulk =
A0

2
(1−γ

3
)Q2

αβ−
A0γ

3
QαβQβγQγα+

A0γ

4

(
Q2
αβ

)2
,

(5)
where A0 is a constant, and the phase transition between
isotropic and LC phases can be controlled through γ. In
order to have a stable LC phase, γ is set to 3.2 (the
isotropic fluid is stable when γ < 2.7, the LC is stable
when γ > 3.0 and coexistence is possible for 2.7 < γ <
3.0).

Felastic represents the elastic distortion via:

Felastic =
L1

2
(∂αQβγ)2 +

L2

2
(∂αQαγ)(∂βQβγ)

4πL1

P
εαβγQαν(∂βQγν) . (6)

The usual distortions in a nematic LC are represented
through the first two terms. The last term is present
to model a cholesteric LC with a helical twist pitch P
in the director which minimizes this term. L1 and L2

are the elastic constants, which can be mapped to the
Frank elastic constants K1,K2,K3 [30]. In our work,
we chose K1 = K3, and K2 < K1 and K3 to have a
stable cholesteric LC. However, in nematic LC, we chose
K1 = K2 = K3.

Finally, Fsurface is associated with the interaction of
LC molecules with the surface of the colloidal particles.
In our work, the preferred orientation of LC molecules
on the surface of the colloids is either normal or planar
anchoring. Anchoring strength is controlled through a
parameter αs. We use a large enough value of αs to have
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TABLE I: Simulation parameters

Symbol Value Units
A0 0.5 atm
γ 3.103 —
K1 15 pN
K2 6.7,15 pN
K3 15 pN
Γ 0.33775 atm−1.µm−1

ξ 0.52 —
∆x 0.0625 µm
∆t 0.5 µs
P0 1.0 atm

strong anchoring. The imposed planar and normal LC
molecule anchoring on the colloid surface is induced by:

Fsurface =
αs
2

(Qij −Q0
ij)

2 → Normal anchoring , (7)

Fsurface =
αs
2

(Q̃ij − Q̃ij
⊥

)2 → Planar anchoring , (8)

where Q0
ij = q0(n̂i

0n̂j
0 − 1

3δij) and n̂0 is the normal to

the surface of particle, and q0 is the equilibrium bulk

value of q. Also, Q̃ij = Qij + 1
3q

0δij and Q̃ij
⊥

= (δik −
n̂i

0n̂k
0)Q̃kl(δlj− n̂l0n̂j0) is the projection of Q̃ij onto the

tangent plane of the surface [31].
The LC also satisfies the Navier-Stokes and continuity

equations with the following symmetric:

σαβ = −P0δαβ − ξHαγ(Qγβ +
1

3
δαβ)− ξ(Qαγ +

1

3
δαγ)Hαβ

+ 2ξ(Qαβ +
1

3
δαβ)QγεHγε

− ∂βQγν(
δF

δ∂αQγν
) ,

(9)

and antisymmetric tensors:

ταβ = QαγHγβ −HαγQαβ . (10)

These equations are solved using a lattice Boltzmann al-
gorithm described in Ref.[32–35].

Using the above equations, the corresponding stresses
and forces can be calculated in the fluid, then applied to
the colloids. The fluid-colloid interaction is modeled by
mapping the colloids onto the fluid mesh on which the
lattice Boltzmann method is defined. In this method,
each spherical colloid is first discretized into 6252 nodes,
and then the nodes are coupled to the fluid mesh through
interpolating onto nearby fluid lattice sites. The details
of this method are described in Refs. [13, 36–40]. The
algorithm was performed using a custom LAMMPS [41]
package.

The full 3-dimensional computation of the liquid cystal
and colloid dynamics is quite costly and so we break it

into stages in order to minimize this cost. We first ex-
amine the energy of several candidate crystal states of
colloids inside the LC. As such, the dynamics in this case
are just used to take us to a minimum of the liquid crystal
energy given the fixed colloid configuration. We then ap-
plied LC forces onto the particles to measure the phonon
frequencies of the lowest energy lattice found and esta-
blish its stability when allowing the colloids positions to
fluctuate.

III. RESULTS

In nature there are several stable binary atomic crystal
structures such as SiC, ZnC, etc. We examine several of
these lattice structures as potential candidates for our
colloidal crystal. The binary colloids will be formed from
spherical particles with two different boundary conditi-
ons for the director (normal and planar) on the surface
of the sphere. Once immersed in the LC, the particles in-
duce defects in the LC matrix and these defect dominate
the interactions of the particles. We investigated simi-
lar heterogeneous particle pairs inside a LC in Ref. [28].
Once placed in a crystal lattice the defect structure can
be quite different from that found for a single pair. How
the defects align with the lattice also affects the overall
stability of the crystal [26].

In the first subsection, the defect structures of a body-
centered-cubic (BCC) and diamond lattice with binary
basis particles inside a cholesteric LC with different pitch
values are investigated. We examine which lattice has the
lowest energy per particle, and hence could be as a poten-
tial stable crystal for binary particles in cholesteric LC.
In the second subsection, we did the same simulations
for face-centered-cubic (FCC), BCC, and diamond latti-
ces inside a nematic LC. Commensurability issues mean
that a FCC and BCC are unlikely to be competing lattice
structures at a fixed cholesteric pitch, so we only compare
the FCC for the nematic case.

A. Cholesteric LC

1. Diamond lattice

We first considered a colloidal crystal in a diamond
lattice with a unit cell composed of 8 particles of radius
1.06 µm (17∆x) inside a cholesteric LC. The simulation
box dimensions are (L × L × L) with L = 5.5µm, or
(88 × 88 × 88)∆x, and is periodic in x, y, z directions.
In this case, the nearest surface to surface separation
is about 4∆x. Similar to in reference [26], the closest
nearest surface separation is chosen in a way that it is
large enough so the particle surfaces do not overlap each
other, and small enough so that the director distortion
of one particle can affect its neighboring particles.

The colloidal particles have binary boundary condi-
tions(normal and planar) on the particle surfaces. As
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a) b) c)

d) e) f)

FIG. 1: Unit cell of binary diamond colloidal crystal in cholesteric’s with different pitches. There is planar anchoring on the
surface of green colloids and normal anchoring on the surface of blue colloids. There are 8 particles inside the unit cell. The
defect structures (disclinations) are shown in yellow. The pitch values are a) and d) (first column) L/2 = 44∆x, b) and e)
(2nd column) L = 88∆x, and c) and f) (third column) 2L = 176∆x, where L is the size of a unit cell. The top row shows the
configuration with the lowest energy found for a given pitch whereas the bottom row shows the highest energy configuration
found for a give pitch

shown in figure 1, the binary diamond lattice consists
of two FCC lattices displaced from each other by (a4 , a

4 ,
a
4 ), where a is the lattice constant of the cubic super
cell. The colloids from the two different FCC lattices are
shown in different colors. The director field is aligned
perpendicular on the surface of particles in blue (dark),
and tangential on the green (lighter) particles.

The lattice structure is immersed in a cholesteric LC.
Several values of the pitch are investigated in order to
examine the resulting LC configuration that is obtained
by running the equations of motion towards their steady-
state. To compare various crystal structures we will ex-
amine the particle energy for the configuration:

∆E/n = (En − E0)/n (11)

This measures the increase of free energy per particle
when n particles (n = 8 for a diamond unit cell, n = 2
for a BCC unit cell, and n = 4 for a FCC unit cell using
a standard cubic unit cell) are placed in the crystal con-
figuration as compared to the same system size with no
particles (E0). It is reasonable to assume that the direc-
tor field must have the same periodicity as the crystal in
order for the lattice to be stable. As such, the director
field must be aligned at the systems (periodic) bounda-
ries. In a cholesteric LC this means it can only rotate by
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FIG. 2: The energy gained per particle for binary diamond
colloidal crystal (n=8) inside a choelsteric LC with pitch value
of 88∆x, 44∆x, and 176∆x as a function of θ.

multiples of π in the direction of a twist axis. As a result,
we can’t choose arbitrary pitch values as they should be
commensurate with the size of the lattice constant. The-
refore, we used 3 different pitch values λ where the di-
rector twists over the distance L by 2π (λ = 88∆x = L),
4π (λ = 44∆x = L/2), and π (λ = 176∆x = 2L).

First, we examine a diamond colloidal crystal placed
inside a cholesteric LC with a pitch value of 88∆x (di-
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rector twists by 2π over box size L). The twist axis in
the cholesteric LC is initially along the z direction. We
performed several simulations initialized with different
initial values for the angle between the director and x-
axis. Ideally the final state would be independent of the
initial conditions. Unfortunately, the system easily gets
stuck in localized states. While in many cases the states
only differ slightly in energy (see Fig. 2), there are cases
where different defect structures can be found depending
on the initial θ values. The extreme cases are shown in
Figure 1b and e. While the defect lines look similar in
the two cases, the lower energy case (b) has slightly shor-
ter defect lines which are localized to a single colloid. We
will return to the question of whether we have found the
global minimum later when we look at the stability of
these structures.

Next, the diamond colloidal crystal was inserted inside
a cholesteric LC with smaller pitch value of 44∆x (di-
rector twists by 4π over box size L). Again, depending
on the initial angle we set the director, we arrive at dif-
ferent local minima. As it can be seen in the figure 2,
the lowest energy crystal can be found at θ = 3◦, and its
corresponding defect configuration is shown in figure 1a.
In this case, the defect lines stretch across the lattice in
order to reduce distortion in the LC medium, but these
lines tend to flow more along the x and y direction rather
than z suggesting a memory of the initial orientation of
the pitch. It is worth mentioning that small pitch value
makes the defect lines more twisted around the colloid
[42]. The higher energy local minima found are typically
more disordered in their disclination structure, as seen
in Fig.2d. Finally, we investigated the defect structure of
the diamond lattice inside a cholesteric LC with the lar-
ger pitch value of 176∆x (director twists by 2π over box
size L). The defect configurations are shown in figure 1c
and f and are quite localized to each colloid. Again, the
energy landscape of the local minima is quite jagged, as
shown in figure 1.

In summary, for all cases examined of the diamond
colloidal lattice, the energy landscape is quite rough and
the defect lines do not really respect the symmetries of
the lattice. As we shall see later, none of these structures
are good candidates for the true energy minima of this
system.

2. BCC Lattice

Next, we examine the energy of particles with binary
boundary conditions as a basis for a binary BCC lattice.
We chose a BCC instead of, say a FCC, lattice as it is pos-
sible to have a BCC lattice with the same particle sizes
and separations, and unit cell size as the Diamond lat-
tice. As such, we can directly compare the energies of the
two crystals at the same pitch (again, chosen commensu-
rate with the unit cell) as it is possible for the system to
go from one configuration to the other. With the same
nearest-neighbor particle as we used in diamond lattice,

a)

b)

c)

FIG. 3: The defect structures for a BCC colloidal crystal
inside a cholesteric LC with different pitch values a) 88∆x
with θ = 45◦, b) 44∆x with θ = 5◦, anf e) 176∆x with θ = 2◦
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FIG. 4: The energy gained per particle for binary BCC col-
loidal crystal (n=2 per unit cell) inside a choelsteric LC with
pitch value of 88∆x,44∆x and 176∆x as a function of θ. The
energy for BCC in cholesteric LC with highest pitch value is
divided by 16 as there are totally 8 unit cells in our system.
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we can actually construct a smaller BCC unit cell with
size (44× 44× 44)∆x. In this case, the pitch values used
for the diamond simulations are still commensurate with
the system size, except for the larger one (where the di-
rector twists by π over a distance L = 88∆x) where we
will need to use a 2 × 2 × 2 unit cell system in order to
have commensurability.

Similar to the diamond simulations, we measured the
energy per particle using equation 11 (n = 2 particles
per BCC unit cell). We first considered the BCC unit
cell in a cholesteric LC with pitch value of 88∆x, and
the lowest energy defect patterns can be seen in figure
3a. The central green colloid has planar anchoring and
the blue ones at the corners have normal anchoring. The
plot of the energy per particle is shown in figure 4 as a
function of an initialization angle for the director. The
energy landscape for the BCC crystal is much more re-
gular/symmetric than found for the diamond crystal and
almost identical defect structures are found for many dif-
ferent initial configurations. The minimum in energy
occurs at θ = 45◦, and the defect lines are twisted in a
way producing less distorted volume in the unit cell and
they travel along the symmetry axes of the BCC unit cell.
The higher energy configurations typically have a slightly
longer defect lines somewhere in the system, potentially
in pairs that cannot easily be relaxed.

Next, similar simulations are performed for BCC unit
cell in LC with a higher pitch value 176∆x. In this case,
we considered a system considered of 2× 2× 2 unit cells
in each direction so that the director field rotates by π in
the box of size (88×88×88)∆x. Considering the figure 4,
the energy curve is smooth and almost the same defect
configuration is found for most cases. A minimum in
energy again is found for initial θ = 45◦, corresponding
to the defect structures presented in figure 3c. As can
be seen in this figure, the defect lines are symmetrically
joined between the spheres leading to the lower energy
in the system(the green colloids have planar anchoring,
and the blue ones have normal anchoring).

Finally, the BCC crystal is examined in a choleste-
ric LC with the lower pitch value of 44∆x. The plot of
energy in figure 4 shows that the lowest energy BCC col-
loidal crystal can be found at both θ = 5◦ and θ = 80◦,
producing the lowest distorted volume in the BCC unit
cell. The same sorts of defect structure exist for both
angles, but the lines are twisted in opposite directions
(Fig.3b). All defect configurations at 25◦ < θ < 60◦

are in the same higher energy state corresponding to the
most distorted unit cell.

Overall, we see the energy landscape for the BCC lat-
tice being more symmetric and not as rugged as found
for the diamond lattice. In addition, the defect lines that
form in the lowest energy states found for the BCC lat-
tice tend to follow lines of symmetry in the lattice for the
shorter pitches. For the longest pitch, there are notice-
ably more defect lines (cf. Fig. 3c) in the system. We
also note that with the exception of the longest pitch, the
energies for the BCC lattice are lower than those found

FIG. 5: Face of FCC lattice gives a square lattice in 2D
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FIG. 6: The energy gained per particle for binary
BCC(n=2),FCC(n=4), and diamond(n=8) colloidal crystal
inside a nematic LC as a function of θ.

for the diamond lattice.

B. Nematic LC

It is also interesting to examine these lattice structures
in a nematic (corresponding to a cholesteric with infinite
pitch). In this case, there is evidence from experiments
[27] that one can arrange the binary particles into a 2D
square lattice with alternating particle types, similar to
the structure show schematically in Fig. 5. There are
multiple ways to generalize this into a 3D lattice. Given
that the particles were quite closely packed in the expe-
riment, the most natural generalization is to take the 2D
structure as a face of a FCC lattice. In order to have
the same closest surface to surface separation of 4∆x,a
FCC unit cell of size (54×54×54)∆x is considered. The
plot of energy and defect structures are shown in figures
6 and 7. In this case, almost all initial orientations of the
director end up in essentially the same state. The lowest
energy defect structure is shown in Fig. 7c.

For comparison to the lattices examined in the choles-
teric we will also examine a BCC and a diamond lattice
in a nematic. For both cases the states found are again
nearly independent of the initial orientation, except for a
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a)

b)

c)

FIG. 7: The lowest energy defect structures found for a) a
BCC colloidal crystal, b)diamond colloidal crystal, and c)
FCC colloidal crystal inside a nematic LC

few cases, as seen in Fig. 6. The corresponding minimal
energy states are shown in Figure 7.

C. Stability

Comparing the energies for both BCC and diamond
crystals in a cholesteric LC, it can be concluded that the
most energetically favorable crystal is BCC, as it has lo-
wer energy defect structure with more symmetric defect
lines in LC with pitch value of 88∆x. However, by it-
self this does not mean that it would not be possible to
produce a diamond crystal with some metastability as
energy barriers between states could quite easily be lar-

FIG. 8: Displaced colloids that were initially in the lowest
energy state found for a diamond lattice (cf. Fig. 1c) and
then subject to thermal noise.

ger than thermal energies (kBT ). To test the stability of
the crystal structures found so far, we add thermal noise
to the molecular field H in the liquid crystal and allow
the particles to move in response. These simulations are
much more costly than just finding the minima so we will
restrict ourselves to looking at the most promising cases
found so far.

For the diamond lattice in the cholesteric the lowest
energy state found was for the longest pitch. However,
once we allow the particles to move in response to ther-
mal fluctuations we quite quickly discover that the cry-
stal structure is unstable and the colloids cluster into a
denser grouping within the periodic unit cell as seen in
Figure 8. We therefore conclude that the diamond lat-
tice is not even a locally stable state. This is not that
surprising given the lack of lattice symmetries seen in the
corresponding defect structure in Fig.1.

We now examine the BCC cyrstal in the cholesteric
with pitch 88∆x which had the lowest energy of any of
the colloidal crystals found in any of the cholesteric sy-
stems. Therefore, it may be a potential stable crystal.
When we add the thermal noise and allow the particles
to move in response we find that in this case the particles
fluctuate about the lattice locations. In order to investi-
gate the stability of BCC lattice, the phonon spectrum
corresponding to the vibrational modes of the crystal is
found by calculating the eigenvalues of the dynamical
matrix (the details can be found in Ref.[26]). As the
phonon frequencies can be directly related to second de-
rivative with respect to particle location of the effective
energy of the crystal, this is equivalent to the second deri-
vative test for a minima familiar from first year calculus.
If all the phonon frequencies are real and positive then
the crystal should be locally stable.

In order to accurately find the particles vibrations, we
used two BCC unit cells put together. However, there
will still be some finite size effects present in our simu-
lations. Using the minimum energy BCC found before,
we added noise to the system, and applied LC forces on
the colloids to measure the particle displacements and
calculate the phonon spectrum. We discarded the first
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a)

b)

FIG. 9: Irreducible Brillouin zone for the (a) BCC lattice and
(b) FCC lattice

100000 timesteps to ensure we were following the equili-
brium state.

A BCC irreducible Brillouin zone with its reciprocal
lattice points is considered in order to map out the cry-
stal phonon frequencies. We chose the path along points
Γ, H, N , Γ, P , and H as can be seen in fig.9a, and
then calculated the eigenvalues of the dynamical matrix
by using the particles displacements. As shown in fig.
10a, all the eigenvalues are positive, which shows there
is a local minimum energy corresponding to the second
derivative of the potential energy. It is therefore fairly
probable that pairs of binary colloids will self-assemble
into BCC lattice structure.

Considering crystals in a nematic LC, if we compare
the energy per particle for BCC, FCC and diamond latti-
ces, we can see that FCC appears to be the most energe-
tically favorable lattice generated in a nematic LC, which
is consistent with the results found in [27, 28], suggesting
that a binary system of colloids in a nematic LC can be
arranged into a 2D square lattices or linear chain confi-
gurations. Therefore, the stability of the FCC lattice in
the nematic is also investigated by adding noise to the sy-
stem. The figure 9b shows the first irreducible Brillouin
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FIG. 10: Phonon frequencies of (a) BCC lattice in cholesteric
and (b) FCC lattice in a nematic. The data was divided
into 10 bin, and the error bars corresponds to the standard
deviation of the frequencies.

zone for FCC lattice. We chose points Γ, X, W , L on the
FCC BZ, and calculated the phonon frequencies from si-
mulation data of the fluctuating particles. As can be seen
in figure10b , the eigenvalues of dynamical matrix are all
positive showing that the FCC crystal in a nematic LC
can be considered as a stable crystal structure.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we examined the energy and stability
of a non-closed packed crystal (diamond) and a closed-
packed crystal (BCC) with basis colloids of binary boun-
dary conditions inside a cholesteric LC with a variety of
pitch values. Comparing the energy gained by a pair
of colloids and different defect structures, we found that
the BCC lattice has a high likelihood to be formed in a
cholesteric LC. The energy is lower for the BCC crystal
inside a cholesteric LC with the pitch value such that the
director would be expected to twist by π over one unit
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cell of the lattice. In investigating the stability of the
lattice structures, the diamond crystal in a cholesteric
was not found to be stable. The stability of binary BCC
lattice was investigated through calculating the phonon
frequencies. The positive real frequencies suggests the
BCC lattice is stable. We also examined simulations for
FCC, BCC, and diamond lattices in a nematic LC, and it
can be concluded that the FCC lattice is the most ener-
getically favorable lattice in a nematic LC and is also
stable to fluctuations.

It would be interesting to examine how application of
an external electric field could influence the stability of
the crystal structures found. Such fields change the total
LC free energy. Depending on the direction the field is
applied, the defects around the particles may be altered
as the field affects the orientation of LC molecules. This

could also result in different types of induced interacti-
ons leading to different interaction energy landscapes. It
would also be interesting to examine confined crystals
where the defects in the crystal structure could interact
with defects on the boundary of the domain.
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