
Available on-line at www.prace-ri.eu

Partnership for Advanced Computing in Europe

NUMA-CIC: Issues and Challenges for Scaling Scientific Applications

on a Large Scale ccNuma Prototype

Dimitris Siakavaras1,*, Konstantinos Nikas1, Nikos Anastopoulos1, and Georgios Goumas1

1Greek Research & Technology Network (GRNET), Greece

Abstract

This whitepaper studies the various aspects and challenges of performance scaling on large scale shared memory systems.
Our experiments are performed on a large ccNUMA machine that consists of 72 IBM 3755 nodes connected with
NumaConnect and provides shared memory over a total of 1728 cores, a number that is far beyond conventional server
platforms. As benchmarks, three data-intensive and memory-bound applications with different communication patterns
are selected, namely Jacobi, CSR SpM×V and Floyd-Warshall. Our results illustrate the need for numa-aware design and
implementation of shared-memory parallel algorithms in order to achieve scaling to high core counts. At the same time, we
observed that, depending on its communication pattern, an application could benefit more from explicit communication
using message passing.

1. Introduction

The NumaConnect technology [1] enables the realization of large scale SMPs from commodity servers. This is
achieved through the use of a novel node board connected to the HyperTransport processor bus of standard
AMD based servers. The resulting system is a cache coherent Non-Uniform Memory Access (ccNUMA) machine.

Shared memory is attractive to developers, as any processor can access any data in the system through direct
load and store operations, thus making the programming of the system easier and the code less error-prone. On
the other hand, performance scaling on large scale systems is generally not straightforward. In NUMA systems,
however, it can be even more difficult and complicated as the allocation of shared data can have a significant
impact on the performance.

In this whitepaper we attempt to gain a deeper understanding of the characteristics of a large scale ccNUMA
machine and the challenges the developers are facing. The rest of the paper is organized as follows: Section 2.
offers a short description of the platform and the benchmarks used in our experiments; Section 3. discusses our
findings and Section 4. concludes and highlights possible directions for future work.

2. Experimental Methodology

2.1. Hardware Platform

Our experiments were performed on a PRACE prototype, the large shared memory NumaConnect cluster at
the University of Oslo in Norway. The system consists of 72 IBM 3755 nodes [2] connected in a 3D torus
with NumaConnect . Each node contains two AMD 12-core Opteron 6174 Magny-Cour processors, four memory
channels and 64GiB of memory. The details of the system are summarized in Table 1.

Node System
Cores 24 1728

Mem. Controllers 4 288
RAM 64GiB 4.6TiB

Table 1: System characteristics (72 nodes)

∗To whom correspondence should be addressed. Email: jimsiak@cslab.ece.ntua.gr

1



2.2. Benchmarks

For our experiments we have selected three kernels that are widely used in scientific and engineering appli-
cations. In general, all three applications are data intensive and memory-bound (at least in their original
implementations) and exhibit different communication patterns. The selected benchmarks are in more detail:

1. Jacobi: The Jacobi kernel is a common stencil computation. In our case, we use the Jacobi computational
method to solve the 3-dimensional heat equation. Our baseline shared-memory version is implemented in
OpenMP with straightforward loop parallelization. We also use a message-passing implementation with
MPI which employs a nearest-neighbor communication pattern.

2. SpM×V: Sparse Matrix multiplication with Vector (SpM×V) is an important and ubiquitous computational
kernel in sparse numerical algebra [3]. Matrices are stored in the CSR format [4]. We use a shared-
memory version implemented in Pthreads and a message-passing version in MPI. The algorithm exhibits
an irregular communication pattern, in which each process communicates with varying numbers of processes
and message sizes dependent on the sparse matrix structure and the total number of participating processes
in the computation. We used 5 different matrices collected from the University of Florida sparse matrix
collection [5] with various memory footprints.

3. Floyd-Warshall: The Floyd-Warshall algorithm is a graph analysis algorithm used for finding shortest
paths in weighted graphs. Our shared-memory version is implemented with OpenMP and the message-
passing version is implemented in MPI. Communication occurs in a collective way, where one process in
each time step broadcasts a matrix row to all other processes.

The memory footprints of the inputs that we used in our experiments are presented in Table 2.

Jacobi SpM×V Floyd-Warshall
Input Size (GiB) Name Size (GiB) Input Size (GiB)
5123 2 msdoor 0.118 4096 0.0625
10243 16 rajat31 0.262 16384 1

10242 × 2048 32 ldoor 0.271 32768 4
10242 × 4096 64 boneS10 0.626 65536 16
10242 × 8192 128 HV15R 3.18

Table 2: Memory footprint of benchmarks’ inputs

In order to take advantage of the characteristics of the underlying platform, numa-aware versions of all the
benchmarks were developed. In these versions, each thread allocates its data in the memory of the node where
it executes, in an attempt to reduce the amount of off-node memory accesses.

2.3. Instrumentation

The Linux kernel employed by the experimental platform is NUMA aware, i.e. it provides the appropriate
mechanisms to schedule multiple threads efficiently; specifically, we use the numactl utility to instrument the
execution of our kernels. Moreover, we bind each thread to a specific processor, following what we call packed
placement policy, i.e. we employ all the physical cores available in one physical package/node before assigning
a thread to another physical package/node. So, the first 12 threads are executed on the same die, the first 24
threads are executed on the 24 cores of the first node of the system, the next 24 threads on another node and
so on.

3. Results and discussion

The NumaConnect prototype provides an exceptional platform supporting shared memory in a number of
cores that is far beyond conventional server platforms and HPC compute nodes. The efforts of this work are
primarily focused on shedding light on the potential of this platform to deliver high performance to parallel
application while taking also into consideration the programming effort. In our first set of experiments, we
compare straightforward and numa-aware shared-memory implementations. In our second set of experiments
our goal is to evaluate the prototype as a shared-memory execution platform for parallel applications in terms
of scalability. Finally, in the third set of experiments we compare shared-memory and message-passing in order
to understand the implications of the implicit and explicit communication mechanisms thar are triggered in
each case and their impact on performance.

3.1. Non-numa vs numa-aware implementations

Fig. 1 presents the execution time of all the benchmarks, comparing the non-numa and numa-aware versions
for different number of threads. Note that, due to the scale of the graph, the three curves of the numa-aware
implementations overlay each other. As long as the threads remain inside the same node (up to 24 threads),
the performance of the non-numa and numa-aware versions are similar. However, when more than one node is
employed, the performance of the non-numa code degrades severely for all the benchmarks. This is attributed

2



to the high cost of the off-node memory accesses. On the other hand, for the numa-aware implementations,
the amount of off-node memory accesses is reduced and the performance degradation is avoided. Thus, numa-
awareness is a definite prerequisite for shared-memory parallel applications.

12 24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0

500

1000

1500

2000

2500

3000

tim
e(

se
c)

jacobi-non-numa
csr-non-numa
fw-non-numa
jacobi-numa
csr-numa
fw-numa

Fig. 1: Execution time of non-numa vs numa-aware implementations

3.2. Scalability

In this section we evaluate the scalability of the numa-aware versions of the selected benchmarks, using different
shared-memory programming models. More specifically we employ OpenMP for Jacobi and Floyd-Warshall and
Pthreads for SpM×V.

12 24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0

10

20

30

40

50

60

tim
e(

se
c)

5123

10243

10242x2048

10242x4096

10242x8192

12 24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
p

5123

10243

10242x2048

10242x4096

10242x8192

Fig. 2: Jacobi scalability

Fig. 2 presents the execution time, as well as the speedup of the Jacobi kernel for different number of threads
and input sizes. For input sizes 1024× 1024× 4096 and 1024× 1024× 8192, 64GiB and 128GiB of memory are
required. As each node has a total memory of 64GiB, a part of which is occupied by the OS, it is impossible
to utilize a numa-aware data allocation, and avoid remote memory accesses, when running with less than 2
nodes for the 64GiB input and less than 3 nodes for 128GiB. Therefore, these executions were omitted from our
experiments.

It is evident that the performance scales to a high core count, especially for large input sizes. Typically,
there exists a point after which scalability breaks due to communication overheads. The same conclusion can
be drawn for the other two benchmarks as well. Fig. 3 and Fig. 4 illustrate the execution time and speedup
for SpM×V and Floyd-Warshall respectively, for different number of threads and input sizes. Similar to the
Jacobi kernel, as the input size increases, the performance scales to higher core counts up to the point where
communication overheads overcome the time consumed by each thread on useful computations.

3.3. Shared memory programming vs MPI

In this section we compare the developed shared-memory, numa-aware implementations against MPI implemen-
tations. NumaScale provides an optimized OpenMPI Byte Transfer Layer (BTL), and therefore we use in our

3



12 24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0

5

10

15

20

25

30

tim
e(

se
c)

msdoor
rajat
ldoor
boneS10
HV15R

12 24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

msdoor
rajat
ldoor
boneS10
HV15R

Fig. 3: SpM×V scalability

24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0

10000

20000

30000

40000

50000

60000

tim
e(

se
c)

4096

16384

32768

65536

24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
p

4096

16384

32768

65536

Fig. 4: Floyd-Warshall scalability

evaluation two MPI versions: one employing the provided NC-BTL optimised OpenMPI library and another
employing the standard OpenMPI library.

Fig. 5 presents the execution time of the OpenMP Jacobi kernel together with the time of the two MPI
implementations for different number of threads and input size. The communication optimization offered by the
BTL mechanism is evident at the application level. Regarding the comparison between OpenMP and MPI (with
BTL), we may observe that the explicit message-passing implementation in MPI outperforms OpenMP even
inside a a single node (24 threads) where the data transfers serviced by hardware mechanisms have the minimum
cost. The performance gap between the two implementations widens with an increasing number of cores. This is
due to the nature of the algorithm, since communication data are large 2D surfaces which in the case of MPI are
explicitely packed and sent in bulk with point-to-point operations. This bulk data transfer is able to diminish
the message latency of MPI messages. On the other hand, in the OpenMP implementation, each element in the
communication 2D surface is touched with read/write operations by two neighboring threads, a pattern that is
too fine-grain and suffers from high traffic in the memory subsystem due, also, to the cache-coherence protocol.

The landscape in SpM×V however, is completely different. As shown in Fig. 6, OpenMP outperforms
both MPI implementations. In this case the explicit MPI implementation suffers from higher communication
overheads, since a large number of small messages need to be exchanged by the MPI processes. The situation
becomes worse (number of messages increases, message size decreases) as the number of cores (MPI processes)
increases.

Finally, in the case of Floyd-Warshall the situation is more balanced (especially in the large data set).
Recall that in this case the communication is due to the fact that a single matrix row (different per algorithmic
iteration) needs to be broadcasted by the holding process. In the shared-memory version this is accomplished
by read operations to the “critical” matrix row, which for the majority of the threads can be remote, imposing
a signficicant remote-read overhead. On the other hand, shared caches can assist in reducing the overhead of
this implicit broadcasting, as data may be found closer to their initial source, brought there by another thread
sharing the same cache. In the MPI case, the communication overhead comes from the explicit broadcast of a

4



24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

2

4

6

8

10

12

14

tim
e(

se
c)

mpi (optimized)
openmp
mpi

(a) 10242 × 1024

48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

5

10

15

20

25

30

35

40

tim
e(

se
c)

mpi (optimized)
openmp
mpi

(b) 10242 × 4096

Fig. 5: Jacobi numa-aware vs mpi

24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0

10

20

30

40

50

60

70

80

tim
e(

se
c)

mpi (optimized)
openmp
mpi

(a) rajat

24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0

10

20

30

40

50

60

70

80
tim

e(
se

c)
mpi (optimized)
openmp
mpi

(b) HV15R

Fig. 6: CSR SpM×V numa-aware vs mpi

matrix row (a few Kbytes of data) to the participating processes. Overall, it seems that the two communication
mechanisms in shared-memory and message-passing happen to have a similar overhead.

4. Conclusions

Scaling applications on large scale shared memory systems is not easy and straightforward. Scaling beyond a
single node, requires the developer to acquire a deep understanding of the NUMA effects of the system. This
knowledge is essential in order to optimise thread binding, data allocation and workload distribution as they
can have a significant impact on the performance.

More specifically, thread binding and data allocation can help minimise the amount of the expensive off-node
memory accesses. Similarly, workload distribution is important for scaling to high number of cores, because
when the amount of work performed by each thread becomes negligible the execution is dominated by the
communication overheads.

Finally, the selection of the programming model is not straightforward. Whether the application will benefit
from explicit communication using a message passing programming model or not, depends on its communication
pattern. Our results reveal that for some applications the employment of MPI offers the best performance
(Jacobi), others benefit more from a shared-memory programming model (SpM×V), while for others (Floyd-
Warshall) it makes little, if any, difference. On the other hand, the implementation on each programming model
requires different effort from the programmer. In the case of the shared memory model, normal read and write
instructions can be used for accessing every memory location, making it relatively easy and straightforward
to produce parallel code. On the contrary, the message passing programming model requires extra effort by
the programmer to orchestrate the messages that need to be exchanged between the parallel threads of the

5



24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

0

500

1000

1500

2000

2500

tim
e(

se
c)

mpi (optimized)
openmp
mpi

(a) 16K

24 48 72 96 12
0

14
4

16
8

19
2

21
6

Threads

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

tim
e(

se
c)

mpi (optimized)
openmp
mpi

(b) 32K

Fig. 7: Floyd-Warshall numa-aware vs mpi.

application. When this effort is taken into account, we can conclude that OpenMP is probably the best option
for Floyd-Warshall.

In general, for our expirements in this whitepaper we used inputs with a tiny memory footprint compared to
the total of 4.6TiB provided by the system. That decision was made due to time limitations since benchmarks
with larger footprints could take even weeks to execute. For future work we plan to extend our evaluation with
higher core counts and inputs with larger memory footprints, as well as more benchmarks exhibiting a variety
of communication patterns. Moreover, we aim to perform a more exhaustive analysis of the communication
overheads induced by the hardware coherence protocol, in order to gain a deeper understanding of the parameters
affecting the scalability of parallel applications on large scale ccNUMA systems. Finally, we intend to investigate
the impact of threads’ distribution on the scalability, caused by the distance between the nodes on which the
threads are executing.

Acknowledgments

We would like to thank the Research Infrastructure Services Group of the Department for Research Computing
of the University of Oslo for providing and supporting our access to the NUMA-CIC prototype, as well as our
reviewers for their useful comments and observations. This work was financially supported by the PRACE-1IP
project funded in part by the EU’s 7th Framework Programme (FP7/2007-2013) under grant agreement no.
RI-261557.

References

1. http://www.numascale.com/numa_technology.html.

2. http://www-03.ibm.com/systems/x/hardware/rack/x3755m3/.

3. G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris, “Performance evaluation of the
sparse matrix-vector multiplication on modern architectures,” The Journal of Supercomputing, 2008.

4. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. V. der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods. Philadelphia: SIAM, 1994.

5. T. Davis, “University of Florida sparse matrix collection,” NA Digest, vol. 97, no. 23, p. 7, 1997.

6


