
 

 

 

 

 
 

Available online at www.prace-ri.eu 
 

Partnership for Advanced Computing in Europe 
 

 

GROMACS on Hybrid CPU-GPU and CPU-MIC Clusters:  
Preliminary Porting Experiences, Results and Next Steps 

Sadaf Alam, Ugo Varettoa 
aSwiss National Supercomputing Centre, Lugano, Switzerland 

 

Abstract 

This report introduces hybrid implementation of the Gromacs application, and provides instructions on building and executing on PRACE 
prototype platforms with Grahpical Processing Units (GPU) and Many Intergrated Cores (MIC) accelerator technologies.  GROMACS currently 
employs message-passing MPI parallelism, multi-threading using OpenMP and contains kernels for non-bonded interactions that are accelerated 
using the CUDA programming language.  As a result, the execution model is multi-faceted where end users can tune the application execution 
according to the underlying platforms.  We present results that have been collected on the PRACE prototype systems as well as on other GPU and 
MIC accelerated platforms with similar configurations.  We also report on the preliminary porting effort that involves a fully portable 
implementation of GROMACS using OpenCL programming language instead of CUDA, which is only available on NVIDIA GPU devices. 

1. Introduction to GROMACS and PRACE Prototype Systems with Accelerator Devices 

GROMACS is a versatile package used to perform molecular dynamics, i.e. simulating the Newtonian equations of 
motion for systems with hundreds to millions of particles [1]. It is primarily designed for biochemical molecules like 
proteins, lipids and nucleic acids that have a considerable number of complicated bonded interactions, but since 
GROMACS is extremely fast at calculating the non-bonded interactions (that usually dominate simulations) many 
research groups are also using it for research on non-biological systems, e.g. polymers. 
 
The PRACE prototypes and the target systems that are considered for this study include clusters at CSC (Finland), 
CINECA (Italy), PSNC (Poland) and CSCS (Switzerland) [2,3,4,5].  These systems contain either the GPU or MIC 
accelerator devices or both [6,7,8].  Details of the target platforms are provided in the subsequent sections.  
 
• The goals of the project 

 
○ To establish whether GROMACS can be ported for the PRACE prototype systems with a variety of accelerator 

devices 
○ To identify system parameters that influence efficiency of the application for the prototype system 
○ To project performance and scaling considerations for a hypothetical tier-0 system, which may be based on the 

prototype technology 
 

• Work done in the project, including 
 
○ Analysis of hardware and software dependencies for GPU accelerated version of GROMACS 
○ Evaluation of performance and correctness with different systems 
○ Investigation into the limitations of portable versions of GROMACS using OpenCL [9] implementation of 

OpenMM package [10] 



 

○ Benchmarking GROMACS on GPU accelerator systems with different node configurations 
 

• Results obtained 
 
○ GPU accelerators improve efficiency of GROMACS for systems with single and multiple accelerator GPU 

devices 
○ Scaling efficiencies have also been observed over multiple nodes and results are compared for IB QDR and 

FDR interconnects 
○ OpenCL version of GROMACS needs further investment into the code development efforts 
○ GROMACS would rely on implementation of non-bonded calculations in MIC intrinsics  
○ Only offload implementation of GROMACS on the current generation of MIC devices is likely to yield scaling 

efficiencies on Tier-0 scale platforms 
 
• Conclusions and summary 
 
○ A single node system with an Nvidia Kepler GPU and an Intel SandyBridge CPU is about 1.3 times faster than 

a node with two SandyBridge GPUs for a 512k water molecule dataset.  
○ On multi-node systems scalability (up to 16 nodes) is similar for both CPU and GPU versions.  Performance 

efficiency is 2x on the GPU accelerated version 
○ Further investigation is needed to improve the scaling efficiencies onto large, tier-0 scale systems. 
○ Performance slowdown has been observed on Intel Xeon Phi or MIC for both native and symmetric modes of 

execution in absence of a platform specific tuned implementation. 

2. Hybrid GROMACS Implementation 

In this white paper, we consider three different programming and execution models for hybrid GROMACS porting 
and evaluation on PRACE prototype systems: 

 
○ MPI and OpenMP for Intel Xeon Phi or MIC in native and symmetric execution modes 
○ MPI, OpenMP and CUDA on systems with Nvidia Kepler accelerators 
○ With OpenMM package that has OpenCL implementation for system with AMD GPU devices 
 
The version of GROMACS tested on PRACE prototype systems is 4.6.3.  Experimental versions of GROMACS 

eventually merged with 4.6 were used on various CSCS prototypes. 
 
 
  
 
 
 
 

  

Figure 1: GROMACS compute-flow diagram.  Adopted from [11]. 



   

Figure 1 shows the compute flow of a typical GROMACS run, the only part ported to GPU acceleration is the 
non-bonded interaction computation.  The following CUDA header and source files have been generated for the GPU 
implementation in the Gromacs source tree (nbnxn is for non-bonded algorithms), including the source lines of code 
(SLOC): 

 
• src/mdlib/nbnxn_cuda/nbnxn_cuda_kernel_legacy.cuh  (255) 
• src/mdlib/nbnxn_cuda/nbnxn_cuda_kernel.cuh    (311) 
• src/mdlib/nbnxn_cuda/nbnxn_cuda_kernels.cuh   (38)  
• src/mdlib/nbnxn_cuda/nbnxn_cuda_kernel_utils.cuh   (225) 
• src/mdlib/nbnxn_cuda/nbnxn_cuda.cu    (453) 
• src/mdlib/nbnxn_cuda/nbnxn_cuda_data_mgmt.cu  (682) 
• src/gmxlib/cuda_tools/vectype_ops.cuh    (113) 
• src/gmxlib/cuda_tools/cudautils.cuh    (71) 
• src/gmxlib/gpu_utils/memtestG80_core.cu   (577) 
• src/gmxlib/gpu_utils/gpu_utils.cu    (510) 
• src/gmxlib/cuda_tools/cudautils.cu    (151) 
• src/gmxlib/cuda_tools/pmalloc_cuda.cu    (45) 
• src/gmxlib/cuda_tools/copyrite_gpu.cu    (19) 
• src/contrib/openmm_gpu_utils.cu     (68) 

 
 
Unlike, the CUDA implementation, the Intel MIC implementation can be built natively without modifying a single 

line of code.  However, this approach has severe performance implications.  Non-bonded interactions in Gromacs 
have been tuned for different CPU targets using platform specific intrinsics.  At compile time, users select an 
appropriate GMX_CPU_ACCELERATION value, which could be SSE2, SSE4.1, AVX_128_FMA, AVX_256, 
None and others.  Without using platform specific implementations (by selecting an optimal 
GMX_CPU_ACCELERATION in cmake) and by using the reference version 
(GMX_CPU_ACCELERATION=None) the code could be 3 to 10 times slower.  Since the Intel Xeon Phi or MIC 
has a different ISA (Instruction Set Architecture) as compared to Intel Xeon x86_64 ISA; the SSE and AVX 
accelerated implementation cannot be built natively for the Intel Xeon devices.  In order to avoid slowdown using the 
reference implementation, users need to develop implementation using Intel Xeon Phi intrinsics.   

Build configuration 

GROMACS is built with the CMake makefile generator tool; we used CMake 2.8.x versions to build GROMACS 
on all the platforms. The specific changes to the CMake environment required to build GROMACS with GPU, MIC 
and MPI support are listed below. 

 
NVIDIA Kepler 

 
○ Use FFTW version 3 as the fft library:   

– specify the fftw library and include path in the FFTWF_* parameters  
– set the GMX_FFT_LIBRARY to fftw3 
○ Enable/disable MPI by setting the GMX_MPI flag to ON or OFF 
○ Add the –arch=sm_35 switch to the CUDA_NVCC_FLAGS parameter  
○ Enable GPU: set GMX_GPU to ON 
○ Set the GMX_CPU_ACCELERATION parameter to either SSE4.1 or AVX_256 

 
 
 
 
 
 



 

Intel MIC 
 
○ Build FFTW for mic (alternatively try using MKL FFTW, performance difference is negligible) 
○ Build the code editing CMAKE_CXX_FLAGS to include –mmic in cmake settings 
○ In cmake, choose the reference implementation (GMX_CPU_ACCELERATION:STRING=None) 
○ The Sandy Bridge build with GMX_CPU_ACCELERATION:STRING=SSE4.1 is used without any changes 

for the symmetric execution 
 
OpenMM is a library for providing tools for modern molecular modeling simulation.  Initial support for GPU 

acceleration in GROMACS was available through the GPU port of the OpenMM library, which has been 
implemented in CUDA and OpenCL.  However, the support of OpenMM has been deprecated in latest release 
version, 4.6.x.  

3. Target Systems: PRACE Prototypes and Clusters with Accelerator Devices 

Porting and evaluation of GROMACS have been targeted on the PRACE prototype systems with accelerator 
devices.  These include: 

 
○ Advanced Scalable Hybrid Architecture (Scalable Hybrid) from CSC 
○ European Many Integrated Core Architecture (EURORA) from CINECA 
○ Assessment of Hybrid CPU/GPU Architecture (Fusion) from PSNC 
 
Only key characteristics features that are necessary to understand why a different porting and mapping approach is 

necessary for these three systems have been highlighted in the paper.  Figure 2 shows three types of nodes designs 
that are representative of the node architecture of these platforms.  A CPU could be any x86_64 multicore system 
such as an Intel Sandy Bridge or AMD Opteron.  An ACC could be a GPU or MIC accelerator device from any 
vendor: Intel, Nvidia or AMD.  Two types of memory technologies could be present.  DDR memories could be 
DDR3 for CPU or GDDR5 for accelerator devices or it could be a unified memory.  Although the three prototypes 
exhibit distinct network characteristics, the scope of the white paper is limited to the node acceleration.  Hence details 
on the network specifications and topologies are not provided in this report. 

 
Node design A shows a node with dual-socket CPU and dual accelerator devices.  The two CPU sockets are 
connected with a memory interface, for example, QPI for Intel Sandy Bridge processors, resulting in non-uniform 
memory architecture (NUMA).  There are two accelerator devices, which are connected to each CPU, hence their 
distances from the network devices are different.  The EURORA prototype system exhibits node design A.  CSC 
phase I system is similar but has a single accelerator device.  The system should contain two Intel MIC (Knights 
Corner) devices, each with more than 50 cores.  The system has DDR3 memory for the CPU and a higher bandwidth 
GDDR5 memory for the MIC devices. 
 

Node design B is similar to node design A except only one CPU socket and accelerator device is present on each 
processing node.  The Scalable Hybrid prototype is expected to contain 50% of nodes with Intel KNC cards and 50% 
with Nvidia Kepler K20 devices.  
 

Node design C represents a node of the PSNC Hybrid CPU/GPU prototype.  This design has a few unique 
features.  Firstly, there is a single memory that can be accessed by both the CPU and the accelerator device.  The 
CPU is an AMD Opteron and GPU is an AMD Radeon device.  The system contains a unified northbridge unit that 
manages and schedules memory access from CPU and GPU devices. 

 
In addition to the PRACE prototype systems, a number of experiments are performed on an in-kind system at 

CSCS.  This system is composed of node design A nodes, which can also be configured to exhibit characteristics of 
node design B.  The system was composed of Intel Sandy Bridge CPUs and Intel KNC 5110p and Nvidia K20 
accelerator devices. 



   

 

4. Results 

Performance data is collected for the standard 1536k-water benchmark using the PME and RF solver methods 
[12].  The reported performance numbers are always in ns/day. 

 
Kepler K20s on EURORA: 
 
Single node runs with the RF method 

 
Threads per node/CPU acceleration CPU GPU 
16/SSE4.1 1.256 1.750 
16/AVX_256 1.348 1.724 
32/AVX_256 0.766 1.932 
 
 
Multi-node (16 threads per MPI process 2 MPI processes per node, AVX_256) with the RF method 

 
# MPI Processes CPU GPU 
4 1.811 3.872 
8 2.738 4.906 
16 4.949 8.523 
 

 

CPU$
DDR$

NIC$

ACC$
GDDR$

CPU$
DDR$

ACC$
GDDR$

Inter&socket+connec,on+(QPI)+

Network$

Socket+++ACC+

Node+

Prototype$Node$Design$A$

Prototype(Node(Design(B(

NIC(

CPU(
DDR(

ACC(
GDDR(

Network(

Socket'+'ACC'

Node'

Prototype(Node(Design(C(

NIC(

CPU( ACC(

Network(

APU'='CPU'+'GPU'on'a'single'die'

Node'

DDR(

Figure 2: Representation of three types of nodes that are proposed for the PRACE accelerator based prototype systems 



 

Intel MIC 
 

Execute instructions for the symmetric mode on the CSC system: 
 
> export MIC_PPN=4 
> export MIC_OMP_NUM_THREADS=4 
> export OMP_NUM_THREADS=8 
> srun -n 1 mpirun-mic -m /path-to-cpu-exe/mdrun_mpi -c /path-to-mic-exe/mdrun_mpi 

 
Intel MIC and Xeon experiments have been performed for the PME method. 
 
Native mode with 32 threads: 0.106 ns/day 

 
Symmetric mode with 8 threads on Sandy Bridge, one MPI task and with 4 MPI tasks 4 threads each on Intel MIC: 
1.121 ns/day. 

5. Summary and Suggestions for Future Work 

The hybrid implementations of GROMACS MPI, OpenMP and CUDA versions together with platform specific 
intrinsics offer scalability and acceleration for Nvidia GPU based PRACE prototypes.  OpenCL version of OpenMM 
could only be used for an older distribution and we were not able to execute the code with OpenCL 1.1.  Note that 
only OpenCL 1.1 is available on the Nvidia GPU systems.  OpenCL 1.2 is available as part of the Intel SDK and was 
made available recently on Intel Xeon Phi (MIC).  We did not attempt to build the OpenCL version using the Intel 
SDK because of the dependency on an older version of the GROMACS distribution. Progress can be made if the 
GROMACS community reintroduces support for OpenMM in current and future versions of Gromacs distributions.  
Alternatively, CUDA implementation of non-bonded interactions in the current version of GROMACS could be 
rewritten in OpenCL to support a range of portable CPU and GPU devices.   

 
GROMACS performance and scaling is highly sensitive to the implementation and selection of the non-bonded 

acceleration code (GMX ACCELERATION), number of OpenMP threads per node, the number of MPI tasks per 
node and mapping of MPI and OpenMP on the Intel MIC cards.  CUDA version exhibits higher performance and 
scaling efficiencies on a small number of nodes. However, as the node efficiencies increase for the hybrid CPU and 
GPU implementation, we observe a slowdown in scaling efficiencies. Additional results can be found in [13], which 
could be reproduced on PRACE prototypes with Nvidia GPU devices.  Experiments with different values of 
GMX_CPU_ACCELERATION demonstrate that there is a significant difference between the reference 
implementation and platform-tuned versions.  Note that the reference implementation was used for building native 
and symmetric version for the MIC cards as MIC and x86_64 intrinsics are not compatible. 

 
In order to improve scaling and performance efficiencies of GROMACS on PRACE prototypes and Tier-0 

systems with accelerator devices, the following modifications to the code are required: 
 
○ Implementation of non-bonded interactions and FFT in MIC intrinsics 
○ Offload implementation for non-bonded interactions. FFT can be performed on the host in the offloaded mode 

if data transfer overheads a large over the PCIe interface 
○ OpenCL implementation within GROMACS (could be modified version of existing CUDA implementation) 
○ Investigate MPI and OpenMP affinity for MIC with a tuned version of kernels 
 
In addition to the code modifications, we note that the inter-node communication bandwidth could influence 

scalability of the code.  For example, the experiments on a QDR based system with blocking network topology may 
not scale similar to an FDR network with non-blocking connections. 

 



   

 

Acknowledgements 

This work was financially supported by the PRACE project funded in part by the EU's 7th Framework Programme 
(FP7/2007-2013) under grant agreement no. RI-283493. The work was achieved using the PRACE Research 
Infrastructure resources at CSC, PSNC, CINECA and CSCS. 

References 

[1] GROMACS: http://www.GROMACS.org/  
[2] EURORA: http://www.hpc.cineca.it/hardware/eurora 
[3] CSC prototype: https://confluence.csc.fi/display/HPCproto/HPC+Prototypes 
[4] PSNC: http://www.man.poznan.pl/online/en 
[5] CSCS Nvidia K20 and Intel Xeon Phi clusters: http://user.cscs.ch/hardware/dom_gpu_cluster & 

http://user.cscs.ch/hardware/dommic_intel_mic_cluster  
[6] Intel Xeon Phi (MIC): http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html 
[7] APU: http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx 
[8] CUDA: http://www.nvidia.com/object/cuda_home_new.html 
[9] OpenCL: http://www.khronos.org/opencl 
[10] OpenMM: https://simtk.org/home/openmm 
[11] Porting GROMACS Molecular Dynamics Code to the Cell Processor: http://www.cs.unc.edu/~olivier/pdsec07.pdf 
[12] Benchmark data:  ftp://ftp.cscs.ch/out/uvaretto/water-1536k.tar.gz 
[13] http://www.nvidia.com/docs/IO/122634/GROMACS-benchmark- report.pdf 

 
 


