

* Corresponding author. E-mail address: miroslaw.kupczyk@man.poznan.pl

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Improvement of the Uncertainty Analysis Platform URANIE
 for High Performance Computing

Miroslaw Kupczyka*, Damian Kaliszana, Vincent Bergeaudb

a Poznan Supercomputing and Networking Center, Dabrowskiego 79a, 60-529 Poznan
b CEA Saclay, DM2S, STMF, LGLS, 91191 Gif-sur-Yvette Cedex, France

Abstract

The work undertaken in the PRACE project consists of making the software evolve so that it
is suitable for exploitation of design of experiments implying thousands of cores in multiple
contexts: serial codes, parallel codes, coupled simulations.
The main work which is focused on a serial code context is about to optimize the application
to process more efficiently on a bigger number of cores and the corresponding amount of
input data. We rely on a strategy that uses the fork mechanism provided by the Linux kernel
to deploy different computations and checking finalization of each of the forked processes.
Due to URANIE’s internal architecture, which makes a single computation indivisible, it is
difficult to properly examine the scalability of the system in terms of the strong and weak
scalability definition. However, the promising results were obtained after tens of test-runs.
The work carried out in this project allowed running URANIE codes on thousands cores on
Tier-0 architecture. The scenario with processing a huge amount of data on a very limited
number of cores was the starting point and the reason to tackle with the optimization.
After enhancements of a certain part of the code, it was tested on up to 4096 cores, the
maximum core number we have been granted access to. The tests showed that the URANIE
code is ready to be run on Tier-0 machine.

1. Introduction

Over the last decade, the improvements of computer hardware and software have brought a
significant change in the capabilities of simulation software in the field of nuclear
applications. New computer power has facilitated the emergence of simulations that are
more realistic (complex 3D geometries being treated instead of 2D ones), more complex
(multi-physics and multi-scale being taken into account), and more meaningful (with
propagation of uncertainties).

2

In order to treat uncertainty analysis in this constantly evolving framework, CEA has
developed a software platform named URANIE [1] that provides tools for validation,
optimization, uncertainty analysis, and model calibration for high performance computing
codes.
The URANIE codes denoted for revision run on tens of cores; however, we expect that it
should run on a bigger number of cores due to the communication schema of the
application. The plan was to look into the code listings, put tags and special debugging
pragmas and analyse the application behaviour using various inputs. We decided not to use
the external code analysing tools.

2. Presentation of URANIE

The "Uncertainty and Sensitivity" platform URANIE developed by the CEA aims to regroup
methods and algorithms about Uncertainty and Sensitivity (US) and Verification and
Validation (VV) analyses in the same framework. URANIE is based on the data analysis
framework ROOT [2], (http://root.cern.ch) an object-oriented and petaflopic computing
system developed by CERN. This framework offers several useful features as advanced
visualization, powerful data storage and access in several formats (binary, SQL, distant
access), a C++ interpreter, and so on.
Mathematical models, designated to simulate complex physical processes, are often used in
scientific and engineering studies. URANIE is designed to simulate mathematical models of
physical systems and is built in a modular way with several libraries (Figure 1) devoted for a
particular task in the US&VV analyses. We also wrapped external libraries for special
treatments:

 Mixmod (MIXture MODelling) is a library written by the French institute INRIA to
estimate the Gaussian mixture parameters through maximum likelihood with the EM
(Expectation Maximisation) or SEM (Stochastic Expectation Maximisation)
algorithms;

 Opt++ is an object-oriented class library written by the Computer Science and
Mathematics Researchers (CSMR) at Sandia National Laboratories for the resolution
of nonlinear optimization problems;

 And Club, developed by the French institute CNES, is a library which implements low
level C++ utilities input-output services for the files treated by the simulations codes
(replace the input parameters values in the input files and recover the output values
in the output files after the completion of a “code evaluation”).

In this section, we then describe the libraries of the URANIE platform.

3

Figure 1 : Functional diagram of URANIE

The main library, the DataServer library, defines the TDataServer object which contains all
the information about the uncertain variables for the US&VV analyses. Then, this
TDataServer object flows through the other libraries in order to apply the methods of the
study.

The second library, the Sampler library, is devoted to generate a design of experiment
(deterministic/statistical) from characteristics of the uncertain variables. Several
methodologies are implemented:

 qMC ("quasi Monte-Carlo") sequences (Sobol, Halton);

 SRS (“Simple Random Sampling”), LHS (“Latin Hypercube Sampling”), ROA ("Random
Orthogonal Array"), Archimedean Copulas;

 MCMC ("Markov Chain Monte-Carlo") method for Gaussian mixture.

The Launcher library is devoted to manage the computation on a desktop (sequential) or on
a cluster (distributed). The goal is to construct the Y matrix jointed in the X matrix of the
design of experiment. We can launch either the original simulation code, or an analytical
function like surrogate models. The surrogate models can be built by the modeller library or
written by the user following a prototype.

The Modeler library is devoted to build a surrogate model from input to output attributes
contained in a database. The surrogate models implemented in URANIE are polynomial,
polynomial Chaos expansion and neural networks. We plan to implement the kriging
methodology soon. After building the surrogate model, it can be saved in several languages
like C/C++, Fortran, PMML (“Predictive Model Markup Language” is the leading XML
standard for save statistical and data mining models and supported by over 20 vendors and
organizations) for using it in a US&VV analyses, instead of the computation code, with a very
low CPU time computation.

The optimizer library is devoted to perform a Verification and Validation code or to find the
optimum of a computation code or analytical function. We can also perform multi-criteria
optimization with Genetic Algorithms.

The goal of the UncertModeler library is to examine how well a sample of data agrees with a
given distribution as its population with goodness-of-fit techniques.

4

The Reliability library is devoted to perform a reliability analysis. At present time, this library
is not implemented, but we plan to implement the SORM/FORM methodology.

The last library, the Sensitivity library, contains several methods to perform Sensitivity
Analysis between the two X and Y matrixes like Regression method (Pearson – “SRC”,
Spearmann – “SRRC” coefficients), Screening method (Morris) and Sobol indexes (Sobol’s
methodologies, FAST).

ROOT (and therefore URANIE) has a C++ interpreter which allows us to integrate easily new
algorithms or to customize complex treatment with several objects in a function with few
parameters. The C++ interpreter is the first level of the user interface. The second level user
interface is an XML file; this file contains a description of the uncertain variables and the
different steps to apply for US&VV analyses. The XML interface allows us to integrate easily
URANIE modules in an industrial platform.
URANIE is based on the realisation of DOEs (Design Of Experiments), sets of simulations in
which the same code is executed with slight modifications in the input files and parameters,
so that the uncertainty range of the input variables is covered.

3. Description of the project

The key point of URANIE’s inner architecture is that a single simulation (job) is indivisible.
The number of possible simulations is linearly correlated with the number of used processor
cores. In this way increasing the range of input variables causes the number of required
hardware resources also needs to be increased. The most used ratio is either 1 or 2 (a single
simulation uses 2 cores).

In order to accommodate various middlewares and launch codes as black boxes, the URANIE
launcher has the following strategy:

 a single job is allocated,

 the master node runs a control process,

 the control process launches children of the control process, each child running a
mpirun script which runs one computation in the DOE,

 the control process checks for the state of the children in order to decide when to
run new children.

This strategy gives good flexibility and good performance on hundreds of processors, but the
bottleneck on the master node can become a problem on large runs. Also, this strategy gives
little control on the placement of processes in the context of coupled simulations.

The main goal of the project was to improve URANIE efficiency by minimizing the single
simulation execution time for an increased number of DOEs.

Additionally, the goal was also not to re-create a large amount of source code as it was
created for a substantial period of time and number of people.

4. Performed work

The main work was carried out on curie.ccc.cea.fr (CEA) and local PSNC clusters (CANE) we

5

had at our disposal. At first we installed URANIE software on CANE to try to reproduce the
bottleneck problem with the number of threads but we decided to quit this setup due to a
very long time that tasks spent in the queue before launching. After that all further work was
carried out on curie.

With the system-based strategy we conducted lots of test-runs in which the odd situation
was observed. After increasing the number of jobs above the experimental limit
(approximately 450) lots of launched child processes started to become zombies, so that the
master process which normally waited for their children to complete could wait forever
because it would never receive the proper terminate signal from them.

The above was strongly related to the problem tracked in the source code. Originally the
software authors did not check the return value and error code given by the fork() function
which was called by the master process in the loop limited by the number of DOEs. In such
cases, when -1 was returned (fork() did not succeed) the processes with such IDs were still
added to the list of running processes, whereas they should not have. This was, in turn,
causing other troubles when calling the waitpid() function on running threads invalid PIDs (-
1) which were completely changing the logic of this part of the code.

It turned out that spawning children processes above the limit caused fork() to return
errno equal to EAGAIN which literally meant it was not possible to create a new process
because the caller's RLIMIT_NPROC resource limit was encountered. In this case it was
decided to programmatically call the setrlimit function increasing the maximum number of
threads (setrlimit(RLIMIT_NPROC, …)) on the one hand and decreasing the maximum size of
the process stack setrlimit(RLIMIT_STACK, …) on the other hand. This sometimes helped
a bit to increase the initial experimental limit but not much and not in each test-run case.

Finally, to let URANIE run large DOE it was decided to split the total number of launching
children processes into groups with a size not exceeding the experimental maximum
number. In this way the processes which finished their job were replaced by new ones
performing other simulations. This, in turn, enabled the whole configuration (with a large
number of threads) to work and not making the big job submitted to queuing system hanged
out.

However, the bad impact of launching processes in such a way is that there is always a
hard limit of few hundreds of running threads. Up to this limit it can be noticed that an
increasing number of jobs (as the number of used threads and cores) does not influence the
execution time. Moreover other processes have to wait for their turn causing the total time
to draw out. In other words, this strategy shows that its results are strongly dependent on
system limits set by a system administrator.

It was also noticed (see table and chart below) that the results have been obtained within
30-minute execution time limit in the wide range of used cores (lower or equal than 2048)
which was not observed for the original codes.

After all tests were carried out it seems that some of the primary results provided by the
software authors might have been incorrect due to the reasons described above.

Total execution time according to environment configuration (i.e. number of jobs = number
of simulations, number of cores etc.) are given below in [Table 1]:

6

Table 1. Total execution times for different strategies (jobs and cores number etc.

Serial

njobs = ncores njobs = 2 * ncores

1GB mem 1MB mem

No. of
nodes

Ncores noIO
noIO,

emptyMaster
100 IO noIO

noIO,
delay(30)

1 16 00:02:36 00:03:52 00:03:48 00:06:24 00:06:40

2 32 00:02:35 00:03:47 00:03:58 00:06:22 00:06:39

4 64 00:02:38 00:02:37 00:03:57 00:06:28 00:06:32

8 128 00:02:37 00:02:40 00:03:50 00:06:28 00:06:32

16 256 00:02:44 00:02:44 00:03:53 00:06:40 00:06:45

32 512 00:02:53 00:02:54 00:04:18 00:07:15 00:07:07

64 1024 00:05:05 00:04:31 00:05:48 00:09:38 00:09:29

128 2048 00:09:06 00:09:02 00:10:52 00:16:47 00:16:24

256 4096 00:16:57 00:17:06 00:21:16 00:35:21 00:32:26
The explanation of the [Table 1] header:

Different versions vary in terms of:

 memory allocation per execution,

 I/O rate (no I/O, 100 write executions of the total memory),

 used strategy (temporization or emptyMaster),

 total number of jobs (equal to the number of cores or twice the number of cores).

Figure 2 : Single job execution times in different run strategies

7

The timing characteristics are presented in [Figure 2]. It is difficult to calculate the
speedup for given configurations because, as it was written above, the number of
simulations is strictly related to the number of used processor cores (and also threads). The
experimental runs showed the weak scalability of the improved codes. For a single
simulation only a single processor would be used. However, we believe this will not make
any sense.

Due to URANIE’s internal architecture it was decided to normalize the above times to
receive a single job execution (for different setups) time. Afterwards it can be noticed that
the increasing number of simulations (jobs) along with the number of cores make the single
job execution time shorter.

References

[1] Uncertainty and sensitivity analysis of the nuclear fuel thermal behaviour, Nuclear
Engineering and Design 253 (2012) 200– 210.
[2] Data Analysis Framework ROOT; http://root.cern.ch

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-312763. The work is achieved using the PRACE
Research Infrastructure resources: Tier-0 CURIE (CEA – France) and Tier-1 CANE (PSNC – Poland). PRACE
Preparatory Phase Project, grant No. 1527.

