

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Optimization of PIERNIK for the Multiscale Simulations

of High-Redshift Disk Galaxies

Kacper Kowalik

a
, Artur Gawryszczak

b
, Marcin Lawenda

c
*,

Michał Hanasz
a,c

, Norbert Meyer
c

aNicolaus Copernicus University, Jurija Gagarina 11, 87-100 Toruń, Poland

bN. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warszawa, Poland
cPoznan Supercomputing and Networking Centre, Dąbrowskiego 79a, 60-529 Poznań, Poland

Abstract

PIERNIK is an MHD code created in Centre for Astronomy, Nicolaus Copernicus University in Toruń, Poland. The
current version of the code uses a simple, conservative numerical scheme, which is known as Relaxing TVD
scheme (RTVD). The aim of this project was to increase the performance of the PIERNIK code in a case where
the computational domain is decomposed into large number of smaller grids and each concurrent processes is
assigned a significant number of those grids. This optimization enable the PIERNIK to efficiently run on Tier-0
machines. In chapter 1 we introduce PIERNIK software more particularly. Next we focus on scientific aspects
(chapter 2) and discuss used algorithms (chapter 3) including potential optimization issues. Subsequently we
present performance analysis (chapter 4) carried out with Scalasca and Vampir tools. In the final chapter 5 we
present optimization results. In the appendix we provided technical information about the installation and test
environment.

* Corresponding author. E-mail address: lawenda@man.poznan.pl

2

Table of contents

Abstract ... 1
1 Introduction .. 3
2 Scientific aspect .. 3
3 Algorithms ... 4

3.1 Main performance bottlenecks ... 4
3.2 I/O strategy .. 5
3.3 Optimization procedure .. 5

4 Analysis ... 5
4.1 Initial scalability analysis .. 5
4.2 Scalasca optimization analysis ... 7
4.3 Vampir analysis .. 7

5 Optimization.. 9
5.1 Optimization methodology .. 9
5.2 Optimization results .. 10
5.3 Optimization in numbers ... 12

5.3.1 Typical user test cases ... 12
5.3.2 Strong scaling curve .. 13
5.3.3 Weak scaling curve .. 13

6 Summary ... 14
References .. 14
Acknowledgements ... 14
7 Appendix 1 .. 14

7.1 PIERNIK download ... 14
7.2 System requirements .. 14
7.3 Test environment .. 15

3

1 Introduction

PIERNIK [1] is a grid-based MHD code using a simple, conservative numerical scheme, which is known
as Relaxing TVD scheme (RTVD). The code relies on a dimensionally split, second order algorithm in
space and time. The Relaxing TVD scheme is easily extendable to account for additional fluid
components: multiple fluids, dust, cosmic rays, and other physical processes, such as fluid
interactions, Ohmic resistivity effects and self-gravity. The simplicity and a small number of floating
point operations of the basic algorithm is reflected in a high serial performance.
We have recently implemented two new features: Adaptive Mesh Refinement (AMR) and a Multigrid
(MG) solver. The AMR algorithm allows us to reach bigger effective resolutions than it was possible
with the uniform grid. It dynamically adds regions of improved resolution (fine grids) where it is
required by the refinement criteria. It also can delete grids which are no longer needed to maintain
high-quality solution. The MG on the other hand is one of the fastest known methods to solve
parabolic and elliptic differential equations, which in our case are used to describe respectively self-
gravity of the fluid and diffusion of the cosmic rays. In addition, the isolated external boundaries for
self-gravity use multipole expansion of the potential to determine proper boundary values in a fast
and efficient manner.
Combination of those two algorithms make PIERNIK an ideal tool for simulations of e.g. isolated
galaxy disks. In such cases we need to resolve multiscale environment ranging from parsec scale,
gravitationally bound star forming regions, up to tenths of kpc long cosmic ray-driven outflows (see
paper). However, our initial large scale tests show that PIERNIK suffers from a few bottlenecks that
cripple its performance for a large number (greater than 4096) of processors. We hope that this
project will allow us to overcome scarce obstacles that prevent us from reaching maximum potential
of our code.
The whole PIERNIK code [2] and test problems are released under GNU GPL terms and thus are not
confidential.

2 Scientific aspect

Observation presents that galaxies at the redshift z ~1.5-3 produce powerful winds which
eventually transport a significant fraction of the gas away from the central galaxy making it
temporarily unavailable for star formation. The estimated outflow rates can be several times higher
than the star formation rates.
We would like to perform simulations of the magnetized interstellar medium (ISM) in isolated
models of gas-rich star forming disk galaxies at high-redshift. In our models type II Supernovae locally
deposit cosmic rays into the ISM. Our initial work indicates that it leads to the transportation of a
significant fraction of gas in a wind perpendicular to the disk plane. The wind speeds can exceed the
escape velocity of the galaxies and the global mass loading factor, i.e. the ratio of the gas mass
leaving the galactic disk in a wind to the star formation rate, is ~ 10. These values are very similar to
values observed for high redshift (z = 2 - 3) star forming galaxies. Therefore cosmic ray driven galactic
winds provide a natural and efficient mechanism to explain the low efficiencies for the conversion of
gas into stars in galaxies as well as the early enrichment of the intergalactic medium with metals. This
mechanism can be of at least as important as the usually considered momentum feedback from
massive stars and thermal feedback from supernovae.

4

3 Algorithms

There are two main grid decomposition approaches in the PIERNIK code. The uniform grid (UG) and
the recently developed Adaptive Mesh Refined (AMR).
The UG algorithm divides the grid into smaller pieces, not necessarily of the same size, and assigns
one piece to each process. Decomposition is performed in a way that minimizes the total size of
internal boundaries between the pieces. Communication between each piece is done via non-
blocking MPI communication.
The current implementation of the AMR algorithm uses the Hybrid-Block AMR approach, which
means that on each level of refinement the grid is decomposed into relatively small pieces of the
same size and shape (typically 16^3 cells) and each grid piece can be covered by some grid pieces at
the finer level of refinement. The finer grid pieces do not cover more than one coarse grid piece and
the coverage does not have to be complete in order to save computational resources (in contrast to
standard Block AMR approaches). The resolution difference between consecutive refinement levels is
equal to 2. Typically there are many grid pieces that are associated with a given process. They are
kept evenly distributed along a Morton fractal curve to decrease intra-communication and improve
load balance.
The multi-grid module creates a stack of coarse grids, each coarsened by a factor of 2 (i.e. compatible
with the AMR assumptions) to accelerate approximate solutions of elliptic equations by relaxation.
The decomposition of these coarse grids can be performed in a various way, which can influence on
internal communication.

3.1 Main performance bottlenecks

There is an overhead caused by the fact that the computational domain is decomposed into smaller
grids in order to assign them to the concurrent processes. All those grid pieces require few layers of
guardcells to cache fluid data held on the neighbouring grid piece. These guardcells need to be
processed and exchanged after each update of the state of the fluid in the MHD solver. The
communication part becomes dominant for highly parallel runs (thousands of processes). It is the
main factor that limits the scalability of the PIERNIK code.
As the multigrid algorithm is more communication-intensive than the MHD algorithm, the
parallelization of the multigrid components depends more strongly on the distribution of grid pieces
across the processes. Thus, it is crucial that all communication routines (guardcell exchange and
interpolation between grids on neighbouring resolution levels) are independent on the
decomposition strategy used on a given grid level. The cost of multigrid communication becomes
dominant in highly parallel runs (i.e. with several thousands of concurrent processes).
The MHD solver operates in a directionally-split way so the guardcell-filling can be performed in a
similar way and update only the guardcells affected by the recent update. This can reduce the
number of messages exchanged between processes.
The complete guardcell exchange currently involves exchanging messages simultaneously with face-,
edge- and corner- neighbours (typically 26 neighbours in 3D) followed by a call to MPI_Waitall. It can
be replaced by calling exchanges in separate directions (3 stages consist 2 exchanges, each stage
followed by an MPI_Waitall). An additional exchange for edge and corner guardcells is required in
order to retain compatibility with AMR.
It is assumed that some performance improvements can be achieved by tuning the decomposition of
coarse grids in the multigrid solver.
Another optimization possibility is to enable OpenMP parallelism to be used for intra-node
communication and leave MPI calls only for performing communication between cluster nodes.

5

We were considering to perform write operations only from a small number of processes, finally
tuned to the level of parallelism available on the local file system. We were also considering writing
to multiple files to avoid collective HDF operations.

3.2 I/O strategy

Writing data and restart files often takes more time than performing tens of timestemps. These
procedures are considered as bottlenecks which are caused by large number of collective MPI calls
originating from HDF5 procedures.

PIERNIK uses parallel HDF5 library. Current implementation allow the two I/O scenarios:

 one process collects data via MPI and writes to single HDF5 file,

 all processes write/read data to/from a single file, using HDF5.

Checkpoints are usually taken once per 12h (runtime parameter) and take 10-100Gb. Output data
files are produced usually every 0.5h (few hours maximum). File size ranging from a few Gb to
dozens of Gb.

Typical experiment in standard resolution creates 1000 files 3Gb each, additionally a few 15Gb
checkpoints. High resolution experiment can take up to 200 files 20Gb each and a few 100Gb
checkpoints.

3.3 Optimization procedure

Our goal is to improve PIERNIK code to enable effectively using 8k+ cores on uniform grid. There are
three steps we performed:

1. performed speed up analysis – measuring scalability of the MHD solver and detecting
bottleneck issues,

2. Implementing improvements for the MHD solver and positive,
3. the multigrid solver is the next target for performance optimization in case the multigrid

dominates the calculations.

4 Analysis

4.1 Initial scalability analysis

As a first step, speed up analysis was performed. This analysis has been performed for the
gravitational (Jeans) instability test problem called “jeans” engaging both the MHD and Poisson
equation solvers. The Jeans instability test problem is representative for a wide class of astrophysical
research problems involving selfgravity. The number of cores used for the tests that were performed,
varied from 32 to 8192.

6

Figure 1. Speed up vs. no of processors for “jeans” problem

The red curve represents a medium size problem (5123) called "uniform grid" where each MPI
process receives a relatively big (maximum available problem size considering the overall grid size
and the number of processors), equal part of the grid. In this approach the problem is scalable as
long as the ratio of the total volume of boundary cells (four layers of supplementary cells added on
external faces of each subgrid designated for the realisation of boundary conditions) to the volume
of the proper physical domain is close to zero.

The reason for the smaller computational efficiency follows from the fact that computational costs
(per cell) of the MHD algorithm updating boundary cells is the same as in the physical domain. In
other words reduced efficiency is compared to the factor ff defined as the ratio of the number of
physical to the total (physical+boundary) number of cells. Assuming for simplicity equal block sizes in
x, y and z directions one can easily estimate that for block sizes: 323 and 643 and 4 layers of boundary
cells, required by the MHD algorithm, on each face of computational blocks ff equals respectively
(32/(32+2x4))3 = 0.512, (64/(64+2x4))3 = 0.702. It is very difficult to reduce the overhead due the
additional quantity of boundary cells without a significant complication of the basic MHD algorithm,
therefore we do not attempt to do it.

The green curve represents a similar setup with the only difference relying on the replacement of
one big MPI block per process by several small blocks attributed to a single MPI process. In this case a
more intense comunication (with respect to the case of big blocks, represented by the red curve)
between blocks is needed. Both cases represented by red and grean curves converge to the same
block size 323 at 4096 processes.

7

We find therefore that the reduction of computational efficiency on the right end of the red and
green curves (corresponding to 5123 mesh divided into 4096 of 323 blocks) is partially explained by
the overhead of the boundary cells. The remaining part is due to the overhead of MPI
communication.

The effect of boundary cell overhead is also visible on violet curve which represents the same
problem for a higher grid resolution 10243 divided into blocks resulting in ff = 0.68. In this case the
code appears scalable up to 8k cores.

4.2 Scalasca optimization analysis

Below we present the screenshot from Scalasca [3] analysis. We can conclude that biggest
communication delay appears in “multigrid_gravity_MOD_multigrid_solve_grav” function.

Figure 2. Screenshot from Scalasca optimization analysis

The presented picture shows that MPI communication PIERNIK is problematic in some cases. It is
apparent that many communicates are late, some of them are sent in the wrong order.

4.3 Vampir analysis

Results of optimization analysis using Vampir [4] software are presented in figures 3. 4. and 5.
Red colour symbolizes communication delay on specific process.

8

Figure 3. Vampir screenshot – MPI communication analysis – communication lags

Figure 4. Vampir screenshot – MPI communication analysis.

9

Figure 5. Vampir screenshot – MPI communication analysis – communication lags no. 2

The presented screenshots show that the number of MPI communicates that are exchanged
between the processes is very high. Moreover the sizes of messages are very small resulting in a high
MPI management overhead (appearing e.g. in a long startup time), what significantly affects the
overall processing time.

The majority of the communication is executed by:

 The module responsible for exchanging boundary conditions

 The self-gravitation module where small MPI messages are broadcasted with varying
frequency, which makes the optimization difficult.

5 Optimization

The MHD solver in PIERNIK operates in a directionally-split way, so the guardcell-filling can be
performed by updating only the guardcells affected by recent 1D MHD step. Communication in
separate messages is realized for several arrays used the solver. From analysis performed with
Vampir we can conclude that great number of small messages results lags behind the collective.

5.1 Optimization methodology

The following actions were undertaken to optimize the code:
1. The first step in reducing the MPI overhead relies on the identification group of processes

running on the same computational node and converting MPI calls into direct memory
access.

2. We implemented coalescing of MPI messages wherever it was applicable, i.e. all messages
exchanging in one step between a pair of processes are now put into the common buffer and
only one message is sent. This implementation significantly decreased fragmentation of the
communication.

10

3. Additionally, in order to decrease the number of MPI messages we have implemented
domain decomposition using the Morton space-filling curve (SFC), which provides high
"localization", i.e. neighbouring grids are located on the same processes as much as possible.
When carefully implemented, the properties of SFC can allow for fast neighbour searching.
This is essential for reducing costs of AMR bookkeeping.

4. Finally, we changed AMR so that it became more selective. It doesn't refine the full block at
once, but only the required regions are covered by finer grid blocks. This greatly improves
the performance of initial iterations of the grid structure and saves some blocks from
unnecessary refinements during the regular refinement update.

5.2 Optimization results

Figure 6. Strong scalability of jeans problem. The red, green and yellow curves represent same data as
displayed in Fig. 1. The blue curve shows the effect of our optimization.

Strong scalability curves (Fig. 6) for the uniform grid of moderate sizes (5123 red, green and blue,
10243 yellow) are taken as reference for optimization. Black lines are ideal scaling curves for each of
those runs taking into account the ratio of the total number of cells (including guardcell layers) to the
number of physically valid cells. Dashed black line shows ideal speed-up. The red curve shows
PIERNIK's performance for many grids (of equal cell size without AMR) per computational process
before the optimization, the blue curve reflects results of the optimization. The main improvement
apparent for the runs on 32 to 256 cores results from the convertion of MPI calls into direct memory
access within processes running on the same node. The reduced efficiency of computations on 2048-
4096 cores for the 5123 run should be understood as limitation for the total size of the grid processed
by a single core. The present computationally inexpensive MHD algorithm the code scales very well
up to for 8192 cores, taking into consideration that one single core processes more than 643 cells,
even if they are distributed in many blocks.

11

Figure 7. Strong scalability of sedov problem using AMR method.

The strong scaling curve (Fig. 7) in the AMR run showing improvement in performance after
implementation of domain decomposition using the Morton space-filling curve. Fig. 8 displays the
walltime spent on grid operation (total time minus time spent on hydro algorithm).

Figure 8. Performance improvement obtained by using SFC for domain decomposition.

12

Figure 9. Weak scaling curve for Jeans problem using 64^3 cells per process.

As was shown in figures 6 - 8 several improvements were achieved. Overall the performance of non-
uniform and adaptive meshes, that are strictly necessary for the fulfilling scientific goals of the
project, was significantly improved. Additionally we have ported the code to the latest Cray
compilers which will allow to utilize PIERNIK on the broader range of HPC sites.

5.3 Optimization in numbers

5.3.1 Typical user test cases

Problem size: 5123, bsize=323, with the middle step multiplied by the constant 500.

Number of cores Wall clock time Relative Speed-up Number of Nodes Number of process

64 12816.5 1 2 64

128 6862 1.87 4 128

256 3665 3.50 8 256

512 1980 6.47 16 512

1024 1060 12.1 32 1024

2048 616 20.8 64 2048

4096 440 29.1 128 4096

13

5.3.2 Strong scaling curve

Problem size: 5123 uniform (Fig. 6)

Number of cores Wall clock time Relative Speed-up Number of Nodes Number of process

32 342.0 1.00 1 32

64 173.3 1.97 2 64

128 95.8 3.57 4 128

256 50.0 6.84 8 256

512 27.9 12.27 16 512

1024 15.8 21.59 32 1024

2048 11.2 30.43 64 2048

4096 11.4 29.90 128 4096

Problem size: 10243 (Fig. 6)

Number of cores Wall clock time Relative Speed-up Number of Nodes Number of process

512 320.0 1.00 16 512

1024 170.0 1.88 32 1024

2048 91.6 3.49 64 2048

4096 52.8 6.07 128 4096

8192 37.8 8.47 256 8192

5.3.3 Weak scaling curve

Source data for figure no. 9.

Number of cores Wall clock time Number of Nodes Number of process

1 1.26 1 1

2 1.175 1 2

4 1.37 1 4

8 1.5025 1 8

16 1.425 1 16

32 1.8025 1 32

64 3.3725 2 64

128 3.405 4 128

256 3.6725 8 256

512 4.1025 16 512

1024 3.6525 32 1024

2048 4.1725 64 2048

4096 3.8475 128 4096

14

6 Summary

Performed optimization greatly improved scalability of the code nearly reaching the reference
performance in the situation when each computational process is assigned only one big chunk of the
computational domain. Moreover, utilization of the Morton Space Filling Curve resulted in significant
reduction of the time spent on grid operation, which was dominant in simulations using Adaptive
Mesh Refinement.
The scalability of the PIERNIK code is predominantly dependent on the number of grid cells
attributed to every MPI process. For big meshes of the overall size 10243 the code scales very well
with respect to the ideal scaling curve (including the overhead of boundary conditions) up to 4096
CPU cores and shows further speed-up by 50% at 8192 cores. The essential gain in scalability has
been achieved for meshes divided into a large number of small blocks, typical for intense use of the
AMR technique in multi-scale astrophysical simulations. The strong scalability improvement resulting
from the work performed within the current project varies in the range of 10% - 20% for 32-1024
CPU cores.

References
[1] PIERNIK website http://piernik.astri.umk.pl/doku.php
[2] PIERNIK download https://github.com/piernik-dev/piernik.git
[3] Scalasca http://www.scalasca.org/
[4] Vampir http://www.vampir.eu/

Acknowledgements
This work was financially supported by the PRACE project funded in part by the EUs 7th Framework Programme
(FP7/2007-2013) under grant agreement no. RI-312763.
The authors would like to thank HLRS for their support and making HERMIT machine available for tests.
Moreover we want to thanks reviewers for their valuable comments and suggestions to improve the final
document.

7 Appendix 1

7.1 PIERNIK download

To download PIERNIK directly from git repo type: git clone https://github.com/piernik-dev/piernik.git

7.2 System requirements

 git

 python 2.7

 fortran 2003 compiler (>=gfortran-4.7, >=ifort-13.1)

 MPI with ROM-IO (any flavour, tested with mpich2, openmpi, mvapich)

 HDF5 (>=1.8.8, --enable-shared --enable-fortran --enable-fortran2003 --enable-parallel)

 yt for visualization

https://github.com/piernik-dev/piernik.git
http://www.vampir.eu/

15

 FFTW (>=3.0, optional, for selfgravity)

 Lapack (optional, for selfgravity)

 matplotlib (optional, visualization)

 IDL (optional, visualization)

7.3 Test environment

All test were made on Hermit at HLRS cluster.

Technical description (installation step 1)

Peak performance 1.045 PFlops

Cabinets 38 with 96 nodes each

Number of compute nodes 3552

Number of compute cores per node 2 sockets with 16 cores each: 113 664

Number of service nodes 96

Processor compute nodes Dual Socket AMD Interlagos @ 2.3GHz 16 cores
each

Memory/node 32 GB and 64 GB

Disk capacity 2.7 PB

Node-node interconnect CRAY Gemini

Special nodes External Access Nodes, Pre- & Postprocessing
Nodes, Remote Visualization Nodes

Power consumption 2 MW maximal

