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Abstract 

PIERNIK is an MHD code created in Centre for Astronomy, Nicolaus Copernicus University in Toruń, Poland. The 
current version of the code uses a simple, conservative numerical scheme, which is known as Relaxing TVD 
scheme (RTVD). The aim of this project was to increase the performance of the PIERNIK code in a case where 
the computational domain is decomposed into large number of smaller grids and each concurrent processes is 
assigned a significant number of those grids. This optimization enable the PIERNIK to efficiently run on Tier-0 
machines. In chapter 1 we introduce PIERNIK software more particularly. Next we focus on scientific aspects 
(chapter 2) and discuss used algorithms (chapter 3) including potential optimization issues. Subsequently we 
present performance analysis (chapter 4) carried out with Scalasca and Vampir tools. In the final chapter 5 we 
present optimization results. In the appendix we provided technical information about the installation and test 
environment.   
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1 Introduction  
 
PIERNIK [1] is a grid-based MHD code using a simple, conservative numerical scheme, which is known 
as Relaxing TVD scheme (RTVD). The code relies on a dimensionally split, second order algorithm in 
space and time. The Relaxing TVD scheme is easily extendable to account for additional fluid 
components: multiple fluids, dust, cosmic rays, and other physical processes, such as fluid 
interactions, Ohmic resistivity effects and self-gravity. The simplicity and a small number of floating 
point operations of the basic algorithm is reflected in a high serial performance. 
We have recently implemented two new features: Adaptive Mesh Refinement (AMR) and a Multigrid 
(MG) solver. The AMR algorithm allows us to reach bigger effective resolutions than it was possible 
with the uniform grid. It dynamically adds regions of improved resolution (fine grids) where it is 
required by the refinement criteria. It also can delete grids which are no longer needed to maintain 
high-quality solution. The MG on the other hand is one of the fastest known methods to solve 
parabolic and elliptic differential equations, which in our case are used to describe respectively self-
gravity of the fluid and diffusion of the cosmic rays. In addition, the isolated external boundaries for 
self-gravity use multipole expansion of the potential to determine proper boundary values in a fast 
and efficient manner. 
Combination of those two algorithms make PIERNIK an ideal tool for simulations of e.g. isolated 
galaxy disks. In such cases we need to resolve multiscale environment ranging from parsec scale, 
gravitationally bound star forming regions, up to tenths of kpc long cosmic ray-driven outflows (see 
paper). However, our initial large scale tests show that PIERNIK suffers from a few bottlenecks that 
cripple its performance for a large number (greater than 4096) of processors. We hope that this 
project will allow us to overcome scarce obstacles that prevent us from reaching maximum potential 
of our code. 
The whole PIERNIK code [2] and test problems are released under GNU GPL terms and thus are not 
confidential. 
 

2 Scientific aspect  
 

Observation presents that galaxies at the redshift z ~1.5-3 produce powerful winds which 
eventually transport a significant fraction of the gas away from the central galaxy making it 
temporarily unavailable for star formation. The estimated outflow rates can be several times higher 
than the star formation rates.  
We would like to perform simulations of the magnetized interstellar medium (ISM) in isolated 
models of gas-rich star forming disk galaxies at high-redshift. In our models type II Supernovae locally 
deposit cosmic rays into the ISM. Our initial work indicates that it leads to the transportation of a 
significant fraction of gas in a wind perpendicular to the disk plane. The wind speeds can exceed the 
escape velocity of the galaxies and the global mass loading factor, i.e. the ratio of the gas mass 
leaving the galactic disk in a wind to the star formation rate, is ~ 10. These values are very similar to 
values observed for high redshift (z = 2 - 3) star forming galaxies. Therefore cosmic ray driven galactic 
winds provide a natural and efficient mechanism to explain the low efficiencies for the conversion of 
gas into stars in galaxies as well as the early enrichment of the intergalactic medium with metals. This 
mechanism can be of at least as important as the usually considered momentum feedback from 
massive stars and thermal feedback from supernovae. 
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3 Algorithms  
 
There are two main grid decomposition approaches in the PIERNIK code. The uniform grid (UG) and 
the recently developed Adaptive Mesh Refined (AMR).  
The UG algorithm divides the grid into smaller pieces, not necessarily of the same size, and assigns 
one piece to each process. Decomposition is performed in a way that minimizes the total size of 
internal boundaries between the pieces. Communication between each piece is done via non-
blocking MPI communication. 
The current implementation of the AMR algorithm uses the Hybrid-Block AMR approach, which 
means that on each level of refinement the grid is decomposed into relatively small pieces of the 
same size and shape (typically 16^3 cells) and each grid piece can be covered by some grid pieces at 
the finer level of refinement. The finer grid pieces do not cover more than one coarse grid piece and 
the coverage does not have to be complete in order to save computational resources (in contrast to 
standard Block AMR approaches). The resolution difference between consecutive refinement levels is 
equal to 2. Typically there are many grid pieces that are associated with a given process. They are 
kept evenly distributed along a Morton fractal curve to decrease intra-communication and improve 
load balance. 
The multi-grid module creates a stack of coarse grids, each coarsened by a factor of 2 (i.e. compatible 
with the AMR assumptions) to accelerate approximate solutions of elliptic equations by relaxation. 
The decomposition of these coarse grids can be performed in a various way, which can influence on 
internal communication. 
 

3.1 Main performance bottlenecks 
 
There is an overhead caused by the fact that the computational domain is decomposed into smaller 
grids in order to assign them to the concurrent processes. All those grid pieces require few layers of 
guardcells to cache fluid data held on the neighbouring grid piece. These guardcells need to be 
processed and exchanged after each update of the state of the fluid in the MHD solver. The 
communication part becomes dominant for highly parallel runs (thousands of processes). It is the 
main factor that limits the scalability of the PIERNIK code. 
As the multigrid algorithm is more communication-intensive than the MHD algorithm, the 
parallelization of the multigrid components depends more strongly on the distribution of grid pieces 
across the processes. Thus, it is crucial that all communication routines (guardcell exchange and 
interpolation between grids on neighbouring resolution levels) are independent on the 
decomposition strategy used on a given grid level. The cost of multigrid communication becomes 
dominant in highly parallel runs (i.e. with several thousands of concurrent processes). 
The MHD solver operates in a directionally-split way so the guardcell-filling can be performed in a 
similar way and update only the guardcells affected by the recent update. This can reduce the 
number of messages exchanged between processes. 
The complete guardcell exchange currently involves exchanging messages simultaneously with face-, 
edge- and corner- neighbours (typically 26 neighbours in 3D) followed by a call to MPI_Waitall. It can 
be replaced by calling exchanges in separate directions (3 stages consist 2 exchanges, each stage 
followed by an MPI_Waitall). An additional exchange for edge and corner guardcells is required in 
order to retain compatibility with AMR. 
It is assumed that some performance improvements can be achieved by tuning the decomposition of 
coarse grids in the multigrid solver. 
Another optimization possibility is to enable OpenMP parallelism to be used for intra-node 
communication and leave MPI calls only for performing communication between cluster nodes. 
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We were considering to perform write operations only from a small number of processes, finally 
tuned to the level of parallelism available on the local file system. We were also considering writing 
to multiple files to avoid collective HDF operations. 

3.2 I/O strategy  
 
Writing data and restart files often takes more time than performing tens of timestemps. These 
procedures are considered as bottlenecks which are caused by large number of collective MPI calls 
originating from HDF5 procedures. 
 
PIERNIK uses parallel HDF5 library. Current implementation allow the two I/O scenarios: 

 one process collects data via MPI and writes to single HDF5 file,  

 all processes write/read data to/from a single file, using HDF5. 
 
Checkpoints are usually taken once per 12h (runtime parameter) and take 10-100Gb. Output data 
files are produced usually every 0.5h (few hours maximum).  File size ranging from a few Gb to 
dozens of Gb. 
 
Typical experiment in standard resolution creates 1000 files 3Gb each, additionally a few 15Gb 
checkpoints. High resolution experiment can take up to 200 files 20Gb each and a few 100Gb 
checkpoints. 

3.3 Optimization procedure 
 
Our goal is to improve PIERNIK code to enable effectively using 8k+ cores on uniform grid. There are 
three steps we performed:  

1. performed speed up analysis – measuring scalability of the MHD solver and detecting 
bottleneck issues, 

2. Implementing improvements for the MHD solver and positive, 
3. the multigrid solver is the next target for performance optimization in case the multigrid 

dominates the calculations.  

4 Analysis  
 

4.1 Initial scalability analysis 
 
As a first step, speed up analysis was performed. This analysis has been performed for the 
gravitational (Jeans) instability test problem called “jeans” engaging both  the MHD and Poisson 
equation solvers. The Jeans instability test problem is representative for a wide class of astrophysical 
research problems involving selfgravity. The number of cores used for the tests that were performed, 
varied from 32 to 8192. 
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Figure 1. Speed up vs. no of processors for “jeans” problem 

 
The red curve represents a medium size problem (5123) called "uniform grid" where each MPI 
process receives a relatively big (maximum available problem size considering the overall grid size 
and the number of processors), equal part of the grid. In this approach the problem is scalable as 
long as the ratio of the total volume of boundary cells (four layers of supplementary cells added on 
external faces of each subgrid designated for the realisation of boundary conditions) to the volume 
of the proper physical domain is close to zero.  
 
The reason for the smaller computational efficiency follows from the fact that computational costs 
(per cell)  of the MHD algorithm updating boundary cells is the same as in the physical domain. In 
other words reduced efficiency is compared to the factor ff defined as the ratio of the number of 
physical to the total  (physical+boundary) number of cells. Assuming for simplicity equal block sizes in 
x, y and z directions one can easily estimate that for block sizes: 323 and 643 and 4 layers of boundary 
cells, required by the MHD algorithm, on each face of computational blocks ff equals respectively 
(32/(32+2x4))3 = 0.512, (64/(64+2x4))3 = 0.702. It is very difficult to reduce the overhead due the 
additional quantity of boundary cells without a significant complication of the basic MHD algorithm, 
therefore we do not attempt to do it.  
 
The green curve represents a similar  setup  with the only difference relying on the replacement of 
one big MPI block per process by several small blocks attributed to a single MPI process. In this case a 
more intense comunication (with respect to the case of big blocks, represented by the red curve) 
between blocks is needed. Both cases represented by red and grean curves converge to the same 
block size 323 at 4096 processes. 



   

7 

 

 

 

We find therefore that the reduction of computational efficiency on the right end of the red and 
green curves (corresponding to 5123 mesh divided into 4096 of 323 blocks) is partially explained by 
the overhead of the boundary cells. The remaining part is due to the overhead of MPI 
communication.  
 
The effect of boundary cell overhead is also visible on violet curve which represents the same 
problem for a higher grid resolution 10243 divided into  blocks resulting in ff = 0.68. In this case the 
code appears scalable up to 8k cores.  
 

4.2 Scalasca optimization analysis  
 

Below we present the screenshot from Scalasca [3] analysis. We can conclude that biggest 
communication delay appears in “multigrid_gravity_MOD_multigrid_solve_grav” function.  
 

 

 

Figure 2. Screenshot from Scalasca optimization analysis  

The presented picture shows that MPI communication PIERNIK is problematic in some cases. It is 
apparent that many communicates are late, some of them are sent in the wrong order.  

4.3 Vampir analysis  
 
Results of optimization analysis using Vampir [4] software are presented in figures 3. 4. and 5.  
Red colour symbolizes communication delay on specific process.  
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Figure 3. Vampir screenshot – MPI communication analysis – communication lags 

 

 

Figure 4. Vampir screenshot – MPI communication analysis.  
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Figure 5. Vampir screenshot – MPI communication analysis – communication lags no. 2 

The presented screenshots show that the number of MPI communicates that are exchanged 
between the processes is very high. Moreover the sizes of messages are very small resulting in a high 
MPI management overhead (appearing e.g. in a long startup time),  what significantly affects the 
overall processing time.  
 
The majority of the communication is executed by:  

 The module responsible for exchanging boundary conditions  

 The self-gravitation module where small  MPI messages are broadcasted with varying 
frequency, which makes the optimization difficult. 

 

5 Optimization  
 
The MHD solver in PIERNIK operates in a directionally-split way, so the guardcell-filling can be 
performed  by updating only the guardcells affected by recent 1D MHD step. Communication in 
separate messages is realized for several arrays used the solver. From analysis performed with 
Vampir we can conclude that great number of small messages results lags behind the collective.  
 

5.1 Optimization methodology 
 

The following actions were undertaken to optimize the code: 
1. The first step in reducing the MPI overhead relies on the identification group of processes 

running on the same computational node and converting MPI calls into direct memory 
access.   

2. We implemented coalescing of MPI messages wherever it was applicable, i.e. all messages 
exchanging in one step between a pair of processes are now put into the common buffer and 
only one message is sent. This implementation significantly decreased fragmentation of the 
communication. 
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3. Additionally, in order to decrease the number of MPI messages we have implemented 
domain decomposition using the Morton space-filling curve (SFC), which provides high 
"localization", i.e. neighbouring grids are located on the same processes as much as possible. 
When carefully implemented, the properties of SFC can allow for fast neighbour searching. 
This is essential for reducing costs of AMR bookkeeping. 

4. Finally, we changed AMR so that it became more selective. It doesn't refine the full block at 
once, but only the required regions are covered by finer grid blocks. This greatly improves 
the performance of initial iterations of the grid structure and saves some blocks from 
unnecessary refinements during the regular refinement update. 

 

5.2 Optimization results 
 

            

Figure 6. Strong scalability of jeans problem.  The red, green and yellow curves represent same data as 
displayed in Fig. 1. The blue curve shows the effect of our optimization.  

 
Strong scalability curves (Fig. 6) for the uniform grid of moderate sizes (5123 red, green and blue,  
10243 yellow) are taken as reference for optimization. Black lines are ideal scaling curves for each of 
those runs taking into account the ratio of the total number of cells (including guardcell layers) to the 
number of physically valid cells. Dashed black line shows ideal speed-up. The red curve shows 
PIERNIK's performance for many grids (of equal cell size without AMR) per computational process 
before the optimization, the blue curve reflects  results of the optimization. The main improvement 
apparent for the runs on 32 to 256 cores results from the convertion of MPI calls into direct memory 
access within processes running on the same node. The reduced efficiency of computations on 2048-
4096 cores for the 5123 run should be understood as limitation for the total size of the grid processed 
by a single core. The present computationally inexpensive MHD algorithm the code scales very well 
up to for 8192 cores, taking into consideration that one single core processes more than 643 cells, 
even if they are distributed in many blocks.  
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Figure 7. Strong scalability of sedov problem using AMR method. 

 
The strong scaling curve (Fig. 7) in the AMR run showing improvement in performance after 
implementation of domain decomposition using the Morton space-filling curve. Fig. 8 displays the 
walltime spent on grid operation (total time minus time spent on hydro algorithm).  
 

 

Figure 8. Performance improvement obtained by using SFC for domain decomposition. 
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Figure 9. Weak scaling curve for Jeans problem using 64^3 cells per process. 

As was shown in figures 6 - 8 several improvements were achieved. Overall the performance of non-
uniform and adaptive meshes, that are strictly necessary for the fulfilling scientific goals of the 
project, was significantly improved. Additionally we have ported the code to the latest Cray 
compilers which will allow to utilize PIERNIK on the broader range of HPC sites. 
 

5.3 Optimization in numbers 
 

5.3.1 Typical user test cases  
 
Problem size: 5123, bsize=323, with the middle step multiplied by the constant 500. 
 

Number of cores Wall clock time Relative Speed-up Number of Nodes Number of process 

64 12816.5 1 2 64 

128 6862 1.87 4 128 

256 3665 3.50 8 256 

512 1980 6.47 16 512 

1024 1060 12.1 32 1024 

2048 616 20.8 64 2048 

4096 440 29.1 128 4096 
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5.3.2 Strong scaling curve 

 
Problem size: 5123 uniform (Fig. 6) 
 

Number of cores Wall clock time Relative Speed-up Number of Nodes Number of process 

32 342.0 1.00 1 32 

64 173.3 1.97 2 64 

128 95.8 3.57 4 128 

256 50.0 6.84 8 256 

512 27.9 12.27 16 512 

1024 15.8 21.59 32 1024 

2048 11.2 30.43 64 2048 

4096 11.4 29.90 128 4096 

 
Problem size: 10243 (Fig. 6) 
 

Number of cores Wall clock time Relative Speed-up Number of Nodes Number of process 

512 320.0 1.00 16 512 

1024 170.0 1.88 32 1024 

2048 91.6 3.49 64 2048 

4096 52.8 6.07 128 4096 

8192 37.8 8.47 256 8192 

 

5.3.3 Weak scaling curve 

Source data for figure no. 9.  

Number of cores Wall clock time Number of Nodes Number of process 

1 1.26 1 1 

2 1.175 1 2 

4 1.37 1 4 

8 1.5025 1 8 

16 1.425 1 16 

32 1.8025 1 32 

64 3.3725 2 64 

128 3.405 4 128 

256 3.6725 8 256 

512 4.1025 16 512 

1024 3.6525 32 1024 

2048 4.1725 64 2048 

4096 3.8475 128 4096 
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6 Summary 
 
Performed optimization greatly improved scalability of the code nearly reaching the reference 
performance in the situation when each computational process is assigned only one big chunk of the 
computational domain. Moreover, utilization of the Morton Space Filling Curve resulted in significant 
reduction of the time spent on grid operation, which was dominant in simulations using Adaptive 
Mesh Refinement. 
The scalability of the PIERNIK code is predominantly dependent on the number of grid cells 
attributed to every MPI process. For big meshes of the overall size 10243 the code scales very well 
with respect to the ideal scaling curve (including the overhead of boundary conditions) up to 4096 
CPU cores and shows further speed-up by 50% at 8192 cores.  The essential gain in scalability has 
been achieved for meshes divided into a large number of small blocks, typical for intense use of the 
AMR technique in multi-scale astrophysical simulations. The strong scalability improvement resulting 
from the work performed within the current project varies in the range of 10% - 20% for 32-1024 
CPU cores. 
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7 Appendix 1 
 

7.1 PIERNIK download 
 
To download PIERNIK directly from git repo type: git clone https://github.com/piernik-dev/piernik.git 
 

7.2 System requirements 
 

 git 

 python 2.7 

 fortran 2003 compiler (>=gfortran-4.7, >=ifort-13.1) 

 MPI with ROM-IO (any flavour, tested with mpich2, openmpi, mvapich) 

 HDF5 (>=1.8.8, --enable-shared --enable-fortran --enable-fortran2003 --enable-parallel) 

 yt for visualization 

https://github.com/piernik-dev/piernik.git
http://www.vampir.eu/
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 FFTW (>=3.0, optional, for selfgravity) 

 Lapack (optional, for selfgravity) 

 matplotlib (optional, visualization) 

 IDL (optional, visualization) 
 

7.3 Test environment  
 
All test were made on Hermit at HLRS cluster.  
 

Technical description (installation step 1) 

Peak performance   1.045 PFlops 

Cabinets   38 with 96 nodes each 

Number of compute nodes   3552 

Number of compute cores   per node 2 sockets with 16 cores each: 113 664 

Number of service nodes   96 

Processor compute nodes   Dual Socket AMD Interlagos @ 2.3GHz 16 cores 
each 

Memory/node   32 GB and 64 GB 

Disk capacity   2.7 PB 

Node-node interconnect   CRAY Gemini 

Special nodes   External Access Nodes, Pre- & Postprocessing 
Nodes, Remote Visualization Nodes 

Power consumption   2 MW maximal 

 


