
1 
 

GDIFF: a Finite Difference code for the calculation 
of multicomponent diffusion in garnet  

 

Evangelos Moulas1* 

1*Institute of Geosciences & Mainz Institute of Multiscale Modeling (M3ODEL), Johannes-

Gutenberg University Mainz, Mainz,Germany 

(evmoulas@uni-mainz.de) 

 

This documentation describes the main features of GDIFF (Garnet Diffusion). GDIFF is set 

of MATLAB routines that can be used to calculate the concentration profiles of garnet in 1 

dimension. The routines must all be placed in a common folder. These routines are: 

• diffusion_grt_v8_VECT.m 

• GDIFF_time.m 

• GDIFF_cooling.m 

and they can be run by typing GDIFF_time or GDIFF_cooling in the MATLAB command window. 

The chemistry of garnet that is considered is described by the mineral formula 

[Ca,Mg,Fe,Mn]3Al2Si3O12. GDIFF utilizes the conservative, finite-difference method for the 

solution of the diffusion problem in 1 dimension (also for spherical or cylindrical coordinates). 

The code has been written in general form using functions that would allow the more 

transparent presentation of the results. More technical details follow below. The software and 

the present documentation are provided free of charge1. At this point, all the provided 

routines have been tested for compatibility with OCTAVE. 

 

Current Version: 1.2 (8-August-2023) – doi: 10.5281/zenodo.7805989 

In case of questions please send an email to evmoulas@uni-mainz.de  

 
1 Creative Commons Attribution 4.0 International 

mailto:evmoulas@uni-mainz.de
mailto:evmoulas@uni-mainz.de


2 
 

Contents 

Introduction ........................................................................................................................... 3 

Governing Equations ............................................................................................................. 3 

Numerical Solution of the Diffusion Equations ..................................................................... 5 

Solution procedure in GDIFF ............................................................................................. 5 

Performance assessment .................................................................................................. 7 

Worked Examples .................................................................................................................. 8 

Calculations at constant P-T conditions ............................................................................ 8 

Calculations using simple cooling histories ..................................................................... 10 

Using GDIFF in OCTAVE ....................................................................................................... 11 

Differences in GDIFF versions .............................................................................................. 12 

References ........................................................................................................................... 13 

 

  



3 
 

Introduction 

The purpose of the present document is not to provide a detailed review of the literature 

on garnet diffusion, but to provide a concise introduction on the methods that are 

implemented in GDIFF and to show the respective governing equations. I have tried to keep 

the text to a minimum and show how the program can be easily used. Results from this code 

have been used already in published work done by the author (Burg & Moulas, 2022; Cheng 

et al., 2020) and more details on the theoretical formulation can be found in the citing 

literature (Chakraborty & Ganguly, 1991, 1992; Lasaga, 1979). 

Governing Equations 

In one dimension, the partial differential equations governing the multicomponent 

diffusion in garnet are: 

𝜕𝐶𝑖
𝜕𝑡

=
1

𝑥𝑛−1
𝜕

𝜕𝑥
(𝑥𝑛−1𝐷𝑖𝑗

𝜕𝐶𝑗

𝜕𝑥
) (1) 

where 𝑡 is time, 𝑥 is the spatial direction, 𝐶(𝑥, 𝑡) indicates the concentration, 𝑖, 𝑗 ∈ {1,2,3} 

represent the 𝑖, 𝑗𝑡ℎ independent endmembers (Almandine-Pyrope-Spessartine) and 𝐷𝑖𝑗(𝑥, 𝑡) 

represents the multicomponent matrix of diffusivities which is generally concentration 

dependent. For the case of garnet, Grossular is taken as the fourth (dependent) component 

and can be calculated from 𝐶4 = 1 − ∑ 𝐶𝑖
3
𝑖=1 . The dimension number 𝑛 ∈ {1,2,3} can be used 

to choose a planar (𝑛 = 1), cylindrical (𝑛 = 2), or spherical (𝑛 = 3), geometry.  

The Diffusivity matrix is calculated following the approach of Lasaga (1979) which can be 

simplified as: 

𝐷𝑖𝑗 = 𝐷𝑖
∗𝛿𝑖𝑗 −

𝐷𝑖
∗𝑋𝑖

∑ 𝐷𝑘
∗𝑋𝑘

4
𝑘=1

(𝐷𝑗
∗ − 𝐷4

∗) (2) 

where 𝐷∗is the tracer-diffusion coefficient and 𝛿𝑖𝑗 is the Kronecker delta (1 when 𝑖 = 𝑗  and 0 

otherwise). 𝑋𝑖 in eq. (2) represent molar fractions. In this work, the effect of density variations 

during diffusion is ignored and therefore eq. (1) can be written in terms of concentrations or 

molar factions. Within GDIFF, the tracer diffusion coefficients are taken from the experimental 

dataset of Chakraborty and Ganguly (1992). This choice of diffusion coefficients was made 

since this set of diffusion coefficients seemed to fit natural data better (Cheng et al., 2020). 

However, the code can be easily modified to use other values. 



4 
 

 In the work of Chakraborty and Ganguly (1992) only the tracer diffusion coefficients of Fe, 

Mg and Mn are provided, while the tracer diffusivity of Ca is calculated implicitly as half of 

that of Fe (e.g. Fig. 4 in Chakraborty and Ganguly, 1992). The pressure and temperature 

dependence of the tracer diffusion coefficients is given by the following Arrhenius form: 

𝐷 = 𝐷0𝑒𝑥𝑝 (−
𝑄 + (𝑃 − 1) ∙ Δ𝑉

𝑅𝑇
) (3) 

where 𝐷0 is the pre-exponential factor (usually given in cm2/s), 𝑄 is the activation energy, 𝑃 

is pressure, Δ𝑉 is the activation volume, 𝑅 is the gas constant and 𝑇 is the absolute 

temperature. Within the GDIFF programs, 𝐷 and 𝐷0 are calculated in m2/s and the numerator, 

denominator within the exponent of eq. (3) are calculated in kj/mol. An example of the 

calculation of tracer diffusion coefficients is shown in Fig. 1. 

 

Fig. 1. Calculation of diffusion coefficients using the GDIFF program. The data 

come from Fig. 6a in Chakraborty and Ganguly (1992). Abbreviations: CG91: 

Chakraborty and Ganguly, (1991); CG92: Chakraborty and Ganguly, (1992).  

 



5 
 

Regarding the pressure dependence, the original values for the activation volume given by 

Chakraborty and Ganguly, (1992) do not seem to reproduce exactly their figure (Fig. 6b in 

Chakraborty and Ganguly, 1992). Nevertheless, the discrepancy is very small and within the 

data uncertainty that is given by the authors (Fig. 2). Therefore, GDIFF uses the original values 

that were suggested by the authors. 

 

Fig. 2. Calculation of diffusion coefficients as a function of pressure using the 

GDIFF program. Solid lines indicate the diffusivities using the parameters that are 

given in the original paper by Chakraborty and Ganguly, (1992). Dashed lines 

indicate better fits through the data. The data come from Fig. 6b in Chakraborty 

and Ganguly (1992). Abbreviations: CG92: Chakraborty and Ganguly, (1992).  

Numerical Solution of the Diffusion Equations 

Solution procedure in GDIFF 

In order to solve eq. (1), we can multiply it by  𝑥𝑛−1 from both sides to avoid division by 

zero when 𝑥 = 0 (e.g., in spherical coordinates). We thus have: 

𝑥𝑛−1
𝜕𝐶𝑖
𝜕𝑡

=
𝜕

𝜕𝑥
(𝑥𝑛−1𝐷𝑖𝑗

𝜕𝐶𝑗

𝜕𝑥
) (4) 



6 
 

Equations (4) are discretized following an implicit, conservative finite-difference scheme as 

follows: 

𝑥𝑚
𝑛−1

𝐶𝑖,𝑚
𝑘 − 𝐶𝑖,𝑚

𝑘−1

Δ𝑡
=∑

1

Δ𝑥2
(𝑥𝑚+0.5

𝑛−1 𝐷𝑖𝑗,𝑚+0.5(𝐶𝑗,𝑚+1
𝑘 − 𝐶𝑗,𝑚

𝑘 ) − 𝑥𝑚−0.5
𝑛−1 𝐷𝑖𝑗,𝑚−0.5(𝐶𝑗,𝑚

𝑘 − 𝐶𝑗,𝑚−1
𝑘 ))

3

𝑗=1

 (5) 

where we have assumed that the grid is regularly spaced. The subscripts 𝑚 indicate the 

position in the numerical grid and the superscripts 𝑘 indicate the number of the timestep. The 

previous equation is re-arranged and the coefficients of the concentrations are assembled in 

a matrix of the form: 

𝑨𝒙 = 𝒃 (6) 

where 𝒙 is the vector of the unknowns, 𝑨 contains the elements of the discretization matrix 

and  𝒃 is the right-hand-side vector. In particular, the matrix is organized in the following block 

form: 

[

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] [

𝒙𝟏
𝒙𝟐
𝒙𝟑
] = [

𝒃𝟏
𝒃𝟐
𝒃𝟑

] (7) 

where 𝐴𝑖𝑖  are the blocks containing the diagonal coefficients and 𝐴𝑖𝑗|𝑖≠𝑗 are the blocks 

responsible for the coupling of the various components. Consequently, the subscripts 1,2,3 in 

the vector of unknowns 𝒙𝒊 and in the right-hand-side vector 𝒃𝒊 refer to the independent 

components. 

It is noted that having a variable concentration generally leads to diffusivities that are 

variable in space, and require the evaluation of the, yet unknown, concentration because of 

eq. (2). For this reason, we preform direct (Picard) iterations on the solution of eq. (7) that 

leads to the solution of the following system of equations. 

𝐴(𝒙𝑚−1)𝒙𝒎 = 𝒃 (8) 

where the superscript 𝑚 denotes the iteration number. The previous system is solved 

iteratively using MATLAB’s backslash solver until the following infinity norm becomes: 

‖𝒙𝑚−1 − 𝒙𝑚‖∞ ≤ 10−5 (9) 

Currently the GDIFF program considers two kinds of boundary conditions. For the right side 

of the model domain the concentrations must be given as fixed values (Dirichlet boundary 

conditions). For the left side of the model domain the user can chose a Dirichlet or a Neumann 



7 
 

(no-flux) boundary condition (NBC parameter 0 or 1). The latter is advantageous if one 

considers spherical coordinates. Thus, the modelled profile must always be oriented so that 

the outer edge of the crystal is towards the right side. 

 

Performance assessment 

GDIFF utilizes a vectorized matrix assembly in order to solve the system of equations. This 

has a dramatic increase of performance in MATLAB (e.g. Dabrowski et al., 2008 and references 

therein). For example, a problem using planar geometry was solved for variable numerical grid 

resolution (up to 15,000 gridpoints leading to 45,000 degrees of freedom). To solve the 

problem, 10 time iterations were performed and for each time iteration 2-4 non-linear 

iterations were executed until the residuals converge (eq. 9). The same problem was solved 

following two approaches: in the first approach, the matrix assembly was performed using 

loops, while in the second approach, the matrix assembly was performed in a vectorized 

manner. Figure 3a shows that with increasing problem size, the time needed to solve the 

problem, with a loop-assembly, increases dramatically. For the problem of 15,000 gridpoints, 

more than 1,000 seconds were needed to complete the solution. On the contrary, using the 

vectorized assembly approach, the time needed to complete the solution was 3.8 seconds 

(Fig. 3b). The last result shows that for numerical results with high resolution, using a GDIFF 

offers a performance advantage. 

 

Fig. 3(a) Time needed in order to solve a given problem as a function of problem 

size (grid points). (b) As in (a) but using logarithmic values. 



8 
 

Worked Examples 

Calculations at constant P-T conditions 

The main routine of GDIFF is diffusion_grt_v8_VECT.m that takes an initial set of 

concentration arrays as input and produces the result of diffusion as output. To use this code, 

two additional routines were created to help the user in the model configuration. In the first 

routine, GDIFF_time.m, the user specifies an initial concentration profile, a pressure and a 

temperature value, and the duration of the diffusion process. A snapshot of the inputs is given 

in Fig. 4 below. 

 

Fig. 4 Code snapshot from GDIFF_time.m. The code inputs and the numerical 

parameters are given in consequential order. The initial profile of this problem is 

a constant composition of a garnet with Alm 50Prp30Sps15Grs5 with boundary 

conditions at the edge Alm50Prp20Sps10Grs10. 

 

Note that for the previous calculation the parameter nrest (time resolution) must be set to 

an integer >1. This is because, and despite the fact that the solver is stable for large timesteps, 

small time increments are needed to ensure that the solution converges. The reason for that 

is the fact that diffusivity is composition dependent, hence, small-time increments are needed 



9 
 

for the accurate time integration. In order to check for convergence, the user can increase the 

number nrest until the final solution remains unchanged2. The solution of the previous 

problem is given in Fig. 5. 

 

Fig. 5. Example of model results of code GDIFF_time.m. See text for further 

details. 

  

 
2 Note that increasing this number will make the code slower, so the user is advised to increase this number 

gradually. 



10 
 

Calculations using simple cooling histories 

In order to perform simulations involving complex pressure and temperature (P-T) 

histories, one must integrate the time diffusion in time while updating the diffusion 

coefficients. A simple routine was created (GDIFF_cooling.m) in order to perform such 

operations. The routine assumes a simple cooling history where pressure and temperature 

are given as arrays. To simulate a cooling history the user must specify a cooling rate in K/Myr. 

An example of the inputs is shown in Fig. 6. 

 

Fig. 6. Code snapshot from GDIFF_cooling.m. The code inputs and the numerical 

parameters are given in consequential order. For this case, the cooling rate is set 

to 50 degrees per million years (parameter CR). The initial profile of this problem 

is a constant composition of a garnet with Alm 50Prp30Sps15Grs5 with boundary 

conditions at the edge Alm50Prp20Sps10Grs10. 



11 
 

The parameters of GDIFF_cooling.m are similar like in the case of GDIFF_time.m shown 

previously. However, there are two major differences. Firstly, a cooling rate is needed 

(parameter CR). Furthermore, the routine will stop only if temperature goes below a threshold 

value (Tstop). Like previously, for the accurate time integration, the timesteps should not be 

very large. To improve time integration the user can decrease the timestep (dtdiff) gradually 

until the result remains essentially the same. For this kind of calculation, the parameter nrest 

can be as low as 1 (see Fig. 6). The solution of the previous problem is given in Fig. 7. 

 

Fig. 7. Example of model results of code GDIFF_cooling.m. See text for further 

details. 

 

Using GDIFF in OCTAVE 

Although GDIFF was written originally in MATLAB, compatibility with octave has been 

checked and the codes work normally. The only issues are related to labeling during plotting. 

In that case, the option “’intepreter’,’latex’” and he symbol “$” must be deleted from the axis 

lables/titles. 



12 
 

Differences in GDIFF versions 

1. Version 1.2 (8.Aug.2023). Minor bug corrected for the case where the interpolation 

used for the calculation of temperature (based on an arbitrary T-t path) was reaching 

the limit. This bug affected (produced NaNs) the last timestep of the results calculated 

with the code GDIFF_cooling.m. 

  



13 
 

References 

Burg, J.-P., & Moulas, E. (2022). Cooling-rate constraints from metapelites across two inverted 

metamorphic sequences of the Alpine-Himalayan belt; evidence for viscous heating. 

Journal of Structural Geology, 156, 104536. https://doi.org/10.1016/j.jsg.2022.104536 

Chakraborty, S., & Ganguly, J. (1991). Compositional Zoning and Cation Diffusion in Garnets. 

In J. Ganguly (Ed.), Diffusion, Atomic Ordering, and Mass Transport: Selected Topics in 

Geochemistry (pp. 120–175). Springer US. https://doi.org/10.1007/978-1-4613-9019-

0_4 

Chakraborty, S., & Ganguly, J. (1992). Cation diffusion in aluminosilicate garnets: Experimental 

determination in spessartine-almandine diffusion couples, evaluation of effective 

binary diffusion coefficients, and applications. Contributions to Mineralogy and 

Petrology, 111(1), 74–86. https://doi.org/10.1007/BF00296579 

Cheng, H., Bloch, E. M., Moulas, E., & Vervoort, J. D. (2020). Reconciliation of discrepant U–

Pb, Lu–Hf, Sm–Nd, Ar–Ar and U–Th/He dates in an amphibolite from the Cathaysia 

Block in Southern China. Contributions to Mineralogy and Petrology, 175(1), 4. 

https://doi.org/10.1007/s00410-019-1644-9 

Dabrowski, M., Krotkiewski, M., & Schmid, D. W. (2008). MILAMIN: MATLAB-based finite 

element method solver for large problems. Geochemistry, Geophysics, Geosystems, 

9(4). https://doi.org/10.1029/2007GC001719 

Lasaga, A. C. (1979). Multicomponent exchange and diffusion in silicates. Geochimica et 

Cosmochimica Acta, 43(4), 455–469. https://doi.org/10.1016/0016-7037(79)90158-3 

 


