Characterizations of Space Curves According to Bishop Darboux Vector in Euclidean 3-Space E^3

Hüseyin KOCAYİĞİT, Ali ÖZDEMİR

(Department of Mathematics, Faculty of Arts and Science, Celal Bayar University, Manisa-TURKEY)

Muhammed CETIN, Hatice Kübra ÖZ

(Institution of Science and Technology, Celal Bayar University, Manisa-TURKEY)

E-mail: huseyin.kocayigit@cbu.edu.tr, ali.ozdemir@cbu.edu.tr, mat.mcetin@hotmail.com, hatice_galip@hotmail.com

Abstract: In this paper, we obtained some characterizations of space curves according to Bihop frame in Euclidean 3-space E^3 by using Laplacian operator and Levi-Civita connection. Furthermore, we gave the general differential equations which characterize the space curves according to the Bishop Darboux vector and the normal Bishop Darboux vector.

Key Words: Bishop frame, Darboux vector, Euclidean 3-Space, Laplacian operator.

AMS(2010): 53A04

§1. Introduction

It is well-known that a curve of constant slope or general helix is defined by the property that the tangent of the curve makes a constant angle with a fixed straight line which is called the axis of the general helix. A necessary and sufficient condition for a curve to be a general helix is that the ratio of curvature to torsion be constant ([10]). The study of these curves in has been given by many mathematicians. Moreover, İlarslan studied the characterizations of helices in Minkowski 3-space E_1^3 and found differential equations according to Frenet vectors characterizing the helices in E_1^3 ([15]). Then, Kocayiğit obtained general differential equations which characterize the Frenet curves in Euclidean 3-space E^3 and Minkowski 3-space E_1^3 ([11]).

Analogue to the helix curve, Izumiya and Takeuchi have defined a new special curve called the slant helix in Euclidean 3-space E^3 by the property that the principal normal of a space curve γ makes a constant angle with a fixed direction ([19]). The spherical images of tangent indicatrix and binormal indicatrix of a slant helix have been studied by Kula and Yaylı ([16]). They obtained that the spherical images of a slant helix are spherical helices. Moreover, Kula et al. studied the relations between a general helix and a slant helix ([17]). They have found some differential equations which characterize the slant helix.

Position vectors of slant helices have been studied by Ali and Turgut ([3]). Also, they have given the generalization of the concept of a slant helix in the Euclidean *n*-space E^n ([4]).

¹Received November 15, 2013, Accepted May 30, 2014.

Furthermore, Chen and Ishikawa classified biharmonic curves, the curves for which $\Delta H = 0$ holds in semi-Euclidean space E_v^n where Δ is Laplacian operator and H is mean curvature vector field of a Frenet curve ([9]). Later, Kocayiğit and Hacısalihoğlu studied biharmonic curves and 1-type curves i.e., the curves for which $\Delta H = \lambda H$ holds, where λ is constant, in Euclidean 3-space E^3 ([12]) and Minkowski 3-space E_1^3 ([13]). They showed the relations between 1-type curves and circular helix and the relations between biharmonic curves and geodesics. Moreover, slant helices have been studied by Bükçü and Karacan according to Bishop frame in Euclidean 3-space ([5]) and Minkowski space ([6,7]). Characterizations of space curves according to Bishop frame in Euclidean 3-space E^3 have been given in [14].

In this paper, we gave some characterizations of space curves according to Bishop Frame in Euclidean 3-space E^3 by using Laplacian operator. We found the differential equations characterizing space curves according to the Bishop Darboux vector and the normal Bishop Darboux vector.

§2. Preliminaries

Let $\alpha : I \subset \mathbb{R}$ be an arbitrary curve in Euclidean 3-space E^3 . Recall that the curve α is said to be of unit speed (or parameterized by arc length function s) if $\langle \overrightarrow{\alpha'}, \overrightarrow{\alpha'} \rangle = 1$, where \langle, \rangle is the standard scalar (inner) product of E^3 given by $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$ for each $\overrightarrow{x} = (x_1, x_2, x_3), \ \overrightarrow{y} = (y_1, y_2, y_3) \in E^3$. In particular, the norm of a vector $\overrightarrow{x} \in E^3$ is given by $\|\overrightarrow{x}\| = \sqrt{\langle \overrightarrow{x}, \overrightarrow{x} \rangle}$. Denote by $\{\overrightarrow{T}(s), \overrightarrow{N}(s), \overrightarrow{B}(s)\}$ the moving Frenet frame along the unit speed curve α . Then the Frenet formulas are given by

\overrightarrow{T}'		0	κ	0	$\left[\overrightarrow{T} \right]$	
\overrightarrow{N}'	=	$-\kappa$	0	au	\overrightarrow{N}	,
\overrightarrow{B}'		0	- au	0	$\begin{bmatrix} \overrightarrow{B} \end{bmatrix}$	

where \overrightarrow{T} , \overrightarrow{N} and \overrightarrow{B} are called tangent, principal normal and binormal vector fields of the curve, respectively. $\kappa(s)$ and $\tau(s)$ are called curvature and torsion of the curve α , respectively ([20]).

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. We can parallel transport an orthonormal frame along a curve simply by parallel transporting each component of the frame. The parallel transport frame is based on the observation that, while $\vec{T}(s)$ for a given curve model is unique, we may choose any convenient arbitrary basis $\left(\vec{N}_1(s), \vec{N}_2(s)\right)$ for the remainder of the frame, so long as it is in the normal plane perpendicular to $\vec{T}(s)$ at each point. If the derivatives of $\left(\vec{N}_1(s), \vec{N}_2(s)\right)$ depend only on $\vec{T}(s)$ and not each other we can make $\vec{N}_1(s)$ and $\vec{N}_2(s)$ vary smoothly throughout the path regardless of the curvature ([18,1,2]).

In addition, suppose the curve α is an arclength-parameterized C^2 curve. Suppose we have

 C^1 unit vector fields $\overrightarrow{N_1}$ and $\overrightarrow{N_2} = \overrightarrow{T} \wedge \overrightarrow{N_1}$ along the curve α so that

$$\left\langle \overrightarrow{T}, \overrightarrow{N_1} \right\rangle = \left\langle \overrightarrow{T}, \overrightarrow{N_2} \right\rangle = \left\langle \overrightarrow{N_1}, \overrightarrow{N_2} \right\rangle = 0$$

i.e., \overrightarrow{T} , $\overrightarrow{N_1}$, $\overrightarrow{N_2}$ will be a smoothly varying right-handed orthonormal frame as we move along the curve. (To this point, the Frenet frame would work just fine if the curve were C^3 with $\kappa \neq 0$) But now we want to impose the extra condition that $\left\langle \overrightarrow{N_1}, \overrightarrow{N_2} \right\rangle = 0$. We say the unit first normal vector field $\overrightarrow{N_1}$ is parallel along the curve α . This means that the only change of $\overrightarrow{N_1}$ is in the direction of \overrightarrow{T} . A Bishop frame can be defined even when a Frenet frame cannot (e.g., when there are points with $\kappa = 0$). Therefore, we have the alternative frame equations

$$\begin{bmatrix} \overrightarrow{T'} \\ \overrightarrow{N'_1} \\ \overrightarrow{N'_2} \end{bmatrix} = \begin{bmatrix} 0 & k_1 & k_2 \\ -k_1 & 0 & 0 \\ -k_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \overrightarrow{T} \\ \overrightarrow{N_1} \\ \overrightarrow{N_2} \end{bmatrix}.$$

One can show that

$$\kappa(s) = \sqrt{k_1^2 + k_2^2}, \ \theta(s) = \arctan\left(\frac{k_2}{k_1}\right), \ k_1 \neq 0, \ \tau(s) = -\frac{d\theta(s)}{ds}$$

so that k_1 and k_2 effectively correspond to a Cartesian coordinate system for the polar coordinates κ , θ with $\theta = -\int \tau(s)ds$. The orientation of the parallel transport frame includes the arbitrary choice of integration constant θ_0 , which disappears from τ (and hence from the Frenet frame) due to the differentiation ([18,1,2]).

Let $\alpha : I \to E^3$ be a unit speed space curve with nonzero nature curvatures k_1, k_2 . Then α is a slant helix if and only if $\frac{k_1}{k_2}$ is constant ([5]).

Let \bigtriangledown denotes the Levi-Civita connection given by $\bigtriangledown_{\alpha'} = \frac{d}{ds}$ where s is the arclenght parameter of the space curve α . The Laplacian operator of α is defined by ([13])

$$\triangle = -\nabla_{\alpha'}^2 = -\nabla_{\alpha'} \nabla_{\alpha'}$$

§3. Characterizations of Space Curves

In this section we gave the characterizations of the space curves according to Bishop frame in Euclidean 3-space E^3 . Furthermore, we obtained the general differential equations which characterize the space curves according to the Bishop Darboux vector \vec{W} and the normal Bishop Darboux vector \vec{W}^{\perp} in E^3 .

Theorem 3.1([8]) Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^3 with Bishop frame $\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\}$, curvature k_1 and torsion k_2 . The Bishop Darboux vector \overrightarrow{W} of the curve α is given by

$$\overrightarrow{W} = -k_2 \overrightarrow{N_1} + k_1 \overrightarrow{N_2}.$$
(3.1)

Definition 3.1 A regular space curve α in E^3 said to has harmonic Darboux vector \overrightarrow{W} if

$$\Delta W = 0.$$

Definition 3.2 A regular space curve α in E^3 said to has harmonic 1-type Darboux vector \overrightarrow{W} if

$$\Delta \vec{W} = \lambda \vec{W}, \qquad \lambda \in \mathbb{R}.$$
(3.2)

Theorem 3.2 Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^3 with Bishop frame $\left\{ \overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2} \right\}$, curvature k_1 and torsion k_2 . The differential equation characterizing α according to the Bishop Darboux vector \overrightarrow{W} is given by

$$\lambda_4 \nabla^3_{\alpha'} \overrightarrow{W} + \lambda_3 \nabla^2_{\alpha'} \overrightarrow{W} + \lambda_2 \nabla_{\alpha'} \overrightarrow{W} + \lambda_1 \overrightarrow{W} = 0, \qquad (3.3)$$

where

$$\begin{aligned} \lambda_4 &= f^2 \\ \lambda_3 &= -f(f'+g) \\ \lambda_2 &= -\left[(f'+g) g - k_1 \left(k_2''' + k_1 f \right) f + k_2 \left(k_1''' - k_2 f \right) f \right] \\ \lambda_1 &= -\left[(f'+g) \left(\frac{k_1'}{k_2'} \right) \left(k_2' \right)^2 + k_1' \left(k_2''' + k_1 f \right) f - k_2' \left(k_1''' - k_2 f \right) f \right] \end{aligned}$$

and

$$f = \left(\frac{k_1}{k_2}\right)' (k_2)^2, \quad g = k_1 k_2'' - k_1'' k_2.$$

Proof Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^3 with Bishop frame $\left\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\right\}$, curvature k_1 and torsion k_2 . By differentiating \overrightarrow{W} three times with respect to s, we obtain the followings.

$$\nabla_{\alpha'} \overrightarrow{W} = -k_2' \overrightarrow{N_1} + k_1' \overrightarrow{N}_2, \qquad (3.4)$$

$$\nabla_{\alpha'}^2 \overrightarrow{W} = -\left(k_1' k_2 - k_1 k_2'\right) \overrightarrow{T} - k_2'' \overrightarrow{N_1} + k_1'' \overrightarrow{N_2},\tag{3.5}$$

$$\nabla^{3}_{\alpha'} \overrightarrow{W} = -\left[(k'_{1}k_{2} - k_{1}k'_{2})' + k_{1}k''_{2} - k''_{1}k_{2} \right] \overrightarrow{T}$$

$$- [k''_{2} + k_{1} (k'_{1}k_{2} - k_{1}k'_{2})] \overrightarrow{N_{1}}$$

$$+ [k''_{1} - k_{2} (k'_{1}k_{2} - k_{1}k'_{2})] \overrightarrow{N_{2}}$$

$$(3.6)$$

From (3.1) and (3.4) we get

$$\overrightarrow{N_1} = \frac{k_1}{k_1' k_2 - k_1 k_2'} \nabla_{\alpha'} \overrightarrow{W} - \frac{k_1'}{k_1' k_2 - k_1 k_2'} \overrightarrow{W}$$
(3.7)

and

$$\overrightarrow{N_{2}} = \frac{k_{2}}{k_{1}'k_{2} - k_{1}k_{2}'} \nabla_{\alpha'} \overrightarrow{W} - \frac{k_{2}'}{k_{1}'k_{2} - k_{1}k_{2}'} \overrightarrow{W}.$$
(3.8)

By substituting (3.7) and (3.8) in (3.5) we have

$$\vec{T} = -\frac{1}{k_1'k_2 - k_1k_2'} \nabla_{\alpha'}^2 \vec{W} - \frac{k_1k_2'' - k_1''k_2}{(k_1'k_2 - k_1k_2')^2} \nabla_{\alpha'} \vec{W} - \frac{k_1''k_2' - k_1'k_2''}{(k_1'k_2 - k_1k_2')^2} \vec{W}.$$
(3.9)

By substituting (3.7), (3.8) and (3.9) in (3.6) we obtain

$$\lambda_4 \nabla^3_{\alpha'} \overrightarrow{W} + \lambda_3 \nabla^2_{\alpha'} \overrightarrow{W} + \lambda_2 \nabla_{\alpha'} \overrightarrow{W} + \lambda_1 \overrightarrow{W} = 0$$

where

$$\begin{aligned} \lambda_4 &= f^2 \\ \lambda_3 &= -f(f'+g) \\ \lambda_2 &= -\left[(f'+g) g - k_1 \left(k_2''' + k_1 f \right) f + k_2 \left(k_1''' - k_2 f \right) f \right] \\ \lambda_1 &= -\left[\left(f'+g \right) \left(\frac{k_1'}{k_2'} \right) \left(k_2' \right)^2 + k_1' \left(k_2''' + k_1 f \right) f - k_2' \left(k_1''' - k_2 f \right) f \right] \end{aligned}$$

and

$$f = \left(\frac{k_1}{k_2}\right)' (k_2)^2, \quad g = k_1 k_2'' - k_1'' k_2.$$

Corollary 3.1 Let $\alpha(s)$ be a general helix in E^3 with Bishop frame $\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\}$, curvature k_1 and torsion k_2 . The differential equation characterizing α according to the Bishop Darboux vector \overrightarrow{W} is given by

$$g\nabla_{\alpha'}\overrightarrow{W} - \left(\frac{k_1'}{k_2'}\right)' \left(k_2'\right)^2 \overrightarrow{W} = 0.$$

Theorem 3.3 Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^3 with Bishop frame $\left\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\right\}$, curvature k_1 and torsion k_2 . The differential equation characterizing α according to the normal Bishop Darboux vector $\overrightarrow{W^{\perp}}$ is given by

$$\lambda_3 \nabla^2_{\alpha'} \overrightarrow{W^{\perp}} + \lambda_2 \nabla_{\alpha'} \overrightarrow{W^{\perp}} + \lambda_1 \overrightarrow{W^{\perp}} = 0, \qquad (3.10)$$

where

$$\lambda_3 = f$$

$$\lambda_2 = g$$

$$\lambda_1 = \left(\frac{k'_1}{k'_2}\right) (k'_2)^2$$

and

$$f = \left(\frac{k_1}{k_2}\right)' (k_2)^2, \quad g = k_1 k_2'' - k_1'' k_2.$$

Proof Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^3 with Bishop frame $\left\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\right\}$, curvature k_1 and torsion k_2 . By differentiating $\overrightarrow{W^{\perp}}$ two times with respect to s, we obtain the followings.

$$\overrightarrow{W^{\perp}} = -k_2 \overrightarrow{N_1} + k_1 \overrightarrow{N_2}, \qquad (3.11)$$

$$\nabla_{\alpha'} \overrightarrow{W^{\perp}} = -k_2' \overrightarrow{N_1} + k_1' \overrightarrow{N}_2, \qquad (3.12)$$

$$\nabla^2_{\alpha'} W^{\perp} = -k_2'' \overrightarrow{N_1} + k_1'' \overrightarrow{N_2}.$$
(3.13)

From (3.11) and (3.12) we get

$$\overrightarrow{N_1} = \frac{k_1}{k_1' k_2 - k_1 k_2'} \nabla_{\alpha'} \overrightarrow{W^{\perp}} - \frac{k_1'}{k_1' k_2 - k_1 k_2'} \overrightarrow{W^{\perp}}$$
(3.14)

and

$$\overrightarrow{N_{2}} = \frac{k_{2}}{k_{1}'k_{2} - k_{1}k_{2}'} \nabla_{\alpha'} \overrightarrow{W^{\perp}} - \frac{k_{2}'}{k_{1}'k_{2} - k_{1}k_{2}'} \overrightarrow{W^{\perp}}.$$
(3.15)

By substituting (3.14) and (3.15) in (3.13) we obtain

$$f\nabla_{\alpha'}^2 \overrightarrow{W^{\perp}} + g\nabla_{\alpha'} \overrightarrow{W^{\perp}} + \left(\frac{k_1'}{k_2'}\right)' (k_2')^2 \overrightarrow{W^{\perp}} = 0.$$
(3.16)

This completes the proof.

Corollary 3.2 Let $\alpha(s)$ be a slant helix in E^3 with Bishop frame $\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\}$, curvature k_1 and torsion k_2 . The differential equation characterizing α according to the normal Bishop Darboux vector $\overrightarrow{W^{\perp}}$ is given by

$$g\nabla_{\alpha'}\overrightarrow{W^{\perp}} + \left(\frac{k_1'}{k_2'}\right)' \left(k_2'\right)^2 \overrightarrow{W^{\perp}} = 0.$$

Theorem 3.4 Let α be a unit speed space curve in E^3 with Bishop frame $\left\{\overrightarrow{T}, \overrightarrow{N_1}, \overrightarrow{N_2}\right\}$. Then, α is of harmonic 1-type Darboux vector if and only if the curvature k_1 and the torsion k_2 of the curve α satisfy the followings.

$$-k_1'' = \lambda k_1, \qquad k_1' k_2 - k_1 k_2' = 0, \qquad -k_2'' = \lambda k_2.$$
(3.17)

Proof Let α be a unit speed space curve and let Δ be the Laplacian associated with ∇ . From (3.4) and (3.5) we can obtain following.

$$\Delta \vec{W} = (k_1' k_2 - k_1 k_2') \vec{T} + k_2'' \vec{N_1} - k_1'' \vec{N_2}.$$
(3.18)

We assume that the space curve α is of harmonic 1-type Darboux vector \overrightarrow{W} . Substituting (3.18) in (3.2) we get (3.17).

References

- A.J.Hanson and H.Ma, Parallel Transport Approach to Curve Framing, Indiana University, Techreports-TR425, January 11 1995.
- [2] A.J.Hanson and H.Ma, Quaternion frame approach to streamline visualization, IEEE Transactions On Visualization and Computer Graphics, 1 (1995), 164-174.
- [3] A.T.Ali and M.Turgut, Position vector of a timelike slant helix in Minkowski 3-Space, Journal of Math. Analysis and Appl., 365 (2010), 559-569.
- [4] A.T.Ali and M.Turgut, Some characterizations of slant helices in the Euclidean space Eⁿ, Hacettepe Journal of Mathematics and Statistics, 39:3 (2010), 327-336.
- [5] B.Bükçü and M.K.Karacan, The slant helices according to Bishop frame, International Journal of Computational and Mathematical Sciences, 3:2 (2009), 63-66.
- [6] B.Bükçü and M.K.Karacan, On the slant helices according to Bishop frame of the timelike curve in Lorentzian space, *Tamkang Journal of Math.*, 39:3 (2008), 255-262.
- [7] B.Bükçü and M.K.Karacan, The Bishop Darboux rotation axis of the spacelike curve in Minkowski 3-space, JFS, Vol.30, 1- 5, E.U.F.F. Turkey, 2007.
- [8] B.Bükçü and M.K.Karacan, Special Bishop motion and Bishop Darboux rotation axis of the space curve, Journal of Dynamical Systems and Geometric Theories, 6:1 (2008), 27-34.
- B.Y.Chen and S.Ishikawa, Biharmonic surface in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., A45 (1991), 323-347.
- [10] D.J.Struik, Lectures on Classical Differential Geometry, Addison Wesley, Dover, (1988).
- [11] H.Kocayiğit, Lorentz Manifoldlarında Biharmonik Eğriler ve Kontak Geometri, Ph. D. Thesis, Ankara University, (2004).
- [12] H.Kocayiğit and H.H.Hacısalihoğlu, 1-Type curves and biharmonic curves in Euclidean 3-space, International Electronic Journal of Geometry, Vol.4, No.1(2011), 97-101.
- [13] H.Kocayiğit and H.H.Hacısalihoğlu, 1-Type and biharmonic Frenet curves in Lorentzian 3-space, Iranian Journal of Science & Technology, Transaction A, Vol.33, No. A2(2009), 159-168.
- [14] H.Kocayiğit, M.Kazaz and Z.Arı: Some Characterizations of space curves according to Bishop frame in Euclidean 3-space E³, Ankara Matematik Günleri, TOBB Ekonomi ve Teknoloji Üniversitesi Matematik Bölümü, Ankara, 3–4 Haziran 2010.
- [15] K.Ilarslan, Some Special Curves on Non-Euclidean Manifolds, Ph. D. Thesis, Ankara University, (2002).
- [16] L.Kula and Y.Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comp., 169 (2005), 600–607.
- [17] L.Kula, N.Ekmekci, Y.Yaylı and K.İlarslan, Characterizations of slant helices in Euclidean 3-space, Tur. J. Math., 34 (2010), 261-273.
- [18] L.R.Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82:3 (1975), 246-251.
- [19] S.Izumiya and N.Takeuchi, New special curves and developable surfaces, Turk J. Math., 28 (2004), 153-163.
- [20] T.Shifrin, Differential Geometry: A First Course in Curves and Surfaces, University of Georgia, Preliminary Version, 2008.