Characterizations of Space Curves
 According to Bishop Darboux Vector in Euclidean 3-Space E^{3}

Hüseyin KOCAYİ̆̇İT, Ali ÖZDEMİR
(Department of Mathematics, Faculty of Arts and Science, Celal Bayar University, Manisa-TURKEY)

Muhammed ÇETİN, Hatice Kübra ÖZ
(Institution of Science and Technology, Celal Bayar University, Manisa-TURKEY)

E-mail: huseyin.kocayigit@cbu.edu.tr, ali.ozdemir@cbu.edu.tr,
mat.mcetin@hotmail.com, hatice_galip@hotmail.com

Abstract

In this paper, we obtained some characterizations of space curves according to Bihop frame in Euclidean 3-space E^{3} by using Laplacian operator and Levi-Civita connection. Furthermore, we gave the general differential equations which characterize the space curves according to the Bishop Darboux vector and the normal Bishop Darboux vector.

Key Words: Bishop frame, Darboux vector, Euclidean 3-Space, Laplacian operator.
AMS(2010): 53A04

§1. Introduction

It is well-known that a curve of constant slope or general helix is defined by the property that the tangent of the curve makes a constant angle with a fixed straight line which is called the axis of the general helix. A necessary and sufficient condition for a curve to be a general helix is that the ratio of curvature to torsion be constant ([10]). The study of these curves in has been given by many mathematicians. Moreover, İlarslan studied the characterizations of helices in Minkowski 3 -space E_{1}^{3} and found differential equations according to Frenet vectors characterizing the helices in $E_{1}^{3}([15])$. Then, Kocayiğit obtained general differential equations which characterize the Frenet curves in Euclidean 3 -space E^{3} and Minkowski 3 -space E_{1}^{3} ([11]).

Analogue to the helix curve, Izumiya and Takeuchi have defined a new special curve called the slant helix in Euclidean 3 -space E^{3} by the property that the principal normal of a space curve γ makes a constant angle with a fixed direction ([19]). The spherical images of tangent indicatrix and binormal indicatrix of a slant helix have been studied by Kula and Yaylı ([16]). They obtained that the spherical images of a slant helix are spherical helices. Moreover, Kula et al. studied the relations between a general helix and a slant helix ([17]). They have found some differential equations which characterize the slant helix.

Position vectors of slant helices have been studied by Ali and Turgut ([3]). Also, they have given the generalization of the concept of a slant helix in the Euclidean n-space E^{n} ([4]).

[^0]Furthermore, Chen and Ishikawa classified biharmonic curves, the curves for which $\Delta H=0$ holds in semi-Euclidean space E_{v}^{n} where Δ is Laplacian operator and H is mean curvature vector field of a Frenet curve ([9]). Later, Kocayiğit and Hacısalihoğlu studied biharmonic curves and 1-type curves i.e., the curves for which $\Delta H=\lambda H$ holds, where λ is constant, in Euclidean 3 -space E^{3} ([12]) and Minkowski 3 -space E_{1}^{3} ([13]). They showed the relations between 1-type curves and circular helix and the relations between biharmonic curves and geodesics. Moreover, slant helices have been studied by Bükçü and Karacan according to Bishop frame in Euclidean 3-space ([5]) and Minkowski space ([6,7]). Characterizations of space curves according to Bishop frame in Euclidean 3 -space E^{3} have been given in [14].

In this paper, we gave some characterizations of space curves according to Bishop Frame in Euclidean 3 -space E^{3} by using Laplacian operator. We found the differential equations characterizing space curves according to the Bishop Darboux vector and the normal Bishop Darboux vector.

§2. Preliminaries

Let $\alpha: I \subset \mathbb{R}$ be an arbitrary curve in Euclidean 3 -space E^{3}. Recall that the curve α is said to be of unit speed (or parameterized by arc length function s) if $\left\langle\overrightarrow{\alpha^{\prime}}, \overrightarrow{\alpha^{\prime}}\right\rangle=1$, where \langle, is the standard scalar (inner) product of E^{3} given by $\langle\vec{x}, \vec{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$ for each $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}\right) \in E^{3}$. In particular, the norm of a vector $\vec{x} \in E^{3}$ is given by $\|\vec{x}\|=\sqrt{\langle\vec{x}, \vec{x}\rangle}$. Denote by $\{\vec{T}(s), \vec{N}(s), \vec{B}(s)\}$ the moving Frenet frame along the unit speed curve α. Then the Frenet formulas are given by

$$
\left[\begin{array}{c}
\vec{T}^{\prime} \\
\vec{N}^{\prime} \\
\overrightarrow{B^{\prime}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
\vec{T} \\
\vec{N} \\
\vec{B}
\end{array}\right]
$$

where \vec{T}, \vec{N} and \vec{B} are called tangent, principal normal and binormal vector fields of the curve, respectively. $\kappa(s)$ and $\tau(s)$ are called curvature and torsion of the curve α, respectively ([20]).

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. We can parallel transport an orthonormal frame along a curve simply by parallel transporting each component of the frame. The parallel transport frame is based on the observation that, while $\vec{T}(s)$ for a given curve model is unique, we may choose any convenient arbitrary basis $\left(\overrightarrow{N_{1}}(s), \overrightarrow{N_{2}}(s)\right)$ for the remainder of the frame, so long as it is in the normal plane perpendicular to $\vec{T}(s)$ at each point. If the derivatives of $\left(\overrightarrow{N_{1}}(s), \overrightarrow{N_{2}}(s)\right)$ depend only on $\vec{T}(s)$ and not each other we can make $\overrightarrow{N_{1}}(s)$ and $\overrightarrow{N_{2}}(s)$ vary smoothly throughout the path regardless of the curvature ([18,1,2]).

In addition, suppose the curve α is an arclength-parameterized C^{2} curve. Suppose we have
C^{1} unit vector fields $\overrightarrow{N_{1}}$ and $\overrightarrow{N_{2}}=\vec{T} \wedge \overrightarrow{N_{1}}$ along the curve α so that

$$
\left\langle\vec{T}, \overrightarrow{N_{1}}\right\rangle=\left\langle\vec{T}, \overrightarrow{N_{2}}\right\rangle=\left\langle\overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\rangle=0
$$

i.e., $\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}$ will be a smoothly varying right-handed orthonormal frame as we move along the curve. (To this point, the Frenet frame would work just fine if the curve were C^{3} with $\kappa \neq 0$) But now we want to impose the extra condition that $\left\langle\overrightarrow{N_{1}^{\prime}}, \overrightarrow{N_{2}}\right\rangle=0$. We say the unit first normal vector field $\overrightarrow{N_{1}}$ is parallel along the curve α. This means that the only change of $\overrightarrow{N_{1}}$ is in the direction of \vec{T}. A Bishop frame can be defined even when a Frenet frame cannot (e.g., when there are points with $\kappa=0$). Therefore, we have the alternative frame equations

$$
\left[\begin{array}{l}
\overrightarrow{T^{\prime}} \\
\overrightarrow{N_{1}^{\prime}} \\
\overrightarrow{N_{2}^{\prime}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\vec{T} \\
\overrightarrow{N_{1}} \\
\overrightarrow{N_{2}}
\end{array}\right]
$$

One can show that

$$
\kappa(s)=\sqrt{k_{1}^{2}+k_{2}^{2}}, \theta(s)=\arctan \left(\frac{k_{2}}{k_{1}}\right), k_{1} \neq 0, \tau(s)=-\frac{d \theta(s)}{d s}
$$

so that k_{1} and k_{2} effectively correspond to a Cartesian coordinate system for the polar coordinates κ, θ with $\theta=-\int \tau(s) d s$. The orientation of the parallel transport frame includes the arbitrary choice of integration constant θ_{0}, which disappears from τ (and hence from the Frenet frame) due to the differentiation $([18,1,2])$.

Let $\alpha: I \rightarrow E^{3}$ be a unit speed space curve with nonzero nature curvatures k_{1}, k_{2}. Then α is a slant helix if and only if $\frac{k_{1}}{k_{2}}$ is constant ([5]).

Let ∇ denotes the Levi-Civita connection given by $\nabla \alpha^{\prime}=\frac{d}{d s}$ where s is the arclenght parameter of the space curve α. The Laplacian operator of α is defined by ([13])

$$
\triangle=-\nabla_{\alpha^{\prime}}^{2}=-\nabla \alpha_{\alpha^{\prime}} \nabla \alpha^{\prime}
$$

$\S 3$. Characterizations of Space Curves

In this section we gave the characterizations of the space curves according to Bishop frame in Euclidean 3-space E^{3}. Furthermore, we obtained the general differential equations which characterize the space curves according to the Bishop Darboux vector \vec{W} and the normal Bishop Darboux vector \vec{W}^{\perp} in E^{3}.

Theorem 3.1([8]) Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$, curvature k_{1} and torsion k_{2}. The Bishop Darboux vector \vec{W} of the curve α is given by

$$
\begin{equation*}
\vec{W}=-k_{2} \overrightarrow{N_{1}}+k_{1} \overrightarrow{N_{2}} \tag{3.1}
\end{equation*}
$$

Definition 3.1 A regular space curve α in E^{3} said to has harmonic Darboux vector \vec{W} if

$$
\Delta \vec{W}=0
$$

Definition 3.2 A regular space curve α in E^{3} said to has harmonic 1-type Darboux vector \vec{W} if

$$
\begin{equation*}
\Delta \vec{W}=\lambda \vec{W}, \quad \lambda \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

Theorem 3.2 Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$, curvature k_{1} and torsion k_{2}. The differential equation characterizing α according to the Bishop Darboux vector \vec{W} is given by

$$
\begin{equation*}
\lambda_{4} \nabla_{\alpha^{\prime}}^{3} \vec{W}+\lambda_{3} \nabla_{\alpha^{\prime}}^{2} \vec{W}+\lambda_{2} \nabla_{\alpha^{\prime}} \vec{W}+\lambda_{1} \vec{W}=0 \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{4}=f^{2} \\
& \lambda_{3}=-f\left(f^{\prime}+g\right) \\
& \lambda_{2}=-\left[\left(f^{\prime}+g\right) g-k_{1}\left(k_{2}^{\prime \prime \prime}+k_{1} f\right) f+k_{2}\left(k_{1}^{\prime \prime \prime}-k_{2} f\right) f\right] \\
& \lambda_{1}=-\left[\left(f^{\prime}+g\right)\left(\frac{k_{1}^{\prime}}{k_{2}^{\prime}}\right)\left(k_{2}^{\prime}\right)^{2}+k_{1}^{\prime}\left(k_{2}^{\prime \prime \prime}+k_{1} f\right) f-k_{2}^{\prime}\left(k_{1}^{\prime \prime \prime}-k_{2} f\right) f\right]
\end{aligned}
$$

and

$$
f=\left(\frac{k_{1}}{k_{2}}\right)^{\prime}\left(k_{2}\right)^{2}, \quad g=k_{1} k_{2}^{\prime \prime}-k_{1}^{\prime \prime} k_{2}
$$

$\xrightarrow{\text { Proof }}$ Let $\alpha(s)$ be a unit speed space curve in Euclidean 3 -space E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$, curvature k_{1} and torsion k_{2}. By differentiating \vec{W} three times with respect to s, we obtain the followings.

$$
\begin{gather*}
\nabla_{\alpha^{\prime}} \vec{W}=-k_{2}^{\prime} \overrightarrow{N_{1}}+k_{1}^{\prime} \vec{N}_{2} \tag{3.4}\\
\nabla_{\alpha^{\prime}}^{2} \vec{W}=-\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right) \vec{T}-k_{2}^{\prime \prime} \overrightarrow{N_{1}}+k_{1}^{\prime \prime} \overrightarrow{N_{2}} \tag{3.5}\\
\nabla_{\alpha^{\prime}}^{3} \vec{W}=-\left[\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right)^{\prime}+k_{1} k_{2}^{\prime \prime}-k_{1}^{\prime \prime} k_{2}\right] \vec{T} \tag{3.6}\\
-\left[k_{2}^{\prime \prime \prime}+k_{1}\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right)\right] \overrightarrow{N_{1}} \\
\left.+\left[k_{1}^{\prime \prime \prime}-k_{2}\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right)\right]\right]
\end{gather*}
$$

From (3.1) and (3.4) we get

$$
\begin{equation*}
\overrightarrow{N_{1}}=\frac{k_{1}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \nabla_{\alpha^{\prime}} \vec{W}-\frac{k_{1}^{\prime}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \vec{W} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{N_{2}}=\frac{k_{2}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \nabla_{\alpha^{\prime}} \vec{W}-\frac{k_{2}^{\prime}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \vec{W} . \tag{3.8}
\end{equation*}
$$

By substituting (3.7) and (3.8) in (3.5) we have

$$
\begin{equation*}
\vec{T}=-\frac{1}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \nabla_{\alpha^{\prime}}^{2} \vec{W}-\frac{k_{1} k_{2}^{\prime \prime}-k_{1}^{\prime \prime} k_{2}}{\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right)^{2}} \nabla_{\alpha^{\prime}} \vec{W}-\frac{k_{1}^{\prime \prime} k_{2}^{\prime}-k_{1}^{\prime} k_{2}^{\prime \prime}}{\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right)^{2}} \vec{W} . \tag{3.9}
\end{equation*}
$$

By substituting (3.7), (3.8) and (3.9) in (3.6) we obtain

$$
\lambda_{4} \nabla_{\alpha^{\prime}}^{3} \vec{W}+\lambda_{3} \nabla_{\alpha^{\prime}}^{2} \vec{W}+\lambda_{2} \nabla_{\alpha^{\prime}} \vec{W}+\lambda_{1} \vec{W}=0
$$

where

$$
\begin{aligned}
& \lambda_{4}=f^{2} \\
& \lambda_{3}=-f\left(f^{\prime}+g\right) \\
& \lambda_{2}=-\left[\left(f^{\prime}+g\right) g-k_{1}\left(k_{2}^{\prime \prime \prime}+k_{1} f\right) f+k_{2}\left(k_{1}^{\prime \prime \prime}-k_{2} f\right) f\right] \\
& \lambda_{1}=-\left[\left(f^{\prime}+g\right)\left(\frac{k_{1}^{\prime}}{k_{2}^{\prime}}\right)\left(k_{2}^{\prime}\right)^{2}+k_{1}^{\prime}\left(k_{2}^{\prime \prime \prime}+k_{1} f\right) f-k_{2}^{\prime}\left(k_{1}^{\prime \prime \prime}-k_{2} f\right) f\right]
\end{aligned}
$$

and

$$
f=\left(\frac{k_{1}}{k_{2}}\right)^{\prime}\left(k_{2}\right)^{2}, \quad g=k_{1} k_{2}^{\prime \prime}-k_{1}^{\prime \prime} k_{2}
$$

Corollary 3.1 Let $\alpha(s)$ be a general helix in E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$, curvature k_{1} and torsion k_{2}. The differential equation characterizing α according to the Bishop Darboux vector \vec{W} is given by

$$
g \nabla_{\alpha^{\prime}} \vec{W}-\left(\frac{k_{1}^{\prime}}{k_{2}^{\prime}}\right)^{\prime}\left(k_{2}^{\prime}\right)^{2} \vec{W}=0
$$

Theorem 3.3 Let $\alpha(s)$ be a unit speed space curve in Euclidean 3-space E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$, curvature k_{1} and torsion k_{2}. The differential equation characterizing α according to the normal Bishop Darboux vector $\overrightarrow{W^{\perp}}$ is given by

$$
\begin{equation*}
\lambda_{3} \nabla_{\alpha^{\prime}}^{2} \overrightarrow{W^{\perp}}+\lambda_{2} \nabla_{\alpha^{\prime}} \overrightarrow{W^{\perp}}+\lambda_{1} \overrightarrow{W^{\perp}}=0 \tag{3.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{3}=f \\
& \lambda_{2}=g \\
& \lambda_{1}=\left(\frac{k_{1}^{\prime}}{k_{2}^{\prime}}\right)\left(k_{2}^{\prime}\right)^{2}
\end{aligned}
$$

and

$$
f=\left(\frac{k_{1}}{k_{2}}\right)^{\prime}\left(k_{2}\right)^{2}, \quad g=k_{1} k_{2}^{\prime \prime}-k_{1}^{\prime \prime} k_{2}
$$

Proof Let $\alpha(s)$ be a unit speed space curve in Euclidean 3 -space E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$, curvature k_{1} and torsion k_{2}. By differentiating $\overrightarrow{W^{\perp}}$ two times with respect to s, we obtain the followings.

$$
\begin{gather*}
\overrightarrow{W^{\perp}}=-k_{2} \overrightarrow{N_{1}}+k_{1} \overrightarrow{N_{2}}, \tag{3.11}\\
\nabla_{\alpha^{\prime}} \overrightarrow{W^{\perp}}=-k_{2}^{\prime} \overrightarrow{N_{1}}+k_{1}^{\prime} \vec{N}_{2}, \tag{3.12}\\
\nabla_{\alpha^{\prime}}^{2} \overrightarrow{W^{\perp}}=-k_{2}^{\prime \prime} \overrightarrow{N_{1}}+k_{1}^{\prime \prime} \overrightarrow{N_{2}} . \tag{3.13}
\end{gather*}
$$

From (3.11) and (3.12) we get

$$
\begin{equation*}
\overrightarrow{N_{1}}=\frac{k_{1}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \nabla_{\alpha^{\prime}} \overrightarrow{W^{\perp}}-\frac{k_{1}^{\prime}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \overrightarrow{W^{\perp}} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{N_{2}}=\frac{k_{2}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \nabla_{\alpha^{\prime}} \overrightarrow{W^{\perp}}-\frac{k_{2}^{\prime}}{k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}} \overrightarrow{W^{\perp}} \tag{3.15}
\end{equation*}
$$

By substituting (3.14) and (3.15) in (3.13) we obtain

$$
\begin{equation*}
f \nabla_{\alpha^{\prime}}^{2} \overrightarrow{W^{\perp}}+g \nabla_{\alpha^{\prime}} \overrightarrow{W^{\perp}}+\left(\frac{k_{1}^{\prime}}{k_{2}^{\prime}}\right)^{\prime}\left(k_{2}^{\prime}\right)^{2} \overrightarrow{W^{\perp}}=0 \tag{3.16}
\end{equation*}
$$

This completes the proof.
Corollary 3.2 Let $\alpha(s)$ be a slant helix in E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$, curvature k_{1} and torsion k_{2}. The differential equation characterizing α according to the normal Bishop Darboux vector W^{\perp} is given by

$$
g \nabla_{\alpha^{\prime}} \overrightarrow{W^{\perp}}+\left(\frac{k_{1}^{\prime}}{k_{2}^{\prime}}\right)^{\prime}\left(k_{2}^{\prime}\right)^{2} \overrightarrow{W^{\perp}}=0 .
$$

Theorem 3.4 Let α be a unit speed space curve in E^{3} with Bishop frame $\left\{\vec{T}, \overrightarrow{N_{1}}, \overrightarrow{N_{2}}\right\}$. Then, α is of harmonic 1-type Darboux vector if and only if the curvature k_{1} and the torsion k_{2} of the curve α satisfy the followings.

$$
\begin{equation*}
-k_{1}^{\prime \prime}=\lambda k_{1}, \quad k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}=0, \quad-k_{2}^{\prime \prime}=\lambda k_{2} \tag{3.17}
\end{equation*}
$$

Proof Let α be a unit speed space curve and let Δ be the Laplacian associated with ∇. From (3.4) and (3.5) we can obtain following.

$$
\begin{equation*}
\Delta \vec{W}=\left(k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right) \vec{T}+k_{2}^{\prime \prime} \overrightarrow{N_{1}}-k_{1}^{\prime \prime} \overrightarrow{N_{2}} \tag{3.18}
\end{equation*}
$$

We assume that the space curve α is of harmonic 1-type Darboux vector \vec{W}. Substituting (3.18) in (3.2) we get (3.17).

References

[1] A.J.Hanson and H.Ma, Parallel Transport Approach to Curve Framing, Indiana University, Techreports-TR425, January 111995.
[2] A.J.Hanson and H.Ma, Quaternion frame approach to streamline visualization, IEEE Transactions On Visualization and Computer Graphics, 1 (1995), 164-174.
[3] A.T.Ali and M.Turgut, Position vector of a timelike slant helix in Minkowski 3-Space, Journal of Math. Analysis and Appl., 365 (2010), 559-569.
[4] A.T.Ali and M.Turgut, Some characterizations of slant helices in the Euclidean space E^{n}, Hacettepe Journal of Mathematics and Statistics, 39:3 (2010), 327-336.
[5] B.Bükçü and M.K.Karacan, The slant helices according to Bishop frame, International Journal of Computational and Mathematical Sciences, 3:2 (2009), 63-66.
[6] B.Bükçü and M.K.Karacan, On the slant helices according to Bishop frame of the timelike curve in Lorentzian space, Tamkang Journal of Math., 39:3 (2008), 255-262.
[7] B.Bükçü and M.K.Karacan, The Bishop Darboux rotation axis of the spacelike curve in Minkowski 3-space, JFS, Vol.30, 1- 5, E.U.F.F. Turkey, 2007.
[8] B.Bükçü and M.K.Karacan, Special Bishop motion and Bishop Darboux rotation axis of the space curve, Journal of Dynamical Systems and Geometric Theories, 6:1 (2008), 27-34.
[9] B.Y.Chen and S.Ishikawa, Biharmonic surface in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., A45 (1991), 323-347.
[10] D.J.Struik, Lectures on Classical Differential Geometry, Addison Wesley, Dover, (1988).
[11] H.Kocayiğit, Lorentz Manifoldlarında Biharmonik Eğriler ve Kontak Geometri, Ph. D. Thesis, Ankara University, (2004).
[12] H.Kocayiğit and H.H.Hacısalihoğlu, 1-Type curves and biharmonic curves in Euclidean 3-space, International Electronic Journal of Geometry, Vol.4, No.1(2011), 97-101.
[13] H.Kocayiğit and H.H.Hacısalihoğlu, 1-Type and biharmonic Frenet curves in Lorentzian 3-space, Iranian Journal of Science \& Technology, Transaction A, Vol.33, No. A2(2009), 159-168.
[14] H.Kocayiğit, M.Kazaz and Z.Arı: Some Characterizations of space curves according to Bishop frame in Euclidean 3-space E ${ }^{3}$, Ankara Matematik Günleri, TOBB Ekonomi ve Teknoloji Üniversitesi Matematik Bölümü, Ankara, 3-4 Haziran 2010.
[15] K.İlarslan, Some Special Curves on Non-Euclidean Manifolds, Ph. D. Thesis, Ankara University, (2002).
[16] L.Kula and Y.Yayl, On slant helix and its spherical indicatrix, Appl. Math. Comp., 169 (2005), 600-607.
[17] L.Kula, N.Ekmekci, Y.Yaylı and K.İlarslan, Characterizations of slant helices in Euclidean 3-space, Tur. J. Math., 34 (2010), 261-273.
[18] L.R.Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82:3 (1975), 246-251.
[19] S.Izumiya and N.Takeuchi, New special curves and developable surfaces, Turk J. Math., 28 (2004), 153-163.
[20] T.Shifrin, Differential Geometry: A First Course in Curves and Surfaces, University of Georgia, Preliminary Version, 2008.

[^0]: ${ }^{1}$ Received November 15, 2013, Accepted May 30, 2014.

