
Tidy
geospatial
data cubes
Emma Marshall, University of Utah
Deepak Cherian, NCAR
Scott Henderson, University of Washington

We acknowledge partial funding from NASA 20-OSTFL20-0006

Who are we?

Scott Henderson

Oceanographer
National Center for
Atmospheric Research

● Xarray maintainer
● First in-person SciPy!

Glaciology graduate student
University of Utah

● Using xarray for ~ 3
years

● 2022 NCAR SIParCS
intern working on
xarray

● My 2nd SciPy!

Emma Marshall Deepak Cherian

Geophysicist
University of Washington

● Using xarray for ~6
years

● Interested in
facilitating research
using satellite remote
sensing datasets

What is the
problem?

Geospatial raster data is complex - large amount of duplicated effort
among users manipulating datasets into analysis-ready data cubes.

What do we
hope to do?

Borrowing from the tidy data framework for tabular data, propose
‘tidy’ guidelines for N-dimensional geospatial data, represented by
xarray objects.

How will
we do it?

Using examples of real-world datasets, we will explore how a
tidy framework could make our processing & analysis smoother.

Roadmap

What is xarray?

“Xarray is an open source project and Python
package that makes working with labelled
multi-dimensional arrays simple, efficient,
and fun”

Real-world example of xarray dataset

Schematic of xarray data structure

https://xarray.dev/

Geospatial datasets are large, complex and
can be cumbersome to work with.

Copernicus

NEON

Cervest

Spatial data science with applications in R

https://www.copernicus.eu/en/news/news/observer-data-cubes-enabling-and-facilitating-earth-observation-applications
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
https://cervest.earth/news/remote-sensing-of-planet-earth-part-1-introduction-to-satellite-imagery
https://r-spatial.org/book/06-Cubes.html

Geospatial datasets are large, complex and
can be cumbersome to work with.

Copernicus

NEON

Cervest

Spatial data science with applications in R

Community sentiment that the hardest part of learning to use xarray is conceptualizing
xarray structures and how to coerce your data into them

● How to structure your dataset for easy analysis within the xarray ecosystem
○ What are coordinates, dimensions, variables? How do they all inter-relate?

Users often download a subset of data from archives as a number of individual files

○ Good reason for this from a data-management, efficiency perspective
○ Most users will then need to compile these files into (x,y,*,time) cubes
○ Common hangup for new users, creates duplicated effort, introduces many decision

points for which we hope to provide guidance.

https://www.copernicus.eu/en/news/news/observer-data-cubes-enabling-and-facilitating-earth-observation-applications
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
https://cervest.earth/news/remote-sensing-of-planet-earth-part-1-introduction-to-satellite-imagery
https://r-spatial.org/book/06-Cubes.html

Tidy data principles for
tabular datasets

1. Each variable forms a column

2. Each observation forms a row

3. Each type of observational unit

forms a table

Tidy data (H. Wickham, 2014)

Data tidying: structuring datasets to facilitate
analysis (Wickham, 2014)

“...tidy datasets are all alike but every messy dataset
is messy in its own way. Tidy datasets provide a
standardized way to link the structure of a dataset
(its physical layout) with its semantics (its
meaning).” What would tidy data for gridded

datasets look like?

https://vita.had.co.nz/papers/tidy-data.pdf

Tidying real-world
datasets

Guiding Q: How could subsequent analysis with this data
be made easier?

Tidy data principles

N-dimensional data principles

Xarray variable = Physical observable(s)
needed for analysis

Xarray dimension = Axes defining
observable(s) domain

Xarray coordinate = Metadata that varies
along dimension

Xarray attribute = Metadata that is static.
Metadata attrs should be added such that
dataset is self describing (following
CF-conventions)

Tabular data principles (from
Wickham)

1. Every column is a variable

2. Every row is an observation

3. Every cell is a single value

1. Constructing data cubes

a. Organizing to a set of workable objects

2. Making data cubes analysis-ready

a. Additional design elements that impact user
experiences (especially when working with large
datasets)

b. Distinguishing observables vs metadata about
observations

Tidying messy data: Examples

InSAR Ice Velocity

InSAR Ice Velocity

What do we want? A
(time,x,y) cube with
georeferenced x,y

coordinates like lat, lon

How could
subsequent analysis

with this data be made
easier?

https://tutorial.xarray.dev/data_cleaning/ice_velocity.html

https://tutorial.xarray.dev/data_cleaning/ice_velocity.html

InSAR Ice Velocity
What do we have?

● 2 dimensions
○ ny: 800 elements
○ nx: 500 elements

● No coordinates
● 32 variables

○ vx, vy, err for each year
■ Exist along ny, nx

○ xaxis, yaxis
■ Exist along nx, ny respectively

Tidied object

What do we need to do?
● Add time dimension
● Add coordinate variables
● Remove time dim from data variables

InSAR Ice Velocity
What do we have?

● 2 dimensions
○ ny: 800 elements
○ nx: 500 elements

● No coordinates
● 32 variables

○ vx, vy, err for each year
■ Exist along ny, nx

○ xaxis, yaxis
■ Exist along nx, ny respectively

Example of efficient data visualization from a tidied object

Tidied object

Tidying messy data
1. Constructing data cubes

a. Organizing to a set of workable objects

2. Making data cubes analysis-ready

a. Additional design elements that impact user
experiences (especially when working with large
datasets)

b. Distinguishing observables vs metadata

Harmonized Landsat-Sentinel (HLS)

● Single satellite image read directly to xarray is not tidy:

We are in luck! STAC metadata specification and
tools built to ingest STAC-formatted objects can

do a lot of this tidying for us and make the
remaining steps much easier.

Harmonized
Landsat-Sentinel
(HLS)

● Reading in using odc-stac
organizes the object into a
datacube for us !

● Remaining issues:
1. Add more contextual

metadata to coordinates (e..g.
platform, sun angle…)

2. Data quality mask is
bit-packed, hard to extract

HLS: Quality flags presented as a bit-packed
mask! Not analysis-ready…

Harmonized
Landsat-Sentinel
(HLS)

Bit-packed masks for cloud, snow,
water cover:
Extracting masks with custom
function

● Extracting bit-packed masks is not
user-friendly, requires advanced
Xarray code

● Without a standardized format, this
places a heavy burden on analysis-
effort that will be duplicated across
users and not necessarily reusable
between datasets

np.unpackbits() unpacks
elements of a uint8 array into
a binary-valued output array.

Essential metadata in non-standard attribute

Instead use CF-conventions for
“Flag masks and values”

Now interpretable by cf-xarray.

 G
et boolean mask array per flag

Harmonized
Landsat-Sentinel
(HLS)

Bit-packed masks for cloud, snow,
water cover:
Extracting masks with
CF-convention attributes

ITSLIVE

● Tons of data variables: which should be coordinates and which should stay data variables?

● ITS_LIVE is an image pair dataset, indexed off of mid-date. But time-separation of image pair
is fundamental to the observable – is there a better way to convey this?

CF-conventions: ancillary data; CF-conventions:coordinate types

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#coordinate-types

Key takeaways
● Important data stored in filename = bad :(

● Non-descriptive variable names can create confusion

● Missing coordinate information makes datasets harder to use

● ‘Shape’/structure of a dataset can sometimes be embedded in variable
names

○ This will make subsequent analysis more difficult

● Some variables contain data about your observable, some provide context
about that observable

○ Separating these types of data into coordinate variables and data
variables will make analysis easier

● Structuring data so that it adheres to common specifications (STAC, CF)
let’s us work with already-existing tools, simplifies tidying work

Principles of tidy gridded data

1. Dimensions

● Minimize # of dimensional coords;
only what is necessary to describe
shape of your data

2. Coordinates

● Non-dimensional coordinates can be
numerous. Each should exist along
one or multiple dimensions

3. Data Variables

● These should be observables rather
than contextual, each should exist
along one or multiple dimensions

4. Contextual information (metadata)

● Metadata should only be stored as an attribute if it is static
along the dimensions to which it is applied

● If metadata is dynamic, store as coordinate variable

5. Variable, attribute naming

● Where possible, use cf-conventions for naming
● Variable names should be descriptive
● Variable names should not contain information that belongs

in a dimension or coordinate. (ie. information stored in
variable name should be reduced only to observable)

6. Make use of, work within the frameworks of other tools

● Tools like STAC, open data cube, cf.xarray, pystac, stackstac
[and many more] maker tidying possible (+ smoother),
especially with large datasets

What could a tidy framework look like?

Dataset produces & consumers Where do we go
from here?

● Perspectives from
users of other
libraries

● Tidying examples,
resources as
educational
resources?

● Domain-specific tidy
specifications?

● Tidying examples,
resources

● Tidy tools

● Dataset developers and users often have different needs/priorities
● Developers want: minimize storage
● Users want: easy access to information

○ These goals are often at odds with one another
● How can we create a framework/format that minimizes gap

between these groups
○ We’d love feedback on this and what it could look like

Tools ecosystem
● Some tools already address this gap. Let’s use them!

○ odc-stac, stackstac, cf-xarray, pint, etc.

Thank you!

Questions, comments, ideas?
emma.marshall@utah.edu

https://github.com/dcherian/tidy-xarray

Jupyter book

mailto:emma.marshall@utah.edu
https://github.com/dcherian/tidy-xarray

Principles of tidy gridded data

1. Dimensions

● Minimize # of dimensional coords;
only what is necessary to describe
shape of your data

2. Coordinates

● Non-dimensional coordinates can be
numerous. Each should exist along
one or multiple dimensions

3. Data Variables

● These should be observables rather
than contextual, each should exist
along one or multiple dimensions

4. Contextual information (metadata)

● Metadata should only be stored as an attribute if it is static
along the dimensions to which it is applied

● If metadata is dynamic, store as coordinate variable

5. Variable, attribute naming

● Where possible, use cf-conventions for naming
● Variable names should be descriptive
● Variable names should not contain information that belongs

in a dimension or coordinate. (ie. information stored in
variable name should be reduced only to observable)

6. Make use of, work within the frameworks of other tools

● Tools like STAC, open data cube, cf.xarray, pystac, stackstac
[and many more] maker tidying possible (+ smoother),
especially with large datasets

