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Who are we? 

Scott Henderson

Oceanographer
National Center for 
Atmospheric Research

● Xarray maintainer
● First in-person SciPy!

Glaciology graduate student
University of Utah

● Using xarray for ~ 3 
years

● 2022 NCAR SIParCS 
intern working on 
xarray

● My 2nd SciPy! 

Emma Marshall Deepak Cherian

Geophysicist
University of Washington

● Using xarray for ~6 
years 

● Interested in 
facilitating research 
using satellite remote 
sensing datasets



What is the 
problem?

Geospatial raster data is complex - large amount of duplicated effort 
among users manipulating datasets into analysis-ready data cubes. 

What do we 
hope to do?

Borrowing from the tidy data framework for tabular data, propose 
‘tidy’ guidelines for N-dimensional geospatial data, represented by 
xarray objects.

How will 
we do it?

Using examples of real-world datasets, we will explore how a 
tidy framework could make our processing & analysis smoother.

Roadmap



What is xarray? 

“Xarray is an open source project and Python 
package that makes working with labelled 
multi-dimensional arrays simple, efficient, 
and fun”

Real-world example of xarray dataset

Schematic of xarray data structure

https://xarray.dev/


Geospatial datasets are large, complex and 
can be cumbersome to work with.

Copernicus

NEON

Cervest

Spatial data science with applications in R

https://www.copernicus.eu/en/news/news/observer-data-cubes-enabling-and-facilitating-earth-observation-applications
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
https://cervest.earth/news/remote-sensing-of-planet-earth-part-1-introduction-to-satellite-imagery
https://r-spatial.org/book/06-Cubes.html


Geospatial datasets are large, complex and 
can be cumbersome to work with.

Copernicus

NEON

Cervest

Spatial data science with applications in R

Community sentiment that the hardest part of learning to use xarray is conceptualizing 
xarray structures and how to coerce your data into them 

● How to structure your dataset for easy analysis within the xarray ecosystem
○ What are coordinates, dimensions, variables? How do they all inter-relate?

Users often download a subset of data from archives as a number of individual files 

○ Good reason for this from a data-management, efficiency perspective
○ Most users will then need to compile these files into (x,y,*,time) cubes
○ Common hangup for new users, creates duplicated effort, introduces many decision 

points for which we hope to provide guidance. 

https://www.copernicus.eu/en/news/news/observer-data-cubes-enabling-and-facilitating-earth-observation-applications
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
https://cervest.earth/news/remote-sensing-of-planet-earth-part-1-introduction-to-satellite-imagery
https://r-spatial.org/book/06-Cubes.html


Tidy data principles for 
tabular datasets 

1. Each variable forms a column

2. Each observation forms a row

3. Each type of observational unit 

forms a table

Tidy data (H. Wickham, 2014) 

Data tidying: structuring datasets to facilitate 
analysis (Wickham, 2014)

“...tidy datasets are all alike but every messy dataset 
is messy in its own way. Tidy datasets provide a 
standardized way to link the structure of a dataset 
(its physical layout) with its semantics (its 
meaning).” What would tidy data for gridded 

datasets look like? 

https://vita.had.co.nz/papers/tidy-data.pdf


Tidying real-world 
datasets

Guiding Q: How could subsequent analysis with this data 
be made easier? 



Tidy data principles

N-dimensional data principles 

Xarray variable = Physical observable(s) 
needed for analysis

Xarray dimension = Axes defining 
observable(s) domain

Xarray coordinate = Metadata that varies 
along dimension

Xarray attribute = Metadata that is static. 
Metadata attrs should be added such that 
dataset is self describing (following 
CF-conventions)

Tabular data principles (from 
Wickham)

1. Every column is a variable

2. Every row is an observation

3. Every cell is a single value



1. Constructing data cubes

a. Organizing to a set of workable objects

2. Making data cubes analysis-ready

a. Additional design elements that impact user 
experiences (especially when working with large 
datasets)

b. Distinguishing observables vs metadata about 
observations

Tidying messy data: Examples



InSAR Ice Velocity 

InSAR Ice Velocity

What do we want?  A 
(time,x,y) cube with 
georeferenced x,y 

coordinates like lat, lon

How could 
subsequent analysis 

with this data be made 
easier? 

https://tutorial.xarray.dev/data_cleaning/ice_velocity.html

https://tutorial.xarray.dev/data_cleaning/ice_velocity.html


InSAR Ice Velocity
What do we have? 

● 2 dimensions
○ ny: 800 elements
○ nx: 500 elements

● No coordinates
● 32 variables 

○ vx, vy, err for each year
■ Exist along ny, nx

○ xaxis, yaxis
■ Exist along nx, ny respectively

Tidied object

What do we need to do? 
● Add time dimension
● Add coordinate variables
● Remove time dim from data variables



InSAR Ice Velocity
What do we have? 

● 2 dimensions
○ ny: 800 elements
○ nx: 500 elements

● No coordinates
● 32 variables 

○ vx, vy, err for each year
■ Exist along ny, nx

○ xaxis, yaxis
■ Exist along nx, ny respectively

Example of efficient data visualization from a tidied object

Tidied object



Tidying messy data
1. Constructing data cubes

a. Organizing to a set of workable objects

2. Making data cubes analysis-ready

a. Additional design elements that impact user 
experiences (especially when working with large 
datasets)

b. Distinguishing observables vs metadata 



Harmonized Landsat-Sentinel (HLS)

● Single satellite image read directly to xarray is not tidy:

We are in luck! STAC metadata specification and 
tools built to ingest STAC-formatted objects can 

do a lot of this tidying for us and make the 
remaining steps much easier. 



Harmonized 
Landsat-Sentinel 
(HLS)

● Reading in using odc-stac 
organizes the object into a 
datacube for us ! 

● Remaining issues:
1. Add more contextual 

metadata to coordinates (e..g. 
platform, sun angle…)

2. Data quality mask is 
bit-packed, hard to extract



HLS: Quality flags presented as a bit-packed 
mask! Not analysis-ready…



Harmonized 
Landsat-Sentinel 
(HLS)

Bit-packed masks for cloud, snow, 
water cover:
Extracting masks with custom 
function

● Extracting bit-packed masks is not 
user-friendly, requires advanced 
Xarray code

● Without a standardized format, this 
places a heavy burden on analysis- 
effort that will be duplicated across 
users and not necessarily reusable 
between datasets

np.unpackbits() unpacks 
elements of a uint8 array into 
a binary-valued output array.



Essential metadata in non-standard attribute

Instead use CF-conventions for 
“Flag masks and values”

Now interpretable by cf-xarray.

   G
et boolean mask array per flag

Harmonized 
Landsat-Sentinel 
(HLS)

Bit-packed masks for cloud, snow, 
water cover:
Extracting masks with 
CF-convention attributes



ITSLIVE

● Tons of data variables: which should be coordinates and which should stay data variables?

● ITS_LIVE is an image pair dataset, indexed off of mid-date. But time-separation of image pair 
is fundamental to the observable – is there a better way to convey this? 

CF-conventions: ancillary data;    CF-conventions:coordinate types 

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#coordinate-types


Key takeaways
● Important data stored in filename = bad :( 

● Non-descriptive variable names can create confusion

● Missing coordinate information makes datasets harder to use

● ‘Shape’/structure of a dataset can sometimes be embedded in variable 
names

○ This will make subsequent analysis more difficult

● Some variables contain data about your observable, some provide context 
about that observable

○ Separating these types of data into coordinate variables and data 
variables will make analysis easier

● Structuring data so that it adheres to common specifications (STAC, CF) 
let’s us work with already-existing tools, simplifies tidying work



Principles of tidy gridded data

1. Dimensions

● Minimize # of dimensional coords; 
only what is necessary to describe 
shape of your data 

2. Coordinates

● Non-dimensional coordinates can be 
numerous. Each should exist along 
one or multiple dimensions

3. Data Variables

● These should be observables rather 
than contextual, each should exist 
along one or multiple dimensions

4. Contextual information (metadata)

● Metadata should only be stored as an attribute if it is static 
along the dimensions to which it is applied

● If metadata is dynamic, store as coordinate variable

5. Variable, attribute naming 

● Where possible, use cf-conventions for naming
● Variable names should be descriptive
● Variable names should not contain information that belongs 

in a dimension or coordinate. (ie. information stored in 
variable name should be reduced only to observable)

6. Make use of, work within the frameworks of other tools

● Tools like STAC, open data cube, cf.xarray, pystac, stackstac 
[and many more] maker tidying possible (+ smoother), 
especially with large datasets



What could a tidy framework look like?

Dataset produces & consumers Where do we go 
from here?

● Perspectives from 
users of other 
libraries

● Tidying examples, 
resources as 
educational 
resources?

● Domain-specific tidy 
specifications? 

● Tidying examples, 
resources

● Tidy tools 

● Dataset developers and users often have different needs/priorities
● Developers want: minimize storage
● Users want: easy access to information

○ These goals are often at odds with one another 
● How can we create a framework/format that minimizes gap 

between these groups
○ We’d love feedback on this and what it could look like

Tools ecosystem
● Some tools already address this gap. Let’s use them!

○ odc-stac, stackstac, cf-xarray, pint, etc. 



Thank you! 

Questions, comments, ideas?
emma.marshall@utah.edu

https://github.com/dcherian/tidy-xarray 

Jupyter book

mailto:emma.marshall@utah.edu
https://github.com/dcherian/tidy-xarray
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