

INTEGRATION OF ALVIS WITHIN THE OPENMINTED PLATFORM AS GALAXY UTILITIES

Jean-Baptiste Bohuon*, Mouhamadou Ba*, Estelle Chaix, Robert Bossy, Claire Nédellec MalAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France firstname.lastname@inra.fr, *: corresponding authors

MOTIVATIONS

- Over 50 million scholarly publications are available
- Text and Data Mining (TDM) offers a set of mature softwares to extract knowledge from large corpora
- Domain-specific terminologies and ontologies enable normalization
- Alvis is an open-source modular TDM suite in Java
- Alvis performs named-entity recognition and normalization, and relation extraction
- → The integration of Alvis as a set of Galaxy tools will help the development of TDM workflows by non-experts
- → The integration of several TDM suites (UIMA, GATE) will make available state of the art TDM within the OpenMinTeD platform

TEXT MINING IN BIOLOGY

- Domain-specific text mining involves the use of TDM programs and domain resources
- A classifier is trained with manual annotations
- TDM example: named-entity recognition and relation extraction in a corpus about seed development of the *Arabidopsis thaliana* (Fig. 1, 2)

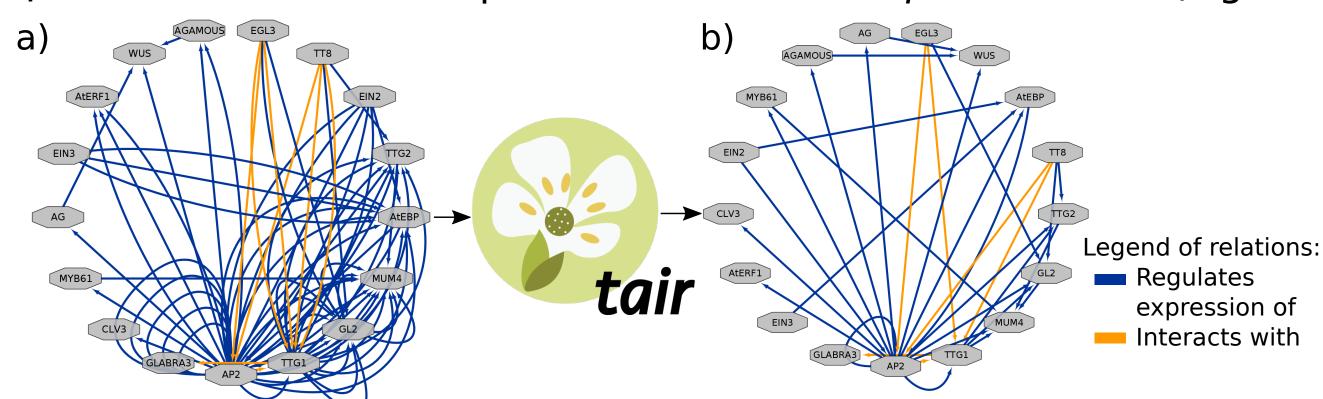


Fig. 1: a) A set of manual annotations (on 21 abstracts) with non-normalized entities. b) Entities and hence occurrences of relations are normalized using TAIR, a resource on *Arabidopsis thaliana*.

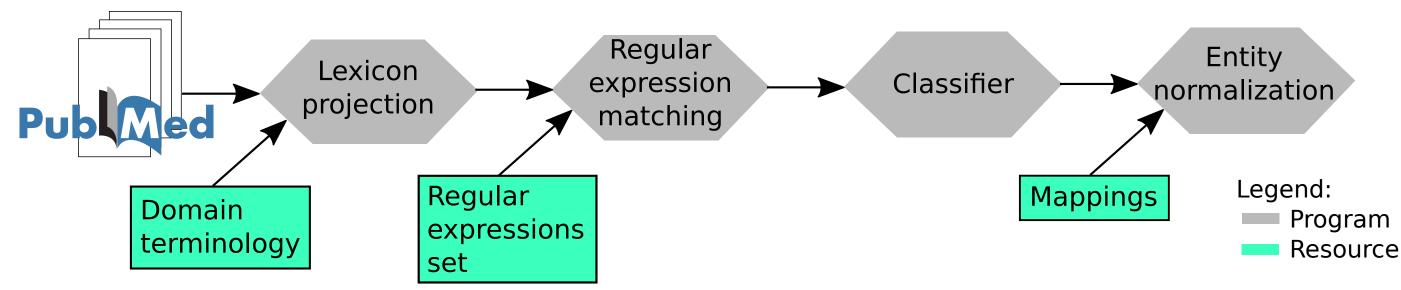


Fig. 2: Chained execution of TDM tools including the trained classifier predicts named-entities and relations on a relevant corpus (5000 abstracts).

- Manually annotated corpora are shared to train different models
- Successive tools constitute workflows, generic sequences of workflows are widely reused and domain specific ones are built ad hoc
- The extracted knowledge may be queried, *e.g.* a biologist performing sequence functional annotation of sequences may couple sequence similarity search and literature mining
- Workflow steps may be shared among applications and beyond the application domain

OpenMinTeD: A TDM COMMUNITY

- OpenMinTeD is a H2020 E-INFRA project (2016-2018)
- Major TDM platforms are involved: GATE, UIMA, Alvis, Argo, DKPro
- Covered domains are Agricultural Science, Biodiversity Science, Social Sciences, Scholarly Communications
- The main goals are 1) interoperability between TDM modules from different platforms, and 2) to enable the design of workflows made of tools from different platforms
- All developments will be open source

WORKFLOW ENGINES OF ALVIS AND GALAXY

- OpenMinTeD has choosen Galaxy as workflow engine
- The workflow engines of Alvis and Galaxy differ, each Alvis module can be wrapped as a Galaxy tool

Feature	Alvis	Galaxy
Execution of workflows	Sequential	Parallel
Workflow description	XML parameter-oriented	JSON with tool state
Data interoperability	Shared data structure	Native formats, shims
Data persistance	RAM, dedicated modules	Filesystem
Interfaces	CLI, REST API, Java API	GUI, REST API

ALVIS MODULES IN GALAXY

- We created a generic Alvis docker image
- Data interoperability within OpenMinTeD: RDF for documents and XMI for text annotations
- An RDF/XMI export module is under development
- Most Alvis workflows use a docker container giving standalone Galaxy tools
- Modules will be progressively wrapped as independent tools

COMMUNITY-DRIVEN WORKFLOWS

- Existing state of the art TDM workflows will be released on the OpenMinTeD platform as Galaxy workflows
- These workflows take domain-specific resources as input (corpora and semantic resources)
- Workflows in Agricultural Science and Biodiversity Science include:

Domain	Plant development	Wheat data	Microbial diversity
Client application	FLAGdb++	GnPIS, WheatIS	Florilège
Partner	IPS2 (INRA)	URGI (INRA)	E-infra partners
Main TDM resource	TAIR	WIPO	OntoBioTope

- The bioinformatics applications associated with workflows (FLAGdb++, GnPIS, Florilège) will integrate TDM results and bioinformatics data
- Bioinformatics applications will execute the preconfigured workflows
- Periodical execution: corpora and resource update and user feedback will trigger execution
- CORE, OpenAire, AgroPortal will provide access to data

DISCUSSIONS

- OpenMinTeD tools metadata are wider than Galaxy metadata
- Resources (terminologies and corpora) are widely reused
- → hence a registry of resources and components is under development
- The analysis of large corpora may exploit Galaxy's load balancing system or ad hoc preprocessing steps
- Several software packagers are considered: Docker, Maven or exposing programs as webservices

REFERENCES

- Ba et al. (2016). Interoperability of corpus processing workflow engines: the case of AlvisNLP/ML in OpenMinTeD. Presented at Meeting of working Group Medicago sativa, Portoroz, SVN.
- Chaix et al. (2016). Overview of the regulatory network of plant seed development (SeeDev) task at the BioNLP shared task 2016. In: Proceedings of the 4th BioNLP Shared Task Workshop (p. 12-22). Presented at BioNLP Shared Task, Berlin, DEU. Stroudsburg, USA: The Association for Computational Linguistics.
- Alvis git repository http://github.com/Bibliome/alvisnlp
- OpenMinTeD git repository http://github.com/openminted
- Alvis generic docker image http://github.com/openminted/alvis-docker

Permalink

