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Abstract

Autism spectrum disorders (ASD) is characterized by social and communicative deficits, severe anxiety, and
stereotypic movements. Despite affecting as many as 1 in 45 US children in the USA, the pathogenesis of ASD is
still unknown. Recent epidemiological studies indicated a strong statistical correlation between risk for maternal /
infant atopic diseases and ASD suggesting the possible involvement and activation of mast cells (MC). These
unique immune cells are located close to blood vessels in all tissues, including the thalamus and hypothalamus in
the brain, which regulate emotions known to be dysfunctional in ASD. Moreover, MCs are stimulated by two brain
peptides, corticotropin-releasing hormone (CRH) and neurotensin (NT), which we showed to be high in the blood of
children with ASD. Stimulated MCs then secrete inflammatory molecules that activate brain microglia, which
proliferate and “choke off” nerve communication. These inflammatory molecules are increased in the brain and
serum of patients with ASD and also lead to disruption of the protective blood-brain barrier (BBB), which is regulated
by MCs, permitting the entry of circulating white blood cells and toxins contributing to brain. We further reported that
the elevated blood levels of two inflammatory molecules, IL-6 and TNF, identify a subgroup of children with ASD,
who benefit most from a promising treatment with the natural flavonoid luteolin that combats brain inflammation.
Extinguishing inflammation (“Brain fires”) may be the best hope for curing ASD.

List of abbreviations
ABC: Aberrant behavior checklist; ADHD: Attention-deficit

hyperactivity disorder; ASD: Autism spectrum disorders; BBB: Blood-
brain barrier; BDNF: Brain-derived neurotrophic factor; CRH:
Corticotropin-releasing hormone; DAMPs: Damage-associated
molecular patterns; MC: Mast cells; MCP-1: Monocyte
chemoattractant protein; Mt: Mitochondrial; NAC: N-acetylcysteine;
NT: Neurotensin; NTs: Neurotensin receptor; SSRIs: Selective
serotonin re-uptake inhibitors; SP: Substance P; TNF: Tumor necrosis
factor; VEGF: Vascular endothelial growth factor

Introduction
Affecting more than 1 in 45 children in the US, Autism Spectrum

Disorders (ASD) are pervasive neurodevelopmental disorders
characterized by deficits in communication and social interactions, as
well as the presence of increased anxiety and stereotypic behaviors
[1-3]. Current ASD diagnosis depends on the recognition of presenting
behaviors suggestive of ASD (Table 1) and is corroborated by meeting
the cut off scores on both the DSM-IV-TR symptom list [4] and the
Autism Diagnostic Observation Schedule (ADOS) algorithm [5].

Despite its inclusion in the DSM-IV-TR and increased awareness,
ASD remains mysterious making its treatment exceedingly difficult
and costly. While past research has helped uncover a number of gene
mutations linked to ASD, still no specific pattern or direct link has
been uncovered [6,7]. Current ASD research using mouse “models”,

where genetically based mice with phenotypes resembling autism are
studied [8,9], does not adequately reflect the extent of ASD, and other
inflammatory diseases in humans [10].

With a lack of adequate scientific understanding about ASD, child
and adolescent outpatient mental health services in the USA have
increased considerably [11] to an estimated annual economic burden
of $268 billion in 2015 and will continue to increase to a projected
annual burden of $416 billion in 2025 [12]. As a result, the community
is in scientific and economic urgent need of appropriate scientific
research, including more relevant animal “models” of ASD in order to
better understand ASD in humans [13].

Ultimately, the lack of reliable biomarkers, [14] lack of specific
pathogenesis, and the existence of many subgroups (Table 2), makes a
unified treatment approach difficult [15-17]. Therefore, the path to
developing effective ASD treatments should focus on identifying the
ASD subgroups listed in Table 2 through the use of a series of useful
diagnostic tests (Table 3).

Discovering the pathogenesis of and a cure for ASD requires a
concerted effort, as was demonstrated in the European Autism
Interventions-A Multi Centre Study for Developing New Medications
(EU-AIMS) Initiative [18]. This review will also present evidence that
activation of mast cells (MCs), tissue immune cells involved in allergic
reactions [19] can be triggered by many stimuli and both disrupt the
blood-brain-barrier (BBB) and activate microglia leading to focal
inflammation of the brain.
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Prematurity and low birth weight is linked to obesity in the mother
and increases the risk of inflammation in the brain and ASD

S.No Autism spectrum disorders (ASD)

1. Lack of response when name is called

2. Isolation

3. No group play

4. Loss of vocabulary

5. Adherence to rigid routines

6. Lack of imaginative play

7. Inability to follow directions

8. Anxiety

9. Intolerance to stress

10. Repetitive non-purposeful movements

11. Hyperactivity

12. Tantrums

13. Tip-toeing

14. Hand flapping

15. Intolerance to sensory overload

16. Strange food habits

Table 1: Presenting Behavior Indicative of ASD.

S.No Subgroups

1. ADHD

2. Allergies

3. Food intolerance

4. Fragile X syndrome

5. Gastrointestinal symptoms

6. Hyperactivity

7. Methylation deficiency

8. Mitochondrial dysfunction

9. PANDAS*

10. Phenol intolerance

11. PTEN* mutations, macrocephaly

12. Rett syndrome

13. Seizures

14. Tuberous sclerosis

*Pediatric Autoimmune Neuropsychiatric Disorders Associated With
Streptococcal Infections

* Phosphatase and tensin homolog 

Table 2: ASD Subgroups.

There are a number of perinatal, allergic, genetic, environmental,
immune and infectious factors that may increase the risk of or
contribute to the pathogenesis of ASD [20-22] (Table 4). A major risk
factor that contributes to the development of ASD is infantile
prematurity and low birth weight, characterizing about 15% of all
infants delivered at 32-36 weeks in the USA [23]. Preterm labor and
premature birth was associated with in utero inflammation or
infection [24-26], factors that are now implicated in ASD (see later
sections).

Premature and low birth weight infants are at risk for neurologic
injury [27-30], cerebellar hemorrhagic injury that can lead to
neurodevelopmental disabilities [31] including reduced attention,
increased anxiety, as well as difficulties in social interaction and
learning [32,33]. A number of studies reported that ASD children less
than 33 weeks gestation are associated with higher risk of ASD [34-37].
Neonatal jaundice was also associated with ASD [38]. Increased risk
for ASD was strangely associated with the use of Cesarean section only
through general and not spinal anesthesia [39].

Prematurity has been linked to obesity in the mother during
pregnancy and large weight gain during pregnancy increased the risk
for ASD in the offspring [40]. This finding may be linked to the
hormone leptin, which is increased in obese individuals [41,42] and
elevated plasma levels of leptin during pregnancy indicate placental
dysfunction [43]. In fact, leptin is increased in children with regressive
autism [44], autistic disorder (n=35) [45] or Rett syndrome (n=16)
[45]. This is interesting in view of the fact that obesity has been
considered an inflammatory state involving release of adipocytokines
[46,47]. Moreover, MCs have been linked to obesity [48,49] and also
express leptin and leptin receptors, a finding implicating paracrine or
autocrine immunomodulatory effects [50].

Blood Test Condition Test Code CPT code(s)

Anti-IgE receptor antibody Autoimmune urticaria 18877 83520

C3a desArg Fragment Angioedema 17689X 83520

Total IgE Allergies 7320 82785

Allergy profile (RAST to Food and environmental
antigens)

Allergies 10659X 82785,86003(X15)

Catecholamines, Fractionated Plasma [314X] Anxiety/irritability 14566 82384
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Interleukin-6, Highly Sensitive ELISA [34473X] Inflammation 7259 83520

Tumor Necrosis Factor-Alpha, Highly Sensitive
ELISA

Inflammation 34485 83520

Lactate/Pyruvate * Oxidative stress and chronic
fatigue

11296X 83605, 84210

Glutathione Oxidative stress 90379X 82978

Histamine Urticaria 16838 86343

Serotonin Flushing 29851 84260

Heavy Metals Comprehensive Panel Neurologic complaints 14573 82175, 82570,83655, 83825, 83018 (x2)

Food intolerance panel

*Preferably obtained from an arm after 1 min exercise with a squeeze ball or spring

Table 3: Useful Diagnostic Tests for ASD.

S.No Perinatal Conditions

1. Identical twin of sibling with autism

2. Allergies

3. Asthma

4. Presence of brain autoantibodies

5. Caesarean section with general anaesthesia

6. Environmental toxin exposure

7. Exposure to heavy metals

8. Exposure to mold

9. Haemorrhage

10. High fever

11. Infection

12. Low birth weight

13. Low APGAR score

14. Obesity

15. Oxytocin, prolonged use for labor induction

16. Preeclampsia

17. Prematurity

18. Psoriasis

19. Psychotropic medication use

20. Sexual abuse

21. Stress

Table 4: Perinatal Conditions Increasing the Risk of ASD.

Mother’s health during pregnancy is linked to increased
risk for ASD

Prenatal stress in mothers has been linked to increased risk of ASD
in offspring [21,51,52]. Stress, through activation of receptors [53] for
the neuropeptide corticotropin-releasing hormone (CRH), secreted
from the hypothalamus, can activate MCs to secrete vascular
endothelial growth factor (VEGF) [53] leading to increased BBB
permeability [54,55]. MCs are located around blood vessels especially
in the thalamus and hypothalamus, adjacent to CRH-positive neurons
[56], where they contain most of the brain histamine [57,58]. We
reported that CRH and another brain hormone, neurotensin (NT),
were increased in the serum of young children with ASD compared to
normal controls [59]. CRH and NT synergistically stimulate MCs [60].
The highest expression of NT receptors in the human brain is in the
hypothalamus and band of Broca [61], as well as the amygdala [62],
which regulates emotions and language known to be dysfunctional in
ASD. NT is neurotoxic [63]. We recently reported that NT stimulates
activation and proliferation of human microglia [64], which are for the
first time considered to play a major role in the pathogenesis of ASD
[65-67].

Children born to mothers with mastocytosis, characterized by the
presence of many activated MCs [19], had a 10-fold higher risk of
developing ASD, [68] implying the role of MC activation in ASD
[69,70]. Mastocytosis patients have increased serum IL-6 that
correlates with disease activity [71-73]. Interestingly, the mouse model
of autism induced by maternal immune activation (MIA) is due to
increased blood IL-6 [74,75]. We had reported that acute stress
significantly increases serum IL-6 in mice that was entirely dependent
on MCs, as it was absent in MC-deficient W/Wv mice [76]. Recent
studies have shown strong associations between the presence of
allergies and autoimmune diseases, especially psoriasis, and increased
risk of ASD in the offspring [77-79]. Such findings suggest the
involvement of environmental triggers [20,22,80-83]. There was a
strong association between higher ASD prevalence and proximity to
industrial facilities emitting air pollutants [84]. Moreover, chemical
intolerant mothers were three times more likely to have a child more
prone to allergies and sensitivities and to develop ASD [85]. Exposure
to mold was linked to decreased cognitive function in children [86]
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and volatile mycotoxins have been reported to induce neuropsychiatric
symptoms [87]. Different species of mold can trigger MCs [88-91].

MCs can be further stimulated by aluminum, Bis-phenol A (BPA),
organophosphate insecticides and mercury [92-96]. In fact, chemical
exposure to mercury [97] and aluminum [98,99] has been associated
with symptom severity in children with ASDs. While Aluminum has
replaced mercury as an adjuvant in vaccines, its health effects are not
negligible [100]. For instance, aluminum oxide can triggers a series of
allergic reactions, including the invasion of the brain and inducing of
microglia TNF release [101].

Atopic diseases are linked to inflammation of the brain
and are strongly associated with increased risk of ASD

Atopic diseases (including allergies, asthma, eczema and rhinitis)
[102] and auto-immune diseases [103,104] have been increasing at a
rate similar to that of ASD. Atopic diseases in preschoolers were
strongly associated with psychological and behavioral problems, [105]
including attention-deficit hyperactivity disorder (ADHD) [106]. Two
large epidemiological studies based on 92,642 children [107] and the
other on 14,812 children [108] showed that eczema in the former and
allergies in the second were strongly associated with ASD and ADHD.
Early reports had indicated more frequent allergies in ASD children
[109,110] with food allergies being the most prevalent complaint
[111-114]. Recent studies have confirmed strong associations between
allergies, asthma and ASD [77-79,115].

Atopic diseases develop due to activation of MCs, which derive
from bone marrow progenitors and mature in tissues depending on
microenvironmental conditions [116]. Stimulated MCs secrete over 50
molecules with important pathophysiological actions, of which
histamine is the best known; others include the proteolytic enzyme
tryptase, the chemoattractant chemokines IL-8 and MCP-1, the
inflammatory cytokines (IL-1, IL-6, TNF, as well as vascular
endothelial growth factor (VEGF) [19]. New evidence indicates that
brain histamine is involved in the pathogenesis of neuropsychiatric
diseases [117] and in the disruption of the BBB [118], which is
regulated through MCs [54,119]. We reported that stimulation of
human MCs also leads to fission and translocation to the cell surface of
mitochondrial [120], typically known for producing energy for the cell,
accompanied by the secretion of mitochondrial DNA extracellularly
without cell death [121]. These mitochondrial components could
augment allergic responses [122] and act as “innate pathogens”
triggering inflammation and potentially contributing to ASD [123]. We
further showed that serum mtDNA was significantly in children with
ASD as compared to the reported serum mtDNA in controls [124]. The
pathological significance of the presence of extracellular mtDNA could
be particularly important in the subgroup of ASD patients with
mitochondrial dysfunction [125]. MCs are now considered critical for
the development of allergic reactions [19], also immunity [126],
autoimmunity [127] and inflammation [128]. As a result, we proposed
that patients with ASD may suffer from “allergies in the brain” [129]
and “focal brain inflammation” [130].

Inflammation of the brain may cause ASD
Increasing evidence indicates that perinatal brain inflammation

[21,131] is important in the pathogenesis of neuropsychiatric disorders
[131-134]. In fact, ASD pathogenesis may also involve some immune
[20,135-139], autoimmune [123,140] and inflammatory [21,141]
component. For example, based on experiments performed on mice,

gestational immune activation was reported to alter social behaviors in
genetically vulnerable mice [142]. In humans, auto-antibodies directed
against fetal brain proteins have been reported in the blood of mothers
with children with ASD [137,143] and in about ASD patients
[144-147]. The presence of these auto-brain antibodies in humans
significantly correlated with allergic symptoms [148].

The markers of inflammation shown to be increased in the brain of
many ASD patients [149-152] include IL-6, and TNF [153], molecules
secreted from MCs, as well as IL-8 and MCP-1, which are chemotactic
for MCs [128]. In particular, plasma levels of IL-1β, IL-6 and IL-8 were
increased in children with ASD and correlated with regression, as well
as impaired communication and aberrant behavior [154]. Increased
levels of MCP-1 in amniotic fluid [155] and in archived neonatal blood
specimens [156] were strongly correlated with increased risk for
infantile autism. IL-6 and TNF could disrupt the BBB and cause “focal
encephalitis” in specific brain areas, thus contributing to the
pathogenesis of ASD [157]. Moreover, MC-derived IL-6 and TGF-β
induce maturation of T-17 cells [158] and MCs can secrete IL-17
themselves [159]. In fact, TGF-β has been reported to be increased in
the brain of ASD patients [65], while IL-17 [160] has been increased in
the serum of children with ASDs as well as in the MIA mouse model
[161]. MC-derived histamine [162] and tryptase [163] can activate
microglia, and MC-microglial interactions are important in
neuroinflammatory diseases [164]. Microglia, the innate brain
immune cells, is increasingly implicated in neuropsychiatric [165-167]
and neuro-inflammatory diseases [164,168,169]. Microglia is
important during healthy brain development [116,170] because they
demonstrate neuroprotective qualities as they may “prune” neural
circuits [171]. However, abnormal microglia activation and
proliferation could lead to focal inflammation and “choking” of normal
synaptic traffic [169]. Neuroglial activation and neuroinflammation
has been reported in brains of patients with ASD [65-67,172] and are
now considered an important component of the pathogenesis of ASD
[173,174] and Rett syndrome [175].

Treatment Approaches
While the severity of symptoms might differ, it is essential that most

symptoms be addressed as soon as possible. Some of the most
important behavioral and social treatment approaches for ASD are
listed in Table 5. Moreover, potentially effective drugs, vitamins and
supplements used most often for treatment of ASD are listed in Table
6.

Psychotropic medications
Most children with ASD are often prescribed psychotropic

medications, [176] primarily risperidone and aripiprazole [177],
because these drugs have been known to reduce general disruptive and
aggressive behaviors. However, these drugs have shown no effect on
the core symptoms of ASD [178-180] and often have frequent adverse
effects, such as weight gain, sedation, tremor, movement disorders and
drooling [181] and increase the risk for unwanted drug interactions
[182]. A recent review also concluded that the class of antidepressants
known as selective serotonin reuptake inhibitors (SSRIs) are not
effective in ASD and frequently lead to hyperactivation [183]; in fact,
one such drug, citalopram, was deemed to be detrimental [184].
Moreover, recent papers reported higher risk for delivering children
with ASD in mothers who used antidepressants during pregnancy
[185,186].
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S.No Treatment

1.  Treat any comorbid conditions, especially allergies

2.  Eliminate food triggers, especially casein and gluten

3.  Minimize phenol containing substances, especially chocolate
and acetaminophen

4.  Tolerate food idiosyncrasies and advance slowly

5.  Address gastrointestinal symptoms, especially constipation

6.  Limit sensory overload

7.  Respect child’s routines

8.  Be firm, but not abusive

9.  Participate in child’s world

10.  Initiate speech therapy

11.  Initiate work therapy

12.  Initiate play therapy

Table 5: Useful Treatment Approached for ASD.

Drugs for OCD and Disruptive Behavior

Aripiprazole

Risperidone

Drugs for Hyperactivity

Hydroxyzine

Propranolol

Risperidone

Supplements for Anxiety

N-acetyl cysteine (NAC)

S-adenosyl methionine (SAMe)

Valerian/Paciflora extract

Supplements for Oxidative Stress

Broccoli extract

Fish oil

Glutathione

Supplements for Inflammation

Luteolin/berberin (BrainGain)

Luteolin/quercetin (NeuroProtek)

Supplements for Neuroprotection

Methyl B12

Biotin, hydroxytyrosol, selenium (BrainGain)

Table 6: Drugs and Supplements Used for ASD.

Antioxidant compounds
A recent double-blind, placebo-controlled, study using the broccoli-

derived anti-oxidant sulforaphane for 18 weeks showed significant
improvement (34%) in social interaction and communication using the
Aberrant Behavior Checklist (ABC) scale of adult patients with ASD
specifically selected for their history of reduced symptoms during
febrile episodes [187]. Another antioxidant, N-acetylcysteine (NAC),
used either at 900 mg/day x 4 weeks, then 900 mg twice/daily x 4 weeks
and finally 900 mg three times/daily x 4 weeks) found no difference on
the total ABC, but significant improvement on the irritability subscale
[188]. In another also randomized, placebo-controlled, study (n=40), a
high dose of NAC added to a stable dose of risperidone, again had no
effect on total ABC, but decreased the irritability subscale [189].

Anti-inflammatory compounds
Immunomodulatory treatments have been considered for ASD

[136], but few studies have been published. Unfortunately, there are no
clinically approved anti-inflammatory drugs other than cortisone,
which is unlikely to be used in children as it prevents growth, in
addition to many other unwanted effects. Luteolin (5, 7, 3’, 4’-
tetrahydroxyflavone) is a naturally occurring flavonoid, found in green
plants, herbs and seeds, with potent antioxidant, anti-inflammatory
properties [190] (Table 7). Luteolin is structurally related to 7, 8-
dihydroxyflavone, which was shown to mimic brain-derived
neurotrophic factor (BDNF) [191], which reduced symptoms in a
mouse model of Rett syndrome [192]. Moreover, luteolin improved
memory in a rat amnesia model [193] and inhibited autism-like
behavior in a mouse “model” of autism [194], while its structurally
related flavonol quercetin (5, 7, 11, 3’, 4’-pentahydroxyflavonol)
improved cognition in a mouse “model” of Alzheimer’s disease [195]
and reversed acute stress-induced autistic-like behavior in mice [196].
Luteolin inhibit MC [122,197-200] and microglial activation and
proliferation [201,202]. These flavonoids are generally considered safe
[203,204].

S.No Properties

1. Antioxidant

2. Anti-inflammatory

3. Mast cell inhibitor

4. Microglia inhibitor

5. BDNF* analogue

6. Acetylcholinesterase inhibitor

7. Glutamate release inhibitor

8. GABA receptor agonist

9. Demethylase inhibitor

*Brain-derived neurotrophic factor

Table 7: Useful Properties of Luteolin Relevant to ASD.

A formulation containing the natural flavonoids luteolin and
quercetin (administered as one capsule/10 kg weight/day for 6 months)
resulted in significant (p<0.005) improvement in attention and
behavior (34% in total ABC and 8.43 months in age-equivalent scores

Citation: Theoharides TC, Stewart JM, Athanassiou M (2016) Brain Fires in Autism Spectrum Disorders. Clinics Mother Child Health 13: 226.
doi:10.4172/2090-7214.1000226

Page 5 of 11

Clinics Mother Child Health
ISSN:2090-7214 CMCH, an open access journal

Volume 13 • Issue 1 • 1000226



in the VABS communications domain) in children with ASD [205]. We
recently reported that patients from that study who showed most
improvement (65%) were the ones who had the highest serum TNF
and IL-6 levels at the beginning of the study and decreased
significantly at its conclusion [151]. These results indicate that
objective inflammation markers may identify a subgroup of children
with ASD, who are most amenable to treatment with luteolin/
quercetin. We recently showed that methoxyluteolin (5, 7, 3’, 4’-
tetramethoxyflavone) is a more potent inhibitor of human cultured
MCs than luteolin [206] and has better bioavailability [207]. It could,
therefore, be developed for treatment of ASD.

Antipurines
Suramin, an old antiparacytic drug which also has antipurinergic

properties, was reported to inhibit autism-like behavior in mice
[208,209]. However, suramin has serious adverse effects in humans
[210].

Conclusion
With the ever growing prevalence of ASD and autoimmune

disorders, their management is becoming of increased concern.
Important steps step in the fight against ASD is to avoid known risk
factors and provide supportive help (such as speech, music and
exercise interventions) as early as possible. However, addressing
allergic symptoms and reducing inflammation, as with the use of
luteolin/quercetin, may target the core pathology. For these reasons,
flavonoids are now being increasingly discussed for the treatment of
neuropsychiatric [211] and neurodegenerative [212] diseases,
including “brain fog,” characterized by reduced attention span,
memory and learning [213].
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