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Abstract

Exponential Pareto (EP) distribution introduced by Al-Kadim and Boshi [1] have received fur-
ther generalizations from some authors and the new distributions has been proved to exhibit
flexible potentials for modeling real life datasets. However the roles and importance of statistical
tools of order statistics from the EP distribution have not been considered, this study inves-
tigated the stochastic ordering properties, moments of order statistics and some distributional
properties. Distributions of the extrema order statistics, the sample range Rn = X(n:n)−X(1:n)

statistics and the rth order statistics was derived for the EP distribution. Explicit expressions
and recurrence relations were established for the moments of order statistics, the study ob-
tained some new results for the variability ordering between order statistics in two unequal
sample sizes n and m for various combinations of even and odd samples. Distribution of the
sample range statistics Rn generalizes and strengthened results for the exponential distribution
existing in the literature. Numerical results were tabulated for the mean of order statistics,
the variance, skewness and kurtosis for a sample of size n = 5. The results were used to
establish some ordering and statistical properties of order statistics for the exponential Pareto
distribution.

Keywords: Exponential Pareto distribution, Order statistics, Stochastic ordering, Sample range,
Recurrence relations, Moment of order statistics. .
MSC2010: 26A18.

1 Introduction
Order statistics from the convoluted distributions is an emerging area of study that is yet to gain
desirable studies among researchers resulting in limited information and meager applicable useful
results in the literature. The Weibull-Pareto by Alzaatreh et al. [2] and the Weibull-Rayleigh by
Akarawak et al. [3] for instance is yet to be investigated based on order statistics. Despite the keen
interest of some researchers to extend EP and derive some new distributions with greater flexibil-
ity for modeling real life dataset, the statistical tools of order statistics and their properties from
the EP and some new distributions derived from generalizing EP by [4–6] and most recently by
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Adeyemi et al. [7] have not been explored. Order statistics plays important roles in many fields of
applications such as in reliability studies, actuarial and finance, quality control, climatology, hydrol-
ogy, sports and in estimations and characterization of probability distributions. Many important
properties of order statistics have been employed by some notable authors to characterize some
basic distributions such as Burr, Weibull, Lomax, Pareto, Logistics and Exponential distributions.
Several studies has been documented in literatures by many notable authors as revealed in Sarhan
and Greenberg [8], Ahsanullah [9], David [10], Balakrishnan and Malik [11], Balakrishnan and Co-
hen [12] and Kamps [13].

Arnold, Balakrishnan and Nagaraja [14] including [15–17] have also contributed to the study
of order statistics. Existing knowledge on moments of order statistics and its various tabulations
are documented by several authors including David [10, 14] and in some recent works by [18–20].
Galambos [21] presented asymptotic theory of extreme order statistics, Khan and Khan [22] in-
vestigated the moments of order statistics from Burr distribution, Shaked and Shantikumar [23]
have revealed the usefulness of the statistical tool of order statistics for investigating properties of
stochastic distributions. Genc [24] investigated Moments of order statistics of Topp Leone distri-
bution. Dar and Abdullah [25] studied order statistics from the Lomax distribution, Sultan and
AL-Thubyani [26] examined Higher order moments of order statistics from the Lindley distribution.
The results from [27, 28] and recently by Kumar and Dey [29], Gul and Mahsin [30] revealed that
recurrence relations obtained for moments of probability distributions is a useful result and efficient
mechanism for evaluating statistical properties such as the mean, variance, skewness and kurtosis
of all order statistics for all the sample size in a recursive manner.
Recurrence relations derived for order statistics are also useful for maximizing operational efficiency
and is widely reported by many authors including Khan and Yaqub [20, 28, 30, 31] to possess the
ability of reducing the number of computations associated with functions of order statistics. [31]
derived some recurrence relations between product moments of order statistics from some basic
distribution including Weibull, Pareto and exponential distributions.

Another important areas of interest in the study of order statistics is stochastic comparisons, sev-
eral notable authors have contributed to investigation of ordering properties between order statis-
tics, Chan et al [32] established some results for likelihood ratio ordering, Kochar [33] proved that
X ≤hr Y =⇒ Xi:n ≤disp Yj:m, David and Groeneveld [34] proved that var(X(i:n)) ≤ var(X(j:n)),
for 1 ≤ i < j ≤ n. Authors in [33, 35–38] have various important results on comparisons of order
statistics that are documented in the literatures.

However, the study of order statistics have not been widely extended to many established lifetime
distributions existing in literatures until some recent studies from [18] on extended exponential
distribution, Abdul-Moniem [19] on Power Lomax distribution, Kumar and Dey [29] on power gen-
eralized Weibull distribution. [20] investigated moments and recurrence relations of order statistics
from the power Lomax distribution and presented some tabulated results with application. Other
current literatures in this area of study includes [38] on power Lindley distribution, Shrahili et
al. [39] on order statistics from exponential Lindley distribution.

EP distribution has gained several studies in form of generalizations to obtain the Kumaraswamy
Exponential Pareto (KEP) by [4], the Beta Exponential Pareto (BEP) distribution by [5] and by [40],
Exponentiated Exponential Pareto distribution (EEPD) by [6] and most recently, the Gompertz
Exponential Pareto distribution (GEP) by [7].
This particular study is devoted to exploring the tools and usefulness of order statistics from the Ex-
ponential Pareto (EP) distribution. The rest of the paper is arranged as follows; section 2 contained
relevant materials from existing literatures and the derivation of some distributional properties of
order statistics from EP distribution. In section 3, the single moments of order statistics are derived,
section 4 contained recurrence relations for the moments and characterization of EP distribution
from the single moments. Some computational results with statistical properties and stochastic
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comparisons of order statistics are presented in section 5 and section 6 concluded the work.

2 Material and Methods
The EP distribution due to [1] has three parameters with the cumulative distribution function (cdf)
and probability density function (pdf) defined respectively as;

F (x) = 1− exp

(
−λ

(
x

k

)θ)
;λ, θ, k > 0;x > 0 (2.1)

f(x) =
λθ

k

(
x

k

)θ−1

exp

(
−λ

(
x

k

)θ)
;λ, θ, k > 0;x > 0 (2.2)

The density function can be represented by by the relation;

f(x) =
λθ

k

(
x

k

)θ−1[
(1− F (x)

]
;λ, θ, k > 0;x > 0 (2.3)

The hazard function and the reliability function are defined respectively as;

h(x) =
f(x)

I − F (x)
=

λθ

k

(
x

k

)θ−1

;λ, θ, k > 0;x > 0 (2.4)

R(x) = 1− F (x) = exp

(
−λ

(
x

k

)θ)
;λ, θ, k > 0;x > 0 (2.5)

Let X1, X2, ..., Xn be a random sample of size n from F (x) and let the corresponding order statistics
realized from the random samples be represented by X(1:n), X(2:n), ..., X(n:n) . Then the density
function of X(r:n) which has been defined by many authors including [14,16] is defined as;

f(r:n)(x) = Cr:n

([
F (x)

]r−1[
1− F (x)

]n−r

f(x)

)
; 0 < x < ∞ (2.6)

Cr:n =
n!

(r − 1)!(n− r)!

The distribution of minimum and maximum order statistics at r = 1 and r = n is given respectively
as follows;

f(1:n)(x) = n

([
1− F (x)

]n−1

f(x)

)
; 0 < x < ∞ (2.7)

f(n:n)(x) = n

([
F (x)

]n−1

f(x)

)
; 0 < x < ∞ (2.8)

3 Results and Discussion

3.1. Distribution of Order Statistics from EP distribution
Theorem 3.1:Let X1, X2, ..., Xn be a random sample of size n from the EP distribution with cdf
and pdf denoted by F (x) and f(x) respectively; let X(1:n), X(2:n), ..., X(n:n) be the corresponding
order statistics from the sample. Then the density function of the rth order statistics fr:n(x) is
given by.

fX(r:n)
(x) =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

[
exp

(
−λ

(
x

k

)θ)]m
λθ

k

(
x

k

)θ−1

(3.1)
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where m = (n− r + i+ 1)
Proof: The order statistics of EP distribution is obtained by inserting the cdf and pdf in equations
(2.1) and (2.2) into equation (2.6) and is given by;

fX(r:n)
(x) = Cr:n

λθ

k

(
x

k

)θ−1[
1− exp

(
−λ

(
x

k

)θ)]r−1[
exp

(
−λ

(
x

k

)θ)]n−r+1

(3.2)

Applying binomial expansion of the form;
(
1− Z

)b

=
∑b

i=0(−1)i
(
b
i

)
zi

fX(r:n)
(x) =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

[
exp

(
−λ

(
x

k

)θ)]n−r+i+1
λθ

k

(
x

k

)θ−1

(3.3)

fX(r:n)
(x) =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

[
exp

(
−λ

(
x

k

)θ)]m
λθ

k

(
x

k

)θ−1

(3.4)

where m = (n− r + i+ 1)
Equation (3.4) is a linear representation of mixture of the EP densities from a random sample of
size n.
Equation (3.4) can be written as;

f(r:n)(x) = ωig1(x)

ωi = Cr:n

r−1∑
i=0

(−1)i

m

(
r − 1

i

)
(3.5)

g1(x) =
mλθ

k

(
x

k

)θ−1[
exp

(
−λ

(
x

k

)θ)]m
(3.6)

The distribution function of the X(r:n) is defined by several authors including [14] as;

F(r:n)(x) = P (X(r:n) < x) =

n∑
i=j

(
n

i

)[
F (x)

]i[
1− F (x)

]n−i

, j = 1, 2, .., n (3.7)

Thus, the cdf of order statistics from EP distribution is obtained as;

F(r:n)(x) =

n∑
j=i

(
n

i

)[
1− exp

(
−λ

(
x

k

)θ)]i[
exp

(
−λ

(
x

k

)θ)]n−i

(3.8)

F(r:n)(x) =

n∑
j=i

i∑
l=1

(
n

i

)(
i

l

)[
exp

(
−λ

(
x

k

)θ)]n−i+1

(3.9)

3.2 Distribution of the sample Range from Exponential Pareto distribu-
tion
From the corollary 3.1 Riffi [41]; the distribution of the range can be deduced as follows;

f̄1,n(x) = (n− 1)f(x)[F (x)]n−2 (3.10)

Theorem 3.2:Let X(1:n), X(2:n), ..., X(n:n) be the order statistics from a random sample of size n
from the class of distribution with pdf and cdf given by f(x) and F (x) respectively. If the relation
f(x) = h(x)[1 − F (x)] exist where h(x) is the hazard rate function; then the distribution of the
sample range R = X(n:n) −X(1:n) is given by
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f̄1,n(x) = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
h(x)[1− F (x)]i+1 (3.11)

Proof:
Substitute f(x) = h(x)[1− F (x)] into equation (3.10) to get

f̄1,n(x) = (n− 1)h(x)[1− F (x)][F (x)]n−2 (3.12)

f̄1,n(x) = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
h(x)[1− F (x)][1− F (x)]i (3.13)

f̄1,n(x) = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
h(x)[1− F (x)]1+i (3.14)

Corollary 3.1: Let f(x) and F(x) be the respective pdf and cdf of EP distribution with order
statistics from a random sample of size n denoted by X(1:n), X(2:n), ..., X(n:n). Then the distribution
of the sample range X(n:n) −X(1:n) for order statistics from the exponential Pareto distribution is
given by

f̄1,n(x) = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
λθ

k

(
x

k

)θ−1[
exp

(
−λ

(
x

k

)θ)]i+1

(3.15)

Proof: The proof follows from Theorem (2.2) by substituting for F (x) and h(x) of exponential
Pareto distribution in equations (2.1) and (2.4) respectively.
Remark 3.1: The pdf of the sample range from Exponential Pareto distribution reduces to the
sample range of Exponential distribution when θ = k = 1 obtained by [41]
Let f(x) and F(x) be the respective pdf and cdf of Exponential distribution with random variable
x > 0 and parameter λ > 0. the sample range X(n:n)−X(1:n) for order statistics from the exponential
distribution is given by

f̄1,n(x) = (n− 1)

n−2∑
i=0

(−1)i
(
n− 2

i

)
λ[exp(−λx)]i+1 (3.16)

3.3. Distribution of Extreme Order Statistics
The order statistics of extreme random observations from EP distribution can be obtained as special
cases of the X(r:n) in equation (3.4) as
The minimum order statistics X(1:n) of EP distribution has the pdf derived from equation (3.4)
as a special case given by;

fX(1:n)
(x) =

[
exp

(
−λ

(
x

k

)θ)]n+1
nλθ

k

(
x

k

)θ−1

(3.17)

The maximum order statistics X(n:n) from EP distribution has the pdf obtained as a sub model
of equation(3.4) and is given by;

fX(n:n)
(x) =

n−1∑
i=0

(−1)i
(
n− 1

i

)[
exp

(
−λ

(
x

k

)θ)]i+1
nλθ

k

(
x

k

)θ−1

(3.18)
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3.4 Moments of Order statistics from Exponential Pareto distribution
This section is used for deriving explicit expression for the single moment of order statistics.
Theorem 3.3: Let X1, X2, ..., Xn be a random sample of size n from the EP distribution with cdf
and pdf denoted by F (x) and f(x) respectively and let X(1) ≤ X(2) ≤ ... ≤ X(n) be associated order
statistics. Then the expected value of X(r:n); which is the tth moments of the rth order statistics
for t = 1, 2, .... denoted by µ

(t)
r:n is given by

µ(t)
r:n =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

kt

m(mλ)
t
θ

Γ

(
t

θ
+ 1

)
(3.19)

where Γ is the gamma function and m = n− r + i+ 1
Proof.

µ(t)
r:n =

∫ ∞

0

xtfr:n(x)dx (3.20)

The EP distribution (pdf) has a functional relationship with the cdf given by

f(x) =
λθ

k

(
x

k

)θ−1(
1− F (x)

)
;λ, θ, k > 0;x > 0 (3.21)

Then using results in equation (3.4) in equation (3.20) to get;

µ(t)
r:n = Cr:n

∫ ∞

0

xt
r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

[
exp

(
−λ

(
x

k

)θ)]m
λθ

k

(
x

k

)θ−1

(3.22)

µ(t)
r:n =

r−1∑
i=0

(−1)i
(
r − 1

i

)
λθ

k
Cr:n

∫ ∞

0

xt

(
x

k

)θ−1(
exp

(
−λ

(
x

k

)θ))m

dx (3.23)

Let y = mλ

(
x
k

)θ

by transformation of variable we have the following quantities;

x = ky
1
θ

(mλ)
1
θ
; dy

dx = mλθ
k

(
x
k

)θ−1

the mean becomes;

µ(t)
r:n =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

∫ ∞

0

(
ky

1
θ

m(mλ)
1
θ

)t

e−ydy (3.24)

µ(t)
r:n =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

kt

m(mλ)
t
θ

∫ ∞

0

y
t
θ e−ydy (3.25)

µ(t)
r:n =

r−1∑
i=0

(−1)i
(
r − 1

i

)
Cr:n

kt

m(mλ)
t
θ

Γ

(
t

θ
+ 1

)
(3.26)

The result in (3.26) completes the proof.
The mean order statistics for EP distribution is derived and given as;

µr:n = Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
k

λ
1
θm

1
θ+1

Γ

(
1

θ
+ 1

)
(3.27)

The variance of order statistics for EP distribution is derived using;
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σ
(2)
r:n = µ

(2)
r:n −

(
µr:n

)2

and is given as;

µ(2)
r:n = Cr:n

r−1∑
i=0

(−1)i
(
r − 1

i

)
k2

λ
2
θm

2
θ+1

Γ

(
2

θ
+ 1

)
−

(
µr:n

)2

(3.28)

The results in (3.26) can be used for obtaining expressions for the higher order statistics (HOS) of
the EP distribution. The result is useful in various fields of application where moments of order
statistics are often used as statistical tools for predicting future events.
Corollary 3.2: The result in Theorem 3.3 reduces to the explicit expression of the tth moment and
the mean of exponential Pareto (EP) distribution by setting r = n = 1 as deduced and respectively
given as;

kt

(λ)
t
θ

Γ

(
t

θ
+ 1

)
(3.29)

k

(λ)
1
θ

Γ

(
1

θ
+ 1

)
(3.30)

The Theorem 3.3 establishes and strengthens the result for EP distribution in page 137, by the
authors in [1].

3.5 Moments of Extreme Order Statistics from EPD
The moments of the minimum and maximum order statistics of the EP distribution are deduced as
follows;
Corollary 3.3: The tth moments of the minimum order statistics X(1:n) of a random variable from
the EP distribution is given by;

µ
(t)
1:n =

kt

(λn)
t
θ

Γ

(
t

θ
+ 1

)
(3.31)

Corollary 3.4: The tth moments of the maximum order statistics X(n:n) of a random variable
from the EP distribution is given by;

µ(t)
n:n =

n−1∑
i=0

(−1)i
(
n− 1

i

)
nkt

λ
t
θ (i+ 1)

t
θ+1

Γ

(
t

θ
+ 1

)
(3.32)

Proposition 3.1: The expected value of the minimum order statistics X(1:n) of a random variable
from the EP distribution is given by;

µ1:n =
k

(λn)
1
θ

Γ

(
1

θ
+ 1

)
(3.33)

The second moment of minimum order statistics X(1:n) is obtained as;

µ
(2)
1:n =

k2

(λn)
2
θ

Γ

(
2

θ
+ 1

)
(3.34)

The variance can be obtained using ;

V ar = E

(
X2

(1:n)

)
− E

(
X(1:n)

)2

Hence the variance of minimum order statistics X(1:n) for the EP distribution is obtained as;

σ
(2)
1:n = µ

(2)
1:n −

(
µ1:n

)2
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σ
(2)
1:n =

k2

(λn)
2
θ

[
Γ

(
2

θ
+ 1

)
− Γ2

(
2

θ
+ 1

)]
(3.35)

The mean, second moment and variance of the EP maximum order statistics can be derived using
the same procedure.

4. Recurrence Relations, Characterization and the Stochastic
Ordering
Stochastic assessment of each variable X1, X2, ..., Xn by magnitude or position is of interest among
many practitioners in some fields including finance, insurance, reliability engineering while recur-
rence relations have been also employed to characterize some lifetime distributions by notable
authors .

4.1 Recurrence Relations for Single Moments
This subsection is used to derive recurrence relation for moment of order statistics of EP distribution
through the following theorem;
Theorem 4.1: Let X1, X2, ..., Xn be random sample of size n from the EP distribution whose
corresponding order statistics is denoted by X(1:n), X(2:n), ..., X(n:n); then for 1 ≤ r ≤ n and t =
0, 1, 2... we have the following moment relation;

µ(t)
r:n =

θλ(n− r + 1)

k(t+ θ)

[
µ(t+θ)
r:n − µ

(t+θ)
r−1:n

]
(4.1)

Proof: The tth moment of EP distribution order statistics is defined by;

µ(t)
r:n = Cr:n

∫ ∞

0

xt

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx (4.2)

substituting f(x) into (4.2) and doing some arithmetic operations we have

µ(t)
r:n =

λθ

k

(
x

k

)θ−1

Cr:n

∫ ∞

0

xt

(
F (x)

)r−1(
1− F (x)

)n−r+1

dx (4.3)

µ(t)
r:n =

λθ

kθ
Cr:n

∫ ∞

0

xt+θ−1

(
F (x)

)r−1(
1− F (x)

)n−r+1

dx (4.4)

Using integration by parts we shall obtain;

µ(t)
r:n =

λθ

k
Cr:n

∫ ∞

0

[
xt+θ (n− r + 1)

t+ θ

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

−xt+θ (r − 1)

t+ θ

(
F (x)

)r−2(
1− F (x)

)n−r+1

f(x)dx

]
(4.5)

µ(t)
r:n =

λθ

k

∫ ∞

0

[
xt+θ (n− r + 1)

t+ θ
Cr:n

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

−xt+θ (r − 1)

t+ θ
Cr:n

(
F (x)

)r−2(
1− F (x)

)n−r+1

f(x)dx

]
(4.6)

µ(t)
r:n =

λθ

k

[
(n− r + 1)

t+ θ
µ(t+θ)
r:n − (r − 1)Cr:n

t+ θCr−1:n
µ
(t+θ)
r−1:n

]
(4.7)
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µ(t)
r:n =

θλ(n− r + 1)

k(t+ θ)

[
µ(t+θ)
r:n − µ

(t+θ)
r−1:n

]
(4.8)

A special case is when r = 1 and the recurrence relation is obtained as;

µ
(t)
1:n =

nλθµ
(t+θ)
1:n

k(t+ θ)
(4.9)

Remark 4.1: Recurrence relation for the mean of order statistics from EP distribution when t = 1,
is given by;

µ(1)
r:n =

λθ(n− r + 1)

k(1 + θ)

[
µ(1+θ)
r:n − µ

(1+θ)
r−1:n

]
(4.10)

4.2 Characterization of EPD by Order Statistics
The results in section (4) is employed in this section for characterizing the Exponential Pareto
distribution using the following theorem.
Theorem 4.2: Let X1, X2, ..., Xn be random sample of size n from the EP distribution with
common cdf F (x), pdf f(x), and corresponding order statistics denoted by X(1:n), X(2:n), ..., X(n:n);
given that;
(i)F (x) is absolutely continuous
(ii)F (0) = 0
(iii)1 < F (x) < 1
Then for 1 ≤ r ≤ n and t = 0, 1, 2... for all x > 0

µ(t)
r:n =

θλ(n− r + 1)

k(t+ θ)

[
µ(t+θ)
r:n − µ

(t+θ)
r−1:n

]
(4.11)

if and only if

F (x) = 1− exp

(
−λ

(
x
k

)θ)
;λ, θ, k > 0, x > 0

Proof:
The result in Theorem 4.1 provides the necessary condition for the proof; however if the recurrence
relation in equation (4.8) exists and satisfies the sufficient conditions for this proof, then

Cr:n

∫∞
0

xt

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

=

{
λθ

k
Cr:n

∫ ∞

0

[
xt+θ (n− r + 1)

t+ θ

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

−xt+θ (r − 1)

t+ θ

(
F (x)

)r−2(
1− F (x)

)n−r+1

f(x)dx

]}
(4.12)

Using integration by parts on the second integral in (4.12) it becomes;

Cr:n

∫∞
0

xt

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

=

{
λθ

k
Cr:n

∫ ∞

0

[
xt+θ (n− r + 1)

t+ θ

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

−xt+θ (r − 1)(n− r − 1)

(t+ θ)(r − 1)

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx
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+
(t+ θ)

r − 1
xt+θ−1 (r − 1)

t+ θ

(
F (x)

)r−1(
1− F (x)

)n−r+1

f(x)dx

]}
which reduces to

Cr:n

∫∞
0

xt

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx

=

{
λθ

k
Cr:n

∫ ∞

0

xt+θ−1

(
F (x)

)r−1(
1− F (x)

)n−r+1

f(x)dx

}
then;

Cr:n

∫∞
0

xt

(
F (x)

)r−1(
1− F (x)

)n−r

f(x)dx−{
λθ
k Cr:n

∫∞
0

xt+θ−1

(
F (x)

)r−1(
1− F (x)

)n−r+1

f(x)dx

}
= 0

so that

Cr:n

∫∞
0

xt

(
F (x)

)r−1(
1− F (x)

)n−r{
f(x)− λθ

k xθ−1

(
1− F (x)

)}
dx = 0

Thus we obtained as defined in equation (3))

f(x) = λθ
k xθ−1

(
1− F (x)

)
= λθ

k xθ−1exp

(
−λ

(
x
k

)θ)
Which implies

(
1− F (x)

)
= exp

(
−λ

(
x
k

)θ)
Hence, F (x) = 1− exp

(
−λ

(
x
k

)θ)
;λ, θ, k > 0, x > 0 completes the proof.

4.3 Stochastic Ordering from EP distribution
It has been established by many author including [10,23] that:
X1 ≤lr X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤st X2.
This investigation considered comparison of two random variable X1 and X2 from a stochastic
system that follows the EP distribution.

Some preliminary definitions:

• Y is said to be stochastically greater than X in stochastic order written X ≤st Y , if F (x) ≤
F (y)∀X,Y

• Y is said to be stochastically greater than X in likelihood ratio order written X ≤lr Y , if
f(x)
f(y) ) is decreasing in X

• Y is said to be stochastically greater than X in hazard rate order written X ≤hr Y , if
h(x) ≤ h(y)∀X,Y

Lemma 4.1: Let X1 EP (λ1, θ, k) and X2 EP (λ2, θ, k); suppose fx1(x)

fx2(x)
is an increasing function of

X, then λ2 ≥ λ1

Proof. the density function of EP is

f(x) =
λθ

k

(
x

k

)θ−1

exp

(
−λ

(
x

k

)θ)
(4.13)

fx1(x)

fx2(x)
=

λ1

λ2
exp

(
−λ1

(
x

k

)θ)
exp

(
λ2

(
x

k

)θ)
(4.14)
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fx1(x)

fx2(x)
=

λ1

λ2
exp

(
−(λ1 − λ2)

(
x

k

)θ)
(4.15)

Taking the logarithm of both sides of equation (4.15) gives

log

{
fx1(x)

fx2(x)

}
= log(λ1)− log(λ2)− (λ1 − λ2)

(
x

k

)θ

(4.16)

Taking derivative with respect to X gives

d

dx

[
log

{
fx1(x)

fx2(x)

}]
=

λ2θ

kθ
xθ−1 − λ1θ

kθ
xθ−1 (4.17)

ifλ1 = λ2 then d
dx

[
log

{
fx1(x)

fx2(x)

}]
= 0

ifλ1 ≥ λ2 ; d
dx

[
log

{
fx1(x)

fx2(x)

}]
< 0 shows that fx1(x)

fx2(x)
is a decreasing function of X.

Then, ifλ1 ≥ λ2 X1 ≤lr X2, which satisfied the stochastic relation order
X1 ≤lr X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤st X2.

5 Numerical Results
Computational values for mean of order statistics from EP distribution for various values of param-
eters λ, θ, k is tabulated and presented in Table 1. ,

Table 1: Mean of order statistics of EP distribution for some
parameters

λ = 0.5 λ = 0.5 λ = 0.5 λ = 1
r n θ = k = 1 θ = 2, k = 1 θ = k = 2 θ = k = 2
1 1 2.0000 1.0233 2.5066 1.7725
1 2 1.0000 0.8862 1.7725 1.2533
2 2 3.0000 1.6204 3.2408 2.2916
1 3 0.6667 0.7236 1.4472 1.0233
2 3 1.6667 1.2115 2.4229 1.7133
3 3 3.6667 1.8249 3.6497 2.5808
1 4 0.5000 0.6267 1.2533 0.8862
2 4 1.1667 1.0144 2.0289 1.4346
3 4 2.1667 1.4085 2.8170 1.9919
4 4 4.1667 1.9636 3.9273 2.7770
1 5 0.4000 0.5605 1.1210 0.7927
2 5 0.9000 0.8913 1.7826 1.2605
3 5 1.5667 1,1992 2.3983 1.6959
4 5 2.5667 1.5481 3.0962 2.1894
5 5 4.5667 2.0675 4.1315 2.9239

Source: This is mean from numerical results .

Remark 5.1: The computed results in Table 1 for the mean of order statistics are consistent with
the property established by [16] given by;

∑n
i=1 µi:n = nµ1:1

5.1 Mean of EP distribution based on order statistics
* Order statistics X(r:n) from EP distribution.

the mean decreases with increase in parameter λ for all order statistics
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the mean decreases with increase in θ except for minimum order statistics
the mean increases with increase in parameter k for all order statistics

* Maximum order statistics X(n:n) from EP distribution.
the mean decreases with increase in parameter λ
the mean decreases with increase in parameter θ
the mean increases with increase in parameter k

* Minimum order statistics X(1:n) from EP distribution.
the mean decreases with increase in parameter λ
the mean increases with increase in parameter θ
the mean increases with increase in parameter k

5.2 Statistical Properties of Order Statistics from EPD

Table 2: Higher order statistics of EP for parameters λ = 1, θ = 2, k = 2
r n µ σ2 skewness kurtosis cv
1 1 1.7725 0.8584 6.3483 3.2451 0.2422
1 2 1.2533 0.4292 17.9556 3.2451 0.1712
2 2 2.2916 0.7486 6.2734 3.2479 0.1633
1 3 1.0233 0.2861 32.9866 3.2451 0.1398
2 3 1.7133 0.3980 14.1981 3.1362 0.1161
3 3 2.5808 0.6731 7.1204 3.3053 0.1304
1 4 0.8862 0.2146 50.7862 3.2451 0.1211
2 4 1.4346 0.2752 23.6363 3.0999 0.0959
3 4 1.9919 0.3655 14.2091 3.1458 0.0917
4 4 2.7770 0.6215 8.0854 3.3535 0.1119
1 5 0.7927 0.1717 70.9758 3.2451 0.1083
2 5 1.2605 0.2112 34.4835 3.0842 0.0838
3 5 1.6959 0.2574 21.9949 3.0914 0.0759
4 5 2.1893 0.3401 15.0279 3.1643 0.0776
5 5 2.9239 0.5839 9.0352 3.3926 0.0998

Some statistical properties of order statistics from the exponential Pareto distribution deduced from
Table 2 are summarized as follows;

• The mean and variance of all order statistics decreases with the size of the samples but
increases with the order statistics

• The mean and variance of order statistics of the maximum decreases with the size of the
samples

• The mean and variance of order statistics of the minimum increases with the size of the
samples

• The order statistics of the minimum has a uniform kurtosis for all the sample sizes. X(1:n) =
X(1:n+j) for j = 1, 2, ..., n

• The order statistics of the maximum has kurtosis that increases with the sample sizes.
X(n:n) ≤ X(n:n+j) for j = 1, 2, ..., n

• The skewness of minimum X(1:n) and maximum X(n:n) order statistics increases with sample
size n
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• The skewness of all order statistics X(r:n); r = 1, 2, ..., n increases with the sample size n and
X(n:n) ≤ X(1:n); X(i:n) ≤ X(j:n) for i < j

• The coefficient of variation of order statistics decreases with increase in sample size n

5.3 Ordering Properties of Order Statistics from EPD
In the comparison of order statistics from unequal sample sizes, Shaked and Shantikumar [37] es-
tablished that:
X(n:n) ≤lr X(n+1:n+1) and X(1:n) ≥lr X(1:n+1),
Kochar [33] proved X ≤hr Y =⇒ E(X) ≤ E(Y )
If there exist likelihood ratio order from the sample X1, X2, ..., Xn, then

X(i:n) ≤lr X(j:n), i < j

(Bapat and Kochar [36] and Kochar [33]) proved and established in the comparison by dispersive
order that;

X ≤hr Y =⇒ X(i:n) ≤disp Y(j:m); i ≤ j, n− i ≥ m− j
Theorem 5.1: Let X1, X2, ..., Xn and Y1, Y2, ..., Ym be random samples from exponential Pareto
distribution functions F (x) and G(y) respectively, if F or G is characterized with decreasing failure
rate function (DFR), then

• X ≤hr Y =⇒ X(i:n) ≤disp Y(j:m); i ≤ j, n− i ≥ m− j

• Xi:n ≤hr Yi:n =⇒ E[X(i:n)] ≤ E[Y(j:m)]

Proof:
Starting with the application of results in table 2 the dispersive ordering between order statistics
for sample of size n = 5 is deduced
let the sample sizes be n = 4 and m = 5
then ∀ X(i:n) = X(1:4) and Y(j:m) = Y(3:5); i ≤ j, n− i ≥ m− j

0.2146 = var(X(1:4)) ≤ var(X(3:5)) = 0.2574

E[X(1:4)] = 0.8862 ≤ E[X(3:5)] = 1.6959

X ≤hr Y from results obtained in subsection 4.3;
ince 0.8862 ≤ 1.6959 then E[X(1:4)] ≤ E[X(3:5)] ∀i ≤ j, n− i ≥ m− j;
X ≤hr Y implies X(i:n) ≤disp Y(j:m); i ≤ j, n− i ≥ m− j, (Kochar [33])
Xi ≤lr Yj =⇒ Xi:n ≤lr Yi:n, Chan et al. [32]
Combining Chan et al. [32] and Kochar [33], we have

Xi ≤lr Yj =⇒ Xi:n ≤hr Yi:n =⇒ E[X(i:n)] ≤ E[Y(j:m)]
Combining some results in subsection 4.3 and Table 2, we get

X ≤hr Y =⇒ var(X(i:n)) ≤ var(X(j:m))
X ≤hr Y =⇒ X(i:n) ≤disp Y(j:m); i ≤ j, n− i ≥ m− j

Corollary 5.1: Let X1, X2, ..., Xn+1 be a random sample of size n + 1 from the EP distribu-
tion, the ordering properties from the parallel and series system in kurtosis order is established
respectively as follows;

var(Xn:n) ≥ var(Xn+1:n+1) and var(X1:n) ≥ var(X1:n+1)
The corollary can be verified using the computational results in Table 2.

0.2861 = var(X1:3) ≥ var(X1:4) = 0.2146

In general , var(X1:n) ≥ var(X1:n+i), for i = 1, 2, ..., n
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5.3.1 Variability ordering between order statistics in one sample.

Corollary 5.2: Let X(1:n), X(2:n), ..., X(n:n) be a order statistics from a random sample of size n
from the EP distribution, the variability ordering between order statistics is established.
proof:.
var(X(i:n)) ≤ var(X(j:n)), for 1 ≤ i < j ≤ n ... (David and Groeneveld [34])
Starting with the application of results in Table 2, the variability ordering between order statistics
for sample of size n = 5 is established and given by

var(X(1:5)) ≤ var(X(2:5)) ≤ var(X(3:5)) ≤ var(X(4:5)) ≤ var(X(5:5))

∴ var(X(i:n)) ≤ var(X(j:n)), for 1 ≤ i < j ≤ n .

0.0.1 Variability ordering between order statistics in two unequal sample sizes.

The application of results in table 2 is extended by considering variablity ordering for independent
and identically distributed random samples from the EP distribution .
The following new results are estblished.
Corollary 5.3: Let X(1:n), X(2:n), ..., X(n:n) and X(1:n), X(2:n), ..., X(m:m) be order statistics from
random samples from the EP distribution ∀, n < m the variability ordering between order statistics
is given by
var(X(i:n)) ≥ var(X(i:m)) ∀, i = 1, 2, ..., n
If n=odd, m=odd or n=even, m=even, then
var(X(i:n)) ≥ var(X(j:m)) ∀, i = 1, 2, ..., n; j = 1, 2, ..., (i+ 2)
If n=odd, m=even or n=even, m=odd, then
var(X(i:n)) ≥ var(X(j:m)) ∀, i = 1, 2, ..., n; j = 1, 2, ..., (i+ 1)
proof:
Case I: When n=odd, m=odd
consider two samples of sizes n = 3 and m = 5
var(X(1:3)) ≤ var(X(2:3)) ≤ var(X(3:3)) for 1 ≤ i < j ≤ 3
var(X(1:5)) ≤ var(X(2:5)) ≤ var(X(3:5)) ≤ var(X(4:5)) ≤ var(X(5:5)) ;1 ≤ i < j ≤ 5

∀, i = 1; j = 1, 2, ..., 3 = (i+ 2)
var(X(1:3)) ≥ var(X(3:5)) ≥ var(X(2:5)) ≥ var(X(1:5))

∀, i = 2; j = 1, 2, ..., 4 = (i+ 2)
var(X(2:3)) ≥ var(X(4:5)) ≥ var(X(3:5)) ≥ var(X(2:5)) ≥ var(X(1:5))

∀, i = 3; j = 1, 2, ..., 5 = (i+ 2)
var(X(3:3)) ≥ var(X(5:5)) ≥ var(X(4:5)) ≤ var(X(3:5)) ≥ var(X(2:5)) ≥ var(X(1:5))

Case II: When n=even, m=even
consider two samples of sizes n = 2 and m = 4
var(X(1:2)) ≤ var(X(2:2)) for 1 ≤ i < j ≤ 2
var(X(1:4)) ≤ var(X(2:4)) ≤ var(X(3:4)) ≤ var(X(4:4)) for 1 ≤ i < j ≤ 4

∀, i = 1; j = 1, 2, ..., 3 = (i+ 2)
var(X(1:2)) ≥ var(X(3:4)) ≥ var(X(2:4)) ≥ var(X(1:4))

∀, i = 2; j = 1, 2, ..., 4 = (i+ 2)
var(X(2:2)) ≥ var(X(4:4)) ≥ var(X(3:4)) ≥ var(X(2:4)) ≥ var(X(1:4))

Case III: When n=odd, m=even
consider two samples of sizes n = 3 and m = 4
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var(X(1:3)) ≤ var(X(2:3)) ≤ var(X(3:3)) for 1 ≤ i < j ≤ 3
var(X(1:4) ≤ var(X(2:4)) ≤ var(X(3:4)) ≤ var(X(4:4)) for 1 ≤ i < j ≤ 4

∀, i = 1; j = 1, 2, ..., 2 = (i+ 1)
∀, i = 2; j = 1, 2, ..., 3 = (i+ 1) and
∀, i = 3; j = 1, 2, ..., 4 = (i+ 1),

the following variability relations exists for i = 1, 2, 3.

var(X(1:3)) ≥ var(X(2:4)) ≥ var(X(1:4))

var(X(2:3)) ≥ var(X(3:4)) ≥ var(X(2:4)) ≥ var(X(1:4))

var(X(3:3)) ≥ var(X(4:4)) ≥ var(X(3:4)) ≥ var(X(2:4)) ≥ var(X(1:4))

Case IV: When n=even, m=odd
consider two samples of sizes n = 4 and m = 5
var(X(1:4)) ≤ var(X(2:4)) ≤ var(X(3:4)) ≤ var(X(4:4)) for 1 ≤ i < j ≤ 4
var(X(1:5) ≤ var(X(2:5)) ≤ var(X(3:5)) ≤ var(X(4:5)) ≤ var(X(5:5));1 ≤ i < j ≤ 5.

∀, i = 1; j = 1, 2, ..., 2 = (i+ 1) ;∀, i = 2; j = 1, 2, ..., 3 = (i+ 1)
∀, i = 3; j = 1, 2, ..., 4 = (i+ 1); and ∀, i = 4; j = 1, 2, ..., 5 = (i+ 1),

the following variability relations exists for i = 1, 2, 3, 4.

var(X(1:4)) ≥ var(X(2:5)) ≥ var(X(1:5))

var(X(2:4)) ≥ var(X(3:5)) ≥ var(X(2:5)) ≥ var(X(1:5))

var(X(3:4)) ≥ var(X(4:5)) ≥ var(X(3:5)) ≥ var(X(2:5)) ≥ var(X(1:5))

var(X(4:4)) ≥ var(X(5:5)) ≥ var(X(4:5)) ≥ var(X(3:5)) ≥ var(X(2:5)) ≥ var(X(1:5))

6 Conclusion
Many generalized lifetime distributions have not been considered for studies based on their order
statistics. This study derived the distributional properties of order statistics which includes the
sample minimum, sample maximum, the sample range, the density function and cdf of the rth

ordered statistics from the Exponential Pareto (EP) distribution. The single moment of order
statistics and the moments of extreme order statistics was derived; the result established the mo-
ments of Exponential Pareto distribution obtained by [1] and generalizes the distribution of sample
range of exponential distribution in [41]. In addition, recurrence relation for computing various
statistical measures was established for the moment of order statistics. Numerical analysis of the
mean revealed that the mean order statistics increases with sample sizes n and also increases as the
values of scale parameter k increases but decreases with the values of the shape parameter θ. The
computational results from higher moments of order statistics provides some characterizations for
the exponential Pareto distribution, variability ordering was obtained for equal and unequal sample
sizes and the results strenghtened some stochastic ordering existing in the literature.
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