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ABSTRACT. In this manuscript we show that for every n > 1, n,m € N there are coefficients

Ao, A1, ..., Ap m such that the polynomial identity holds

n2m+1 _ ZAm,Oko(n o ]C)O + Am,l(n — k)l + -+ Am’mkm(n — k)m
k=1
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1. INTRODUCTION
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Table 1. Table of finite differences of the polynomial n?.

We can observe easily that finite differences of the polynomial n® may be expressed ac-

cording to the following relation, via rearrangement of the terms
A0 =1+6-0
A(’)=1+6-0+6-1
A(2°)=14+6-0+6-1+6-2

AB)=1+6-0+6-1+6-2+6-3

An*)=1+6-0+6-1+6-2+6-3+---+6-n
Furthermore, the polynomial n? is identical to
nP=1+6-0+[1+6-0+6-1]+[1+6-0+6-1+6-2]+---
+[1+6-0+6-1+6-2+---4+6-(n—1)]
Rearranging the above equation, we get

n=n+mn-0))-6-0+n—-1-6-1+n—-2)-6-2+---+1-6-(n—1)
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Therefore, we can consider the polynomial n? as

n’ zzn:6/<;(n—k)+1 (1.1)

Assume that equation (1.1) has an implicit form as follows
n® =" Aik'(n— k)" + Aok (n — k)", (1.2)

where A = 6 and A,y = 1, respectively. Note that here the power of 3 is actually defined
by 2m + 1 where m = 1. So is there a generalization of the relation (1.2) for all positive odd

powers 2m + 1, m =0,1,2,...7 Therefore, let be a conjecture

Conjecture 1.1. For every n > 1, n,m € N there are coefficients Ay, 0, A1, Apm

such that
2m+1 0 1 m m
g Amok (n— ) —|—Am,1(n—k’) +-+ Ak (n—k)

2. APPROACH VIA A SYSTEM OF LINEAR EQUATIONS

One approach to prove the conjecture was proposed by Albert Tkaczyk in his series of
the preprints [, 2] and extended further at [3]. The main idea is to construct and solve a
system of linear equations. Such a system of linear equations is constructed via expanding the
definition of the coefficients A, applying Binomial theorem [1] and Faulhaber’s formula [5].

Consider the definition of the coefficients A,,

n2mt ZAmTZk:’"n— )" (2.1)

Expanding the (n — k)" part via Binomial theorem we get

n2mtl _ ZAmrzkrn_
iAmmzn: r [zr: _ t(;) nr—tk,t

r=0 k= t=0

in: Am . [ nr—t zn: kt—i—r

r=0 k=1
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Applying the Faulhaber’s formula to the sum ), k'™ we get

=S A, [i(—nt (t) et Z wr]

t=0

1 1
= Amyon + Am,l {6(—71 + n3):| + Am,Q |:_

30(—n + n5)]

[ 1 1
+ Aps | —==(=10n+Tn* + 3n7)] + A [—(—2177, 4 20n3 + ng)l

1420 630
1
+Ans _ﬁ(—ﬂon +231n® — 22n° + nu)} (2.2)

(1
A, | ——(—15202n + 1820013 — 3003n° + 5n'3
+Ams | 060" o Leslln n+5n7)

1
+ A7 | 57755 (—60060n + 76010n" — 16380n° 4 42977 + n15>]

A
T Ams | 518790

(—1551693n + 2042040n° — 516868n° + 26520n" + n”)] SR

Given fixed m, the coefficients A,,, can be determined via a system of linear equations.

Consider an example

Example 2.1. Let be m =1 so that we have the following relation defined by (2.2)
1 3 3
A on+ A 6(—n+n )| —n°=0
Multiplying by 6 right-hand side and left-hand side, we get
6A1,0n + Al’l(—n -+ n3) — 6713 =0
Opening brackets and rearranging the terms gives
6A170 — A1717”L + Al,lng — 671/3 =0

Combining the common terms yields

n(6A170 — Al,l) + n?’(ALl — 6) =0



POLYNOMIAL IDENTITY INVOLVING BINOMIAL THEOREM AND FAULHABER’S FORMULA 5

Therefore, the system of linear equations follows

6A10—A1;1 =0

A, —-6=0

Solving it, we get
Ai1=6
Ag=1

So that odd-power identity (2.1) holds

It is also clearly seen why the above identity is true evaluating the terms 6k(n — k) + 1 over

0 <k <mn asitis shown at [0].

Example 2.2. Let be m = 2 so that we have the following relation defined by (2.2)
A on+ A E(—n + n?’)} + A0 [%(—n + n5)] —nS=0

Multiplying by 30 right-hand side and left-hand side, we get

30A50n + 5A5 1 (—n +n®) + Aga(—n +n®) — 30n° = 0
Opening brackets and rearranging the terms gives

30A50 — 5A5 11+ 5A51n% — Agon + Agon® — 30n° =0
Combining the common terms yields

n(30Ag0 — 5Ag;1 — Ags) + 5Ag n* + n°(Agy —30) =0
Therefore, the system of linear equations follows

¢

30A270 — 5A2’1 — A.272 =0

A271 - 0

A272 —30 == 0
\
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Solving it, we get

Ay = 30
Ay; =0
Arp=1
So that odd-power identity (2.1) holds \
n° = " 30k*(n — k)* 4+ 1
k=1

It is also clearly seen why the above identity is true evaluating the terms 30k*(n — k)? + 1

over 0 < k <n as it is shown at [7].

Example 2.3. Let be m = 3 so that we have the following relation defined by (2.2)

6 30

1 1
A on+ALL [—(—n + ns)} +An2 [— o

(—n + n5)] +A3 [L(—lon + 7 +3n")|-n" =0
Multiplying by 420 right-hand side and left-hand side, we get
420A30n + T0A, 1 (—n +n®) + 14A55(—n + n°) + Az 3(—=10n + Tn® + 3n") — 420n" =0
Opening brackets and rearranging the terms gives
420A30n — T0A3; + T0A3 n* — 14A59n + 14A590°
— 10A33n + 7A373n3 + 3A373n7 —420n" =0

Combining the common terms yields

n(420A30 — 70A3; — 14A35 — 10A33)

+n3(T0A3, + TA33) + n°14A3, +n"(3A35 — 420) =0

Therefore, the system of linear equations follows

(

42OA370 - 70A371 - 14A372 - 10A3’3 - O
70A371 + 7A373 =0

A3’2 —30 = O

3A373 - 420 - O
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Solving it, we get
(

A373 - 140
A372 - 0

Aszy = —%As,:z =—14

o (70A3,1+10A3’3) _
A3,0 - 420 =1

\

So that odd-power identity (2.1) holds

n’ =" 140k*(n — k)* — 14k(n — k) + 1
k=1

It is also clearly seen why the above identity is true evaluating the terms 140k®(n — k)3 —

14k(n — k) + 1 over 0 < k < n as it is shown at [3].

Example 2.4. Let be m = 4 so that we have the following relation defined by (2.2)

1
Apon+Amy |=(—n+ ng)} + Ao [

6

%(—n + n5)]

[ 1 3 7

1
+ A, _@(—2171 +20n® + ng)} —n’=0

Multiplying by 630 right-hand side and left-hand side, we get

630A40n + 105A, 1 (—n + n?) + 21A 4 5(—n + n®)

3
+ §A473(—10n + 7n3 + 3TL7)

+ Aya(—21n 4 200" + n’) — 630n° = 0
Opening brackets and rearranging the terms gives

630A4,0n — 105A471n + 105A471n3 — 21A472n + 21A4,2n5

3 3 3
— §A473 - 10n + §A473 . 7n3 + §A473 . 37’L7

— 21A474n + 20A474n3 + A4747’Lg — 630n9 =0
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Combining the common terms yields

n(630A470 — 105A471 — 21A472 — 15A473 — 21A474)

21
+ n3 (105A471 + 7A473 + 20A4’4> + 715(21A4’2)

9
+ n7 (§A473) + ng(A474 — 630) =0

Therefore, the system of linear equations follows

(

630A470 - 105A4’1 — 21A472 — 15A473 — 21A474 =0

105A41 + 2 Ays+20A44 =0

A472 - 0
A473 - 0
A474 - 630 - 0

Solving it, we get
(

A474 = 630
A473 - 0
< A472 - 0

Ay =—32A 4 =—120

105A4’1+21A4’4 o
Aso = 630 =1

\
So that odd-power identity (2.1) holds

n? =Y 630k*(n — k)* — 120k(n — k) + 1
k=1

3. APPROACH VIA RECURSION

Another approach to determine the coefficients A, , was provided by Dr. Max Alekseyev
in MathOverflow discussion [9]. Generally, the idea was to determine the coefficients A,,, ;. re-

cursively starting from the base case A, ,,, up to A, ,—1,..., Ay, o via previously determined
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values. Consider the Faulhaber’s formula

p
E:W—' <p+53 pH=j
p+1 J

it is very important to note that summation bound is p while binomial coefficient upper

bound is p+ 1. It means that we cannot skip summation bounds unless we do some trick as

n

i p+1
D _ 1 p+1 p-i-l]: L p+1 p+1-j| _
>k B, Bjn -
1 p+1 Jrary J _p—i—l = Ji

_ L (p+1>B p+l—-3 1
p+1 ; J

Using the Faulhaber’s formula > kP = [m >, (ijfl) Bjnp“_j] — B,.1 we get
. r ro__ - t r r—t . t+r
Sk br = () Yok
k=1 =0 k=1
- . 1 Er+1 -
— (_1)t ( )nr—t - Z ( . )Bjnt+T+1—] . Bt+r+1
o / trr+l

= J
t+r+1 1 .
t+r+1§:( ' )BW%HJ_BHHW t

%) ]

t+r+1 o=\ (=1 _
— B 2r+l1—-35 —B ., r—t
4 ()t+r+1 < j >Jn E:(t>t+r+1”“n

= t=0

r

) (t+r+1 : r\ (=1)
= B.n2rtl-i _ — B, r—t
;;()wwl( j ) " ;(t)twﬂ et
iy —1)t (t+r+1 N\ (—1)! _
_ B.p2rtl-i A _ —B n’
2: i E:(tt+r+1 j 2 t)tdr 1o

J t t=0

Now, we notice that

1 LS N-
E: r\ (D' (rt+1\ ) ey if j=0; (31)
—\t)r+t+1 J . '
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An elegant proof of the above binomial identity is provided at [I0]. In particular, the

equation (3.1) is zero for 0 < ¢t < j. So that taking j = 0 we have

= 1 (1) [(t+r+1
k" —k) _ 2r+1 B2T+1]
Sk 8 = gt | S (e ()

(27’ + 1) = J

—~ (r (_1)t —t
_ = Bn"
ng (t)t+r+1 tHr+17

Now let’s simplify the double summation applying the identity (3.1)

- r r 1 r (_1)T T - .
e TR DI PR L]
k=1 J

(2r + 1)(2:) =

— (T (=1 —t
_ = B..n"
L - (t)t+r+1 et

J/

®

/

-~

(©)
Hence, introducing £ = 2r — j + 1 to (x) and ¢ = r —t to (¢) we collapse the common terms

of the above equation so that we get

- 1
O LT ——
k=1 r
r\ (=1t ¢
_ N By
[; <€>2r+1—€ 2=t

1 p2rl (=" (r ¢
¥ 2y L (B,
TGN " 22r+1—€ ¢) e

odd ¢

Using the definition of A,, ,, we obtain the following identity for polynomials in n

1 2r+1 = r 6, 2m+1
Z Am,r (2—7“ i 1>(2:) n + 2 ; Am,r Z —27“ T 1—7¢ (ﬁ) Bg,u,.l_gn =N

r odd ¢
Replacing odd ¢ by d we get

1 2r+1 (=1)" r 2441 — , 2m+1
2 Ans ey 2 Z Amyr g or—2d\2d 4 1) P2 =0

(=" r 2d

A 23" A B 2| 2wl _
Z m,r + Z mﬂﬂ[;Q?"-Qd 2d+1 2r—2d1 n 0
(3.2)

b
2r+1)(*)

2r+1

r
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Taking the coefficient of n?™ ! in (3.2), we get

A = (2m +1) (27:?)

and taking the coefficient of n?*! for an integer d in the range m/2 < d < m, we get
A,.=0

Taking the coefficient of n??*! for d in the range m/4 < d < m/2 we get

1 2m m (=)™
Ai——m— +2(2 1 ———— Bom—2d =
’”’d(zal+1)(2j)+ (2m + )(m><2d+1>2m—2d 2m-24 = 0

Le
(2m + 1)! 1
dld'm!(m —2d —1)!m —d

B2m—2d

Am d — (_1>m—1

)

11

Continue similarly we can express A,,, for each integer r in range m/2°"' < r < m/2°

(iterating consecutively s = 1,2, ...) via previously determined values of A,, ; as follows

2r\ - d \(=1)*!
A,.,=2r+1) ( . > Z Ana (27“ + 1> ﬁBzd—w

d>2r+1

Finally, the coefficient A,,, is defined recursively as

(

2r+1)(*), if r = m;

. r m —1)d-1 .
Ay =9 (2r+1) ) > ds2r41 Amd (2;11) %BM—?“ it 0 <r<m

0, if r<0orr>m,
\

where B; are Bernoulli numbers [11]. Tt is assumed that By = % For example,

(3.3)
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m/r | 0 1 2 3 4 5 6 7
0 |1
1 |1 6
2 |1 0 30
3 |1 -14 0 140
4 11 -120 0 0 630
5 |1 -1386 660 0 0 2772
6 |1 -21840 18018 0 0 0 12012
7 |1 -450054 491400 -60060 0 0 0 51480
Table 2. Coefficients A, ;..
The coefficients A,,, are also registered in the OEIS [12, 13]. It is as well interesting to

notice that row sums of the A,, , give powers of 2

m
§ Am,r — 22m+1
r=0

4. APPROACH VIA RECURSION: EXAMPLES

Consider the definition (3.3) of the coefficients A, ., it can be written as

(

(2’/’ + 1)(2:), if r = m;
m 2r d —1)d-1 )
A zdzzr+1Am’d(2T+1>(r)(2r+1>(d—)r Bag o, if0<1r<m;
T(?Zr)
0, if r<0orr>m,

\

Therefore, let be a definition of the real coefficient T'(d, r)

Definition 4.1. Real coefficient T'(d, )
2 d —1)4!
T(dﬂ”)_(QTWLl)( 7‘)( >(d—)7’ Baa-—ar

T 2r+1

Example 4.2. Let be m = 2 so first we get A

4
A272 - 5 <2> - 30
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Then Ayy = 0 because A, q is zero in the range m/2 < d < m means that zero for d in

1 <d < 2. Finally, the coefficient Ag is

2
Asg = Ay T(d,0) = Asy-T(1,0)+ Agy - T(2,0)

d>1

1
=30 — =1
30

Example 4.3. Let be m = 3 so that first we get As 3

A373 - 7(2) == 140

Then Aso = 0 because A, q is zero in the range m/2 < d < m means that zero for d in
2<d < 3. The As; coefficient is non-zero and calculated as

3

1

Agi =) Ayq-T(d1)=Ass-T(3,1) = 140 - (_E) =-l4
>3

Finally, the coefficient Asq is

3
Aso=> A3q-T(d,0) = Az -T(1,0) + Asy - T(2,0) + Az - T(3,0)

d>1

1 1
= 14-- 4140 — =1
¢ 05

Example 4.4. Let be m = 4 so that first we get Ayy

8
A4’4 - 9<4> - 630

Then Ays = 0 and Ayp = 0 because Ay, 4 is zero in the range m/2 < d < m means that

zero for d in 2 < d < 4. The value of the coefficient Ay is non-zero and calculated as

4

4

Ay = ZA4,d T(d,1) = Ays-T(3,1) + Ayy-T(4,1) = 630 - (_i> = —120
d>3

Finally, the coefficient Ay is

4
1 1
Aso=> Aya-T(d,0)=Au;-T(1,0) + Ayy-T(4,0) = —120- 5030 o5 =1
d>1
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Example 4.5. Let be m =5 so that first we get As s
10
As; = 11(5> = 2772

Then As, = 0 and As3 = 0 because A, 4 is zero in the range m/2 < d < m means that
zero for d in 3 < d < 5. The value of the coefficient As o is non-zero and calculated as
° 5
Aso =) Asy-T(d2)=As5-T(5,2) = 2772 o7 = 660
d>5
The value of the coefficient Aj 1 is non-zero and calculated as

5
Asi=> Asq-T(d1)=As55-T(3,1) + A5y T(4,1) + As5 - T(5,1)

d>3

= 2772 - <—%) = —1386

Finally, the coefficient Asq is

5
Aso = Z Asq-T(d,0) = As1-T(1,0) + As2-T(2,0) + As5 - T(5,0)

d>1

1 1 5
— —1386- - S 2772 = =1
386 - =+ 660 o5+ 2772

5. CONCLUSIONS

In this manuscript, we have shown that for every n > 1, n,m € N there are coefficients

Ao, Ama, ..., Ay such that the polynomial identity holds
n?" =N " Aok (n = B)° 4+ Api(n — k) 4 4 A k™ (0 — k)™
k=1

In particular, the coefficients A, , may be evaluated both ways, by constructing and solving a
system of linear equations or applying recurrence relations; all these approaches are explained
with examples in the sections 2 and 3, respectively. Moreover, to validate the results, there

are supplementary Mathematica programs provided at [11].
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