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Abstract

Model calibration is an essential test that dynamic hypotheses must pass in order to serve as
tools for decision-making. In short, it is the search for a match between actual and simulated
behaviours using parameter inference. Here, we approach such an inference process from a
Bayesian perspective. Under this paradigm, we provide statements about the parameters
(viewed as random variables) and data in probabilistic terms. These statements stem from a pos-
terior distribution whose solution is often found via statistical simulation. However, the uptake
of these methods within the system dynamics field has been somewhat limited, and state-of-the-
art algorithms have not been explored. Therefore, we introduce Hamiltonian Monte Carlo
(HMC), an efficient algorithm that outperforms random-walk methods in exploring complex
parameter spaces. We apply HMC to calibrate an SEIR model and frame the process within a
practical workflow. In doing so, we also recommend visualisation tools that facilitate the com-
munication of results.
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Introduction

From its beginnings in the mid-1950s to its modern practice, system dynamics
(SD) has been a purpose-driven approach. Namely, it is a field interested in
problems to be solved, situations that need to be better understood, or undesir-
able behaviours that need to be corrected or avoided (Forrester, 1993). To meet
these goals, SD practitioners develop simulation models, formal representations
often via ordinary differential equations (ODE) that capture the dynamic com-
plexity of the problem situation and from which behavioural inferences can be
made (Saleh et al., 2010). The validity of these inferences hinges on the ability
of the model’s internal structure to adequately represent the aspects of the sys-
tem that are relevant to the problem behaviour (Barlas, 1996). Adequacy, never-
theless, is not merely related to the appropriateness of the equations. In order
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for a model to be useful, it must provide an assessment of future behaviour
(Duggan, 2016). That is, models ought to reasonably estimate the likely impact
of interventions in a system, a process that cannot be achieved without a plausi-
ble quantification of the model’s parameters. Given the continuous nature of
ODE representations, there are infinite possibilities for parameter quantification.
To address this uncertainty, analysts fit models to available data in order to
obtain estimates for the unknown quantities. This procedure, referred to as
model calibration, serves a dual purpose. In addition to reducing uncertainty
around the parameters, model calibration is a stringent validity test that
assesses the causal claim that a particular structure accounts for an observed
behaviour (Oliva, 2003). It thus follows that one should reject models that fail
this test.

Generally speaking, model calibration is the process of finding a match
between observed and simulated behaviours via statistical inference
(Oliva, 2003). In other words, we search for plausible parameter values or
model configurations that accurately account for the available data. Tradi-
tionally, within the SD field, practitioners have followed a frequentist
approach. Following this paradigm, one employs nonlinear optimisation
algorithms to maximise a statistical function (often a likelihood function),
which expresses how well the model fits a time series of data pertaining to
an important model variable (Dangerfield and Duggan, 2020). However, such
optimisation routines can be inefficient for finding a match in nontrivial and
high-dimensional parameter spaces (Andrade and Duggan, 2020). To deal
with this difficulty, SD practitioners adopt the strategy of running the opti-
misation algorithm from multiple starts and select the result with the largest
likelihood. Unfortunately, as the number of parameters increases, so does
the risk of exhausting computational resources before finding the optimal
start. To further complicate matters, the maximum likelihood estimate
(MLE) may not even be located in regions of high-probability mass in high-
dimensional spaces (Betancourt, 2017a).

Furthermore, around the MLE, one can construct uncertainty bounds
using frequentist approaches such as the likelihood ratio method
(Pawitan, 2013), a technique offered by SD software (Vensim and Stella).
ODE models, nevertheless, often violate the assumptions implicit in the like-
lihood ratio method, such as identically and independently distributed (IID)
normal error terms (Dogan, 2007). Fortunately, the advent of powerful com-
putational resources has been a catalyst that enabled the development of
methods based on repeated random sampling to obtain numerical results
(Robert and Casella, 2010). These statistical simulation algorithms can be ori-
ented to explore complex parameter spaces and lift stringent restrictions on
the shape of the uncertainty bounds. Although the SD community has not
ignored these advances, a search on the SD literature suggests that the adop-
tion of these methods has been gradual. Particularly, Dogan (2007) and
Struben et al. (2015) propose bootstrapping as a robust frequentist method
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for confidence interval estimation and demonstrate its application on a
service-quality model (Oliva and Sterman, 2001). In essence, this method
creates new data sets by resampling the original data, and then parameter
values are estimated from each of these new bootstrap samples
(Dogan, 2007). Similarly, Ansah et al. (2017) use bootstrapping to quantify
the uncertainty in the parameter estimates of a model that predicts the num-
ber of Chinese elderly with some degree of cognitive impairment by 2060.
On the other hand, Pierson and Sterman (2013, p. 129) report the first use

of a Markov chain Monte Carlo (MCMC) algorithm to perform inference on a
system dynamics model: “We estimate model parameters by maximum like-
lihood methods during both partial model tests and full model estimation
using Markov chain Monte Carlo methods to establish confidence intervals.”
Specifically, these authors estimated uncertainty bounds for 21 parameters
of an industry-level model of airline profits. Likewise, Keith et al. (2017) esti-
mated the parameters of seven alternative models that account for product
diffusion in the hybrid electric-vehicle market. In these two case studies, the
Markov chains are started from a point estimate obtained from nonlinear
optimisation routines. More recently, Ghaffarzadegan and Rahmandad (2020)
inferred the value of a nine-parameter epidemiological model that describes
the early infectious process of COVID-19 in Iran. All of these authors
employed enhanced versions (Osgood and Liu, 2015; Vrugt et al., 2009) of
the Metropolis algorithm (Metropolis et al., 1953). Osgood and Liu (2015)
provides a technical overview of the method, accompanied by a practical
example.
Despite the benefits that statistical simulation offers for parameter infer-

ence, bottom-up implementations require from the practitioner a new
mathematical and programming skill set. Therefore, a more viable strategy
is the use of predefined routines provided by statistical packages. Even
though these tools automate the process, their use requires the practi-
tioner to understand what the method is trying to solve, why it works,
and when and why it fails. However, the literature of parameter inference
on ODE models via statistical simulation is sparse, and the notation can
be challenging for practitioners with nonmathematical backgrounds,
which impedes adoption within the SD community. This observation
serves as the motivation for writing this article. Thus, the contribution of
this work is twofold. First, we introduce to the SD field a state-of-the-art
MCMC algorithm, known as Hamiltonian Monte Carlo (Neal, 2011) or
HMC, oriented to explore nontrivial parameter spaces such as those com-
mon to SD models. As model size and complexity grow, this method out-
performs other MCMC implementations (Beraha et al., 2021; Monnahan
et al., 2017) and, in some instances, nonlinear routines (Andrade and
Duggan, 2020). Second, we frame the article in the context of Bayesian
statistics, in which statements about parameters and data are given in
terms of probability (Gelman et al., 2017). Specifically, we draw on a
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practical workflow to illustrate how one can think of model calibration as
the result of knowledge update in the light of new information. This
workflow facilitates the interpretation and communication of results in an
intuitive fashion. It should be noted that although the workflow is intui-
tive, model calibration is essentially a statistical procedure, and as such,
key concepts like random variables, continuous probability distributions,
and conditional expectations are necessary (Blitzstein and Hwang, 2019).
We demonstrate this workflow’s application by fitting an epidemiological
model to data using HMC. In doing so, we describe the logical process
followed in each step. The article concludes with an overview of the
insights obtained from the inference process. The model is built in Stella,
and all the analysis is performed in R and Stan. The code is made freely
available at https://github.com/jandraor/SDR_Bayes.

Context

As mentioned in the introduction, an SD endeavour starts with a problem.
For didactic purposes, we follow a widely analysed case study (Vynnycky
and White, 2010). In 1918, the H1N1 virus led to an influenza pandemic
that spread over the entire world in less than 6 months and killed tens of
millions of people (Patterson and Pyle, 1991). This pandemic occurred in
three distinct waves, the second wave being the deadliest. Having learned from
data-collection difficulties in the first wave, the U.S. Public Health Service
organised special surveys in several localities to determine as accurately as pos-
sible the proportion of the population infected (Frost and Sydenstricker, 1919).
From this information, we extract the report of new cases detected in the city of
Cumberland (Maryland) during the autumn of 1918 (Figure 1). These case
counts will serve as the basis to ascertain an estimate of the disease’s degree of
contagiousness, a feature commonly measured by the basic reproduction num-
ber (R0). Simply put, this metric is the average number of secondary infec-
tions produced when one infected individual is introduced into a totally
susceptible population (Anderson and May, 1992). In addition to other tech-
niques (Farrington et al., 2001), one can estimate R0 by means of compart-
mental models (Vynnycky and White, 2010).

A common choice for modelling the transmission dynamics of influenza is
the Susceptible–Exposed–Infectious–Removed (SEIR) framework (Chowell
et al., 2007; Mills et al., 2004). In this formulation, S tð Þ denotes the number
of susceptible individuals at time t. Likewise, E tð Þ, I tð Þ, and R tð Þ denote the
number of exposed, infectious, and recovered individuals at time t, respec-
tively. C tð Þ represents the number of cumulative cases at time t. Here, we
assume that the outbreak’s time scale is much faster than the characteristic
times for demographic processes (births and deaths) so that their effects are
not included. Hence, it follows that the population is constant and whose
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size N is determined by S tð ÞþE tð Þþ I tð ÞþR tð Þ. Furthermore, β represents
the rate of effective contacts per infected individual, σ the rate of onset of
infectiousness, and γ the recovery rate. To reconcile the discrete nature of
the data and the continuous nature of compartmental models, we define the
expected reported incidence (x) by Eq. (6), where τ is restricted to nonnega-
tive discrete values. We assume that the rate of reporting ρ scales the true
incidence (C τþ1ð Þ�C τð Þ). This rate reflects the fact that asymptomatic and
paucisymptomatic (mild symptoms) individuals may not be captured by sur-
veillance systems (Gamado et al., 2014). From this model, R0 can be esti-
mated from the number of new infections caused by one infected individual
in the period in which the individual is contagious (γ�1), namely: βγ�1.

_S¼�βS tð ÞI tð Þ
N

(1)

_E ¼�βS tð ÞI tð Þ
N

�σE tð Þ (2)

_I ¼ σE tð Þ� γI tð Þ (3)

_R¼ γI tð Þ (4)

_C ¼ σE tð Þ (5)

x τþ1ð Þ¼ ρ C τþ1ð Þ�C τð Þð Þ (6)
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Fig. 1. Daily number of
influenza cases detected
by the U.S. Public Health
Service in Cumberland
(Maryland) during the
1918 influenza pandemic,
from 22 September 1918
to 30 November 1918
[Color figure can be
viewed at
wileyonlinelibrary.com]
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Bayesian inference workflow

In an SD model, the parameters to be estimated correspond to time-
independent variables and also initial conditions for stocks. To illustrate the
estimation of such quantities, we follow a simplified adaptation (Figure 2) of
a workflow from the statistical literature (Gabry et al., 2019; Gelman
et al., 2020). Under this approach, we view the quantities of interest as ran-
dom variables that describe our uncertainty about the actual values in the
face of incomplete knowledge (McElreath, 2020). Following this approach, it
is possible to apply concepts of statistical inference. That is, we update our
knowledge about the underlying properties that generate the problem behav-
iour in light of the evidence, thus adopting a Bayesian learning perspective.
To make such a process intuitive, we also draw upon data visualisation. This
technique is an important tool that complements the process of model cali-
bration, as demonstrated below.

Prior information

The first step in an inference process consists of the identification of the
unknown parameters in the model. In other words, whenever possible,
parameters that can be directly observed or estimated from sources at the
individual level should be treated as part of the known structure
(Graham, 1980) and removed from the process as unmodelled predictors. In
doing so, we mitigate the risk of model misspecification by preventing a
match between actual and simulated behaviour based on unrealistic correc-
tions to known parameter values that mask errors in the model formulation
(Oliva, 2003). For the remaining unknown parameters, an initial plausibility
assignment should be estimated based on domain expertise, such as edu-
cated guesses, as recommended in the early days of the SD field
(Graham, 1980).

In the study of infectious diseases, it is common to find observational stud-
ies at the individual level that report epidemiological quantities such as the
latent (σ�1) and infectious period (γ�1). In fact, Anderson and May (1992)
provide estimates of such quantities for 10 viral and bacterial infections,
including influenza. However, measuring the average number of effective
contacts by an infected person (β) remains a challenging task inasmuch as
this variable encompasses individuals’ social nature, the propensity of
infected individuals to transmit the pathogen, and the propensity of suscep-
tible individuals to being infected. In the same vein, continuous and exhaus-
tive measuring of the infected population’s true proportion was clearly not a
viable option for the United States in the early 20th century. Consequently,
we incorporate the parameters σ and γ into the model’s structure, whereas β
and ρ are considered the unknown time-independent variables.
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In relation to the initial conditions for stocks, researchers have estimated,
from serological studies in similar settings, that 70 percent of individuals
were still susceptible to infection after the first wave (Vynnycky et al., 2007).
This implies S 0ð Þ¼ 0:7N � I 0ð Þ and R 0ð Þ¼0:3N . For simplicity purposes, we
assumed there were no exposed individuals at the beginning of the second
wave. Namely, E 0ð Þ¼0. These assumptions leave as the only unknown the
number of individuals that trigger the outbreak (I 0ð Þ), which is assumed as
the initial value for the stock that tracks the number of cumulative cases.
Consequently, in this example, we focus on the estimation of the three

parameters identified above to which we denote by the vector θ. For each
one, we outline their plausibility before assessing the evidence (Figure 3).
For β and I 0ð Þ, our domain knowledge indicates that they should be nonneg-
ative. Further, we suppose that these two quantities concentrate at low
values considering the slow progression at the outbreak’s start (Figure 1).
This formulation does not discard values away from such concentration.
However, we assign them small plausibilities, measured by the height of the
function. This height is known as the probability density, and it is often

Formulate
model

Find direct
estimates for
parameters

Construct
priors for the

remaining
parameters

Prior
predictive
checking

Prior contradicts
domain knowledge

Prior is accepted Fit the model
Validate via
diagnostics

Computation is not
valid

Computation is
accepted

Posterior
predictive

checks

Model is not
trustworthy

Model accepted
Estimate

quantities of
interest

Policy analysis

Tune
algorithm

Estimates are not
informative

Fig. 2. Adaptation of a
Bayesian workflow
(Gelman et al., 2020) to
calibrate system
dynamics models.
Shaded boxes indicate
modeller decisions.
Dotted lines indicate
alternative pathways
[Color figure can be
viewed at
wileyonlinelibrary.com]
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modelled by standard statistical distributions that we denote by the Greek
letter π. In this case, π βð Þ and π I 0ð Þð Þ are distributed according to the
lognormal 0,1ð Þ. We choose this distribution to reflect our belief that these
parameters should be positive and relatively small. Regarding the reporting
rate ρ, although we are unsure of its magnitude, we know that it should be
between 0 and 1, and by including it in the model, we tacitly assumed that it
should be far from the boundaries. If we had thought that the parameter was
close to 0, we would have discarded the reported cases (C) stock. If we had
thought the value was close to 1, we would not have needed the reporting
rate parameter. We model this assumption by π ρð Þ� beta 2,2ð Þ. Taking into
account that no evidence suggests otherwise, we assume independence in
the parameters. That is, having information about one parameter does not
provide knowledge about the others. Mathematically, π θð Þ¼ π βð Þπ I 0ð Þð Þπ ρð Þ.
In statistical language, this is known as the prior distribution. Interested
readers are referred to Gelman et al. (2017) for philosophical and practical
considerations about the prior distribution.

Observational model and probability of the data

π y jθð Þ¼Pois y jx τð Þð Þ (7)

π yð Þ¼
Z

π y jθð Þπ θð Þdθ (8)

Naturally, it is expected that prior knowledge of the parameters leads to
dynamics that capture the essence of the problem being studied. In other
words, if we plug the vector θ into the simulation model, the latter ought to
produce outbreak-like trajectories, including the observed behaviour. Thus
far, the simulation model (Eqs. (1)–(6)) is deterministic. That is, the model
always produces the same smooth output from a given configuration. Unsur-
prisingly, even the most perfect configuration (or any other) will yield values
that differ from the measurements as the model only approximates the stud-
ied phenomenon. Therefore, these differences must also be formally
accounted for by a formulation, π y jθð Þ, which we refer to as the measure-
ment or observational model. Since daily reported cases are nonnegative dis-
crete quantities, we formulate the observational model (Eq. (7)) in terms of a
Poisson distribution (see Appendix S1 section 3.2.1 for a discussion on the
distribution choice). Note that with the addition of Eq. (7), a single model
configuration can yield different reported incidences. Thus, when θ is fixed
to a single set (θi), the observational model is known as the sampling distri-
bution, π y jθið Þ.
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In an ideal and unrealistic scenario, one would generate infinite samples
(θsim) from the prior distribution π θð Þ, then feed the simulation model with
those samples to produce the entire universe of possible trajectories of
reported incidences ysim. Once the complete set of ysim has been sampled,
one aggregates similar trajectories to establish which behaviours are more
likely to be observed than others. Formally, this is expressed by Eq. (8),
where π yð Þ denotes the average probability of the data (McElreath, 2020) or
prior predictive distribution (Gelman et al., 2013). Although generating infi-
nite samples is infeasible, one can draw a finite number of samples to reason
about the model’s behaviour conditioned on current knowledge. Accord-
ingly, we draw 500 random samples (θ1,θ2…,θ500) from the prior distribution
to generate an equal amount of trajectories (y1,y2…,y500). We present the
results in Figure 4. Here, we notice that large swathes of samples generate
outbreak-like behaviours, possibly the observed data (solid points). Overall,
this process is referred to as prior predictive checking, and it is a powerful
tool for understanding the structure of models (Gabry et al., 2019). Prior pre-
dictive checking aims to answer the question “Could this prior generate the
type of data we expect to see?” (Gelman et al., 2017). Should none of the
simulations resulted in outbreak-like behaviours, or should these behaviours
not captured the observed data, it would have been an indication for
reassessing the validity of the prior distribution or the model itself (Gelman
et al., 2020).

Expectation

π θjyc

� �¼ π θð Þπ ycjθ
� �

π yc

� � (9)

 f θð Þ½ � ¼
Z

f θð Þπ θjyc

� �
dθ (10)

Thus far, we have considered the likely behaviours over time that we could
have observed. Nonetheless, the chief interest is performing parameter

0 5 10

β
0.0 0.5 1.0

ρ
0 5 10

I(0)

Fig. 3. Prior distribution.
Shaded areas indicate
probability mass
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inference based on the available data set rather than on the infinite set of
possible observations. We thus shift the focus from the universe of measure-
ments (ysims) to the observed behaviour, Cumberland’s incidence data (yc).
In doing so, the density function π ysims

� �
becomes the constant π yc

� �
. Fur-

thermore, when the observational model is regarded as a function of θ, for a
fixed y , it is called the likelihood function (Gelman et al., 2013). This mathe-
matical construct, π ycjθ

� �
, is the target of optimisation algorithms and a

statement about the data, which quantifies the relative consistency of each
model configuration with the observed data. Simply put, if θ1 produces a
larger likelihood value than θ2, then yc is more likely to have occurred from
θ1. However, in a Bayesian setting, the plausibility of a trajectory is not the
desired outcome. On the contrary, the interest lies in establishing which
values of the vector θ are more plausible than others given the observed tra-
jectory (yc), or in more formal terms, the posterior distribution of the esti-
mated parameters, π θjyc

� �
. Conveniently, by Bayes theorem (Eq. (9)), we can

express the posterior distribution in terms of the prior distribution, the prob-
ability of the data, and the likelihood function. Given that the posterior
encodes all the information learned by our model, one could extract infer-
ences about the data and the parameters using expectations (Eq. (10)). As a
matter of fact, prior predictive checking is an expectation, where f is the
observational model averaged over the prior distribution (instead of the pos-
terior). In the sections below, we will see that, should a solution for Eq. (9)
be available, obtaining a model fit is nothing more than the application of
Eq. (10). Regardless of the query, answers are always given in probabilistic
terms. Indeed, this is the main feature of the Bayesian approach, where
uncertainty is quantified with probability distributions.

Markov chain Monte Carlo

Consequently, from a Bayesian perspective, one approaches parameter infer-
ence as the process of finding the posterior distribution. It is often the case
that closed-form solutions do not exist for such a type of formulation (Robert
and Casella, 2005). To address this difficulty, in the late 1940s, researchers
at Los Alamos developed stochastic simulation techniques, known as Monte
Carlo methods (Robert and Casella, 2011). Early conceptualisations
employed exact sampling (Robert and Casella, 2010), the generation of inde-
pendent and identically distributed (IID) samples to explore the extent of the
parameter space unconditionally. Regions of high probability, however, are
concentrated on specific locations rather than being scattered around
(Betancourt, 2017a). Thus, IID sampling would squander finite computa-
tional resources on low-probability regions until they are eventually
exhausted before reaching the target location. Aware of this, this same group
of researchers enhanced the method by generating correlated samples from a
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Markov chain to approximate the equilibrium distribution of a liquid
(Metropolis et al., 1953). Hence, the term Markov chain Monte Carlo
(Geyer, 2011). Even though further improvements in subsequent decades,
such as the Metropolis-Hastings algorithm (Hastings, 1970) and the Gibbs
sampler, (Geman and Geman, 1984) broadened the method’s scope, it was
only until the early 1990s (Gelfand and Smith, 1990), and partly due to the
growth in computational power, that the mainstream statistical community
widely noticed the method (Robert and Casella, 2011). Since then, there has
been significant growth in the number of applications to a wide range of
fields, including epidemiology (Chatzilena et al., 2019; Davies et al., 2020).
A Markov chain is a sequence of random variables Θ1,Θ2,…,Θn, in which

each variable depends only on the previous one (Blitzstein and
Hwang, 2019). To iteratively draw samples or realisations, we apply a condi-
tional probability distribution denoted by T Θiþ1jΘið Þ, also referred to as the
transition kernel. The strength of this approach lies in the improvement
achieved at the generation of each new sample—improvement in the sense
of converging to the target distribution π θjyc

� �
. If run long enough, the Mar-

kov chain is expected to reach an equilibrium state—or stationary state—
where the samples describe the posterior distribution. This approximation
has the advantage that it does not impose constraints in the shape of the pos-
terior. Under ideal conditions, the Markov chain starts from any place in the
parameter space and gradually moves towards the target distribution. This
initial phase is known as warm-up. Once the target distribution has been
found, the Markov chain explores high-probability regions (sampling phase),
namely parameter values that have larger contributions to the observed
behaviour. To obtain unbiased estimators, one discards the samples from the
warm-up phase.
Although theoretically, the Markov chain will eventually reach the stationary

state; in practice, this result is not guaranteed, especially for high-dimensional
target distributions and distributions that exhibit nontrivial dependencies
among the parameters (Betancourt, 2017b). Early implementations of MCMC,
such as the Metropolis-Hastings and Gibbs samplers, become slow at exploring
complex parameter spaces to the extent that computational resources are
depleted before providing accurate estimates. This inefficiency occurs due to
these algorithms’ random-walk behaviour to generate new samples, resulting in
zig-zag movements across the parameter space (Gelman et al., 2013). For
instance, Pierson and Sterman (2013, p.143) report that in the calibration of an
industry-level model of airline profits, “over 1 million MCMC runs were needed
to arrive at stable estimates for the confidence bounds.”

Hamiltonian Monte Carlo

According to Betancourt (2017b), MCMC has benefited from an evolving
interplay between statistics and physics from its inception to present
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developments. Conceiving a statistical system as a physical one provides an
innovative way to improve computational methods. Indeed, the realisation
that molecular simulation methods—in which the motion of molecules was
deterministic, following Newton’s laws of motion—and MCMC could be
combined, yielded a technique of wide applicable potential. In such a frame-
work, the description of molecular motion has an elegant formalisation as Ham-
iltonian dynamics, hence the term Hamiltonian Monte Carlo (Neal, 2011). In
particular, the HMC algorithm simulates the movement of a fictitious and fric-
tionless particle (McElreath, 2020) over a surface whose ruggedness is deter-
mined by the likelihood function and the prior distribution. Formally, the
Hamiltonian function—the sum of potential and kinetic energies—describes
such mechanics (Neal, 2011). In turn, this function depends on the characterisa-
tion of each parameter in terms of position and momentum. The former is
straightforward, considering that it corresponds to the fictitious particle’s loca-
tion in the parameter space; for the latter, the algorithm adds an artificial
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Fig. 4. Prior predictive checks. (a) Simulation of 500 predicted incidence measurements (grey lines) from the proposed
dynamic hypothesis and the prior distribution. Dots denote the actual data. (b) Zoom to trajectories that may resemble the
actual data. We show predicted measured incidences whose peak is lower than 200 new cases in a day [Color figure can be
viewed at wileyonlinelibrary.com]
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variable per parameter. As a result of this conceptualisation, the random-walk
behaviour from early MCMC implementations is suppressed (Gelman et al.,
2013), resulting in a tool that becomes efficient at traversing the complex
parameter spaces. For an analytical treatment of the method, the reader is
referred to Neal (2011). Likewise, Betancourt (2017a) offers an intuitive descrip-
tion. In Appendix S2 section 1, we provide an example where we compare
how HMC and the Metropolis algorithm explore parameter spaces.

Stan

Although HMC is a powerful method, its geometrical foundations (Betancourt
et al., 2014) render ad hoc implementations onerous. To address this challenge,
a group of researchers developed Stan (Carpenter et al., 2017), a statistical
modelling platform. This tool provides an interface to perform Bayesian infer-
ence via the No-U-Turn-Sampler or NUTS (Hoffman and Gelman, 2011), an
HMC algorithm. NUTS takes advantage of the warm-up phase to identify the
algorithm’s configuration that best adapts to the user-supplied model for effi-
cient parameter space explorations, resulting in significant gains in sampling
speed. Furthermore, Stan supports gradient evaluation (Carpenter et al., 2015)
to a broad range of distribution families and ODE solvers. In spite of this sup-
port, in some cases, SD practitioners will not be able to avail themselves of
familiar built-ins (such as those offered by Vensim and Stella). As a result, they
will have to formulate equations explicitly, or in the case of table functions, the
practitioner will have to devise parametric formulations.
In practice, Stan only requires, from the practitioner, the specification (code)

of the model’s equations, the prior distribution, the likelihood function, the
data, and the number of draws. To these specifications, Stan runs the NUTS
algorithm internally and returns a set of samples for each parameter. To run the
simulation, one can directly interact with Stan through a command interface or
popular statistical software such as Python and R. In this case, we choose the
latter to draw upon the package readsdr (Andrade, 2021), which automatically
converts XMILE files from Stella and Vensim to Stan code.

Diagnostics

Bayesian inference via iterative simulation is performed by extracting insights
from the entire collection of simulated draws from the sampling phase. Specifi-
cally, we estimate posterior probability densities and compute quantities of
interest that describe the calibrated parameters, such as expected values
(mean) and credible intervals. However, if the chains are not run long enough,
predicted convergence to the stationary distribution may not be achieved. The
resulting draws may partially or inaccurately describe the posterior distribu-
tion, thereby producing unreliable estimates. To address this challenge, an
effective strategy consists of running at least four chains that start from differ-
ent locations in the parameter space and verify that all of them converge to the
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same region. Accordingly, we run four chains of 2000 iterations in this exam-
ple: 1000 allocated to warm-up and 1000 to sampling.

Graphically, one can inspect convergence via trace plots. These visuali-
sation tools are time series of the draws for a particular parameter. Here,
time refers to the order in which the draws were sampled. In Figure 5a, we
present the sequence of the first 100 draws for each of the three calibrated
parameters. Initially, the chains traverse the parameter space before settling
on a unique location. By augmenting the time frame to the complete set of
samples (Figure 5b), it can be seen that the chains mixed; that is to say, the
draws trace out a common distribution. Additionally, there is no obvious
trend or change in the spread in the chains. In other words, they are sta-
tionary. These two properties suggest that the sampling procedure reached
the predicted convergence. Quantitatively, the potential scale-reduction
factor (Gelman and Rubin, 1992) denoted by bR is a useful metric to validate
this assessment. This statistic compares within-chain variance (stationarity)
to between-chain variance (mixing). At convergence, bR should be <1.01
(Vehtari et al., 2021), whereas higher values indicate that the chains describe
different locations of the parameter space or different trends within a single
chain. In this example, all chains exhibit potential scale-reduction factors
below this threshold (see Appendix S1 section 3.3.1.2 for a technical
description and results).

Other diagnostics to gain confidence in the results include the effective
sample size (ESS). In general, simulation inference from correlated samples
is less precise than from the same number of independent samples (Gelman
et al., 2013). If the correlation among samples is strong, chains must be run
for longer periods in order to obtain accurate estimations. To measure this
correlation, we employ ESS to determine the number of independent simula-
tion draws from the MCMC process. For reliability, this metric should be
above 400 (100 per chain) per parameter (Vehtari et al., 2021), as in this
example (see Appendix S1 section 3.3.1.2 for a technical description and
results).

To conclude with MCMC diagnostics, the Hamiltonian approach also
allows us to evaluate the robustness of the results. A key feature of the Ham-
iltonian function (sum of potential energy and kinetic energy) in the sam-
pling phase is that it remains invariant along the trajectory in which the
particle moves. Any divergence from its initial value indicates pathological
behaviour (abnormal movements) in the chains to the extent that they cannot
be trusted, and the calibration setup (SD model, prior, likelihood, algo-
rithm’s parameter values) must be reformulated. By default, Stan reports
divergences and provides ways to access which iterations encountered
divergences.i

iSee Stan Manual for more details.
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Given this example’s didactic scope, all diagnostics unsurprisingly return
favourable results. In practical applications, however, the path to these results
can be significantly less straightforward. From code bugs to structural prob-
lems, such as nonidentifiability in the model (two or more parameterisations
that are observationally equivalent), achieving convergence can take several
iterations. To complicate matters, exploring the target distribution of differen-
tial equation models involves expensive gradient evaluations that slow down
the HMC algorithm, limiting the number of debugging runs. Thus, the analyst
must efficiently identify the problem’s source. To this end, Gelman
et al. (2020) recommend the process of fake data (also known as synthetic
data or simulated data). That is, feeding the simulation model with known
and plausible parameter values to obtain behaviours over time similar to the
real data being analysed. Then, we should check whether the same model and
the inference method can recover the known values. In doing so, it is possible
to identify strategies to address computational issues. These strategies range
from model simplification and more data collection to recognising the
method’s inappropriateness for the studied problem. For instance, HMC works
correctly under well-defined posterior densities, and it is restricted to continu-
ous parameters. Conversely, challenging geometries with sharp corners or
multiple modes (Betancourt, 2015) in the posterior distribution render the
algorithm impractical, and other types of methods should be employed
(Valderrama-Baham�ondez and Fröhlich, 2019). We refer the reader to Gelman
et al. (2020) for a comprehensive treatment of these methodological issues.
Furthermore, in Appendix S3, we draw upon synthetic data to illustrate the
Bayesian workflow presented above (Figure 2) in the context of wrong assump-
tions, complex parameter spaces, and the necessity for data collection.

Posterior distribution

Bayesian inference is concerned with updating knowledge in the light of
new evidence (McElreath, 2020). Once we have gained confidence in the
sampling procedure, we take the draws returned by Stan and construct prob-
ability densities. By restricting the analysis to a single parameter (marginal
posterior distribution), it is possible to determine which values are plausible
for the parameters after seeing the data. We can visually portray such a
knowledge update process by comparing marginal prior and posterior distribu-
tions (Figure 6). In this graph, we observe that the concentration of probability
shifted for each parameter. For instance, before the calibration, we assumed
ignorance for the reporting fraction (ρ). On the contrary, the marginal poste-
rior distribution indicates that 95 percent of the samples—or 95 percent
credible interval—concentrates on the region [0.74, 0.81]. In relation to R0,
we estimate its 95 percent credible interval between 2.53 and 2.63, a value
consistent with the estimate ([2.56–2.59]) reported by Vynnycky and
White (2010). Furthermore, Mills et al. (2004) estimate that R0 for the 1918
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pandemic influenza was approximately between 2 and 3. Similarly,
Vynnycky et al. (2007) concluded that this value was in the range of 2.4–4.3
in community-based settings. Thus, during this pandemic, one infected indi-
vidual could potentially infect, on average, almost three susceptible ones.

In the SD literature, it is not unusual that researchers restrict model cali-
bration results to reports of the mean and standard deviation of the fitted
parameters. Although useful for descriptive purposes, we instead have
focused our interest on the complete set of samples. The reader should bear
in mind that in Bayesian inference, we quantify uncertainty by an entire
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Fig. 5. (a) Early warm-up
phase for our three
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probability distribution, which cannot be characterised by a single-point esti-
mate (in Appendix S1 section 4, we elaborate on this issue). Through the
samples obtained from MCMC methods, for instance, we can extract rich
information about the parameter interactions. Initially, given the lack of evi-
dence, we assumed independence among the calibrated parameters. Never-
theless, system dynamics models, by definition, depict problems as an
interconnected confluence of factors. Based on this logic, it would be sur-
prising that a parameter does not interact with another. To explore this prop-
erty, we draw upon pair plots. This graphical tool displays all possible
pairwise combinations (joint) of probability distributions. Moreover, we
include the correlation for each combination along with the marginal distri-
butions to gain a global perspective (Figure 7). This plot shows a strong
interaction among the parameters to the extent of an almost perfect correla-
tion between two parameters (I 0ð Þ and β), indicating that, relatively speak-
ing, large values of β are solely compatible with low values of I 0ð Þ.
Consequently, independence assumptions are unwarranted. The implica-
tions of this finding are explored in the Policy Analysis section.

Posterior predictive checks

π y jyc

� �¼ Z
π y jθð Þπ θjyc

� �
dθ (11)

The ultimate purpose of model calibration is to search for a match between
observed and simulated behaviour that builds confidence in the proposed
dynamic hypothesis. Following this Bayesian workflow, we frame this pur-
pose as: “if a model is a good fit we should be able to use it to generate data
that resemble the data that we observed” (Gabry et al., 2019, p. 396). Notice
that this statement is similar to Oliva’s quote (Oliva, 2003, p. 554): “Confi-
dence that a particular structure, with reasonable parameter values, is a valid
representation increases if the structure is capable of generating the observed
behavior.” To provide an answer, we can use the posterior distribution to
obtain predictions for the measured quantities and compare them to the
observed data (Gelman and Hill, 2007). Thus, in this case, f θð Þ (see Eq. (10))
corresponds to the observational model. This process is analogous to prior
predictive checking, with the difference that we average over the posterior
distribution. Unsurprisingly, this process is called posterior predictive
checking (Eq. (11)). In consequence, obtaining a model’s fit under this Bayes-
ian paradigm is equivalent to solving Eq. (11).
Accordingly, we generate 500 draws from π θjyc

� �
and insert them into the

observational model to obtain predictions for the measured incidences
(Figure 8). Qualitatively, the simulated trajectories appear to be reasonable
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approximations to the reference behaviour. To verify this appraisal, for each
trajectory, we calculate the mean absolute scaled error or MASE, a metric of
forecast accuracy (Hyndman and Koehler, 2006). In practice, this procedure
entails to define f θð Þ as the MASE of each trajectory and average the results
over π θjyc

� �
. Considering that values lower than one indicate adequate pre-

dictive performance, and all simulated behaviours concentrate below such a
threshold (see Appendix S1 section 3.3.2.4), we gain support to the claim
that the simulation model explored in this article is an adequate structure to
account for Cumberland’s incidence data.

Policy analysis

As we have seen, the usefulness of estimating π θjyc

� �
is not exclusively con-

fined to find a match between observed and simulated behaviours (model
calibration). Once we have gained confidence in these results, we can
employ this distribution to evaluate the future dynamics in similar settings
where the model is relevant. To illustrate this procedure, we simulate the
model in a hypothetical situation. In particular, we are interested in
predicting the dynamics of an outbreak in a city of 10,000 people under two
scenarios: unmitigated and intervention. The former corresponds to the sce-
nario where the virus is left to run unchecked until the disease runs its
course. The latter describes the implementation of social-distancing mea-
sures aimed at reducing the number of contacts among the population. To
do so, we consider the sampling procedure. Stan returns a collection of
draws for each calibrated parameter. In this case, the output forms a matrix
of three columns (parameters) and 4000 rows (samples). Since the parame-
ters exhibit correlation (Figure 6), we sample entire rows βi,ρi, I 0ð Þi

� �
, where

i denotes a specific row. Should the parameters be independent, we would

sample separately from each column, yielding sets βj ,ρk , I 0ð Þl
n o

. We follow

this procedure in situations where we cannot infer correlations from the data
(e.g. report of marginal distributions).

Having established the sampling procedure, for the no-intervention sce-
nario, we feed the SEIR model with the samples and run the simulation;
whereas for the intervention scenario, we multiply all βi by a factor of 40 per-
cent to describe the effect of social-distancing measures implemented before
the occurrence of the first case. As expected, decreasing the population’s
contact rate (β) translates into a slower transmission process with fewer
cases. Undoubtedly, the added value of performing policy analysis from this
Bayesian perspective stems from the fact that we simultaneously gauge the
uncertainty in the predicted behaviours, offering a broader picture to
decision-makers. Nevertheless, in this case, such uncertainty is tempered by
the correlation among parameters. To visualise this, we also run the model
with independently sampled draws. In Figure 9, it can be seen the extra
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uncertainty added by the independence assumption, evidenced by the
excess of blue contour in comparison with that of the grey one. Notice that
this application is also an instance of Eq. (10), namely an expectation.

Performance comparison

SD practitioners certainly require a clear indication that investing time and
resources in applying a novel method is worth the effort. In the SD literature,
we find two enhanced versions of the Metropolis algorithm: the DREAM
sampler (Vrugt et al., 2009) implemented in Vensim, and a Random-Walk
Metropolis -RWM- algorithm (MCMCmetrop1R) offered by the MCMCPack,
the method used by Osgood and Liu (2015). We select the latter for the
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comparison analysis, given that it is open source and a similar approach
adopted throughout this work.

Specifically, we fit the SEIR model (presented in the Context section),
under the conditions (priors and unknowns) described in the Prior informa-
tion section, to Cumberland’s incidence data. This calibration is performed
in six different scenarios, which differ in the number of iterations (100, 200,
500, 1000, 1500, 2000) allocated to both MCMC algorithms. The reader can
find the complete analysis in Appendix S2 section 2. The results show that
HMC is computationally faster than RWM for obtaining an equal amount of
samples. However, given technological implementations, it is not possible to
definitively determine whether the performance differences are due to the
algorithms themselves. For this reason, we compare technologically inde-
pendent metrics of convergence (bR) and efficiency (ESS). In Figure 10a, we
observe that RWM requires at least 2000 burn-in samples so that all parame-
ters reach convergence (bR<1:01), a value significantly higher than the equiv-
alent number of samples (500) required by HMC. On the other hand, the
effective sample size (ESS) is a measure of efficiency. This metric helps us
answer: are X samples from RWM equivalent to X samples from HMC? The
reader should recall that the ESS approximates the number of independent
samples. We present two types of ESS: bulk and tail (see definitions in

Fig. 8. (a) 500 predicted incidence measurements (grey lines) from the posterior predictive distribution (model’s fit). To
obtain a single predicted measurement, we draw a sample from the posterior distribution and use it to generate a trajectory
from the observational model (Eq. (7)). Three different predicted incidence measurements are highlighted in Viridis colours.
Dots denote the actual data. (b) Posterior predictive distribution described in terms of the mean (dashed line) and 95 percent
credible intervals (contour) [Color figure can be viewed at wileyonlinelibrary.com]
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Fig. 9. Forecast of scenarios (unmitigated and intervention) under two parameter interaction assumptions. These assumptions
correspond to the correlations revealed by the calibration process and perfect independence. We simulated 500 trajectories
per experiment in this two-by-two design. For each experiment, we plot a silhouette of the predicted measured incidence.
The width of these silhouettes corresponds to 95 percent credible intervals. Two silhouettes are superimposed per scenario
[Color figure can be viewed at wileyonlinelibrary.com]
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Appendices S1 and S2). Both metrics should be at least 400 (Vehtari
et al., 2021). In Figure 10b, we see that HMC produces a higher number of
ESS than RWM in all scenarios. Furthermore, HMC exceeds the
400-threshold from 500 iterations per chain, a third of the iterations required
by RWM. In a nutshell, HMC converges faster, and its samples provide more
information than those of RMW.

In terms of performance, we corroborate previous theoretical (Betancourt,
2017a) and practical studies that suggest HMC as the method of choice. For
instance, Monnahan et al. (2017) found that HMC outperforms the Gibbs
sampler (a random-walk MCMC algorithm) in estimating the parameters of
population-ecology models (hierarchical and state-space) across a range of
dimensions and complexity. This performance gap grew to the extent that
HMC was 63 times more efficient when fitting a logistic model. Likewise,
Beraha et al. (2021) conducted a systematic study on probabilistic program-
ming languages (PPL). The authors evaluated three PPLs on four classes of
models: linear, logistic regression, mixture models, and accelerated failure
time. The results from this study indicate that Stan (using the NUTS algo-
rithm) is the “default go-to software” over the other two random-walk-based
platforms. To the best of our knowledge, the most recent benchmark analysis
on ODE models was carried out a decade ago (Girolami and
Calderhead, 2011), a time where the NUTS algorithm had not been devel-
oped. This observation suggests that future research endeavours should sys-
tematically explore the variations in the performance of MCMC algorithms
across various ODE models.

Conclusion

In his reflection on the 60-year history of the SD field, Sterman (2018, p.40)
encouraged practitioners to “master the state of the art and modern methods
to develop, test, communicate, and implement rigorous, reliable and effec-
tive insights into the dynamics of complex systems.” In that context, we
introduce Hamiltonian Monte Carlo to the SD community to perform robust
model calibration using a state-of-the-art statistical package (Stan). In doing
so, we notice that valuable information about the results and the method
itself is often missing in model calibration reports. Due to the established tra-
dition of using nonlinear optimisation techniques, we often find that authors
limit the calibration report to the mean and standard deviation of parameter
estimates. This information is complete only in the case of symmetric and
independent distributions, a set of assumptions that do not hold for this sim-
ple case study. On the contrary, MCMC-based methods provide richer infor-
mation about the calibrated parameters and allow the practitioner to
evaluate the robustness of the estimates. In the same fashion that a model’s
behaviour must be obtained from the right reasons, parameter estimates must
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be obtained for the right reasons as well. To communicate this process, we
suggest a workflow grounded on logic and visualisation. Such a workflow is
possible due to the combination of SD Software, R, and Stan. This synergy
produces robust results, facilitates reproducibility, and, more importantly,
enhances the comprehension of the process undertaken.
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