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ABSTRACT
Anonymous credentials (ACs) are digital cryptographically-secure

versions of paper and digital credentials that let us selectively prove

possession of encoded attributes (claims) to verifiers such as digital

services, employers, or government departments without disclos-

ing any other information. While attributes by governmental is-

suers usually reflect basic personal information about the credential

holder (e.g., name, gender, age, address), attributes can also reflect

more extensive claims about holders, such as the holder’s platform

details and configuration. Since the attributes might be sensitive, it

is popular to embed additional attributes in the credential about the

existing attributes, e.g., that age is above 18, thus allowing a holder

to show that their age satisfies some condition without revealing

the exact age. However, since each verifier might have different poli-

cies that must be satisfied, it is becoming increasingly impractical

for issuers to embed all possible claims in a credential. To mitigate

this problem and allow arbitrary policies to be checked against

individual attributes without complicating or overwhelming the

credential, we propose to let verifiers dynamically define policies

as high-level programs which can be verifiably executed by holders

on their credentials. Furthermore, to mitigate the potential risk of

dishonest verifiers attempting to benefit or otherwise leak sensitive

information learned through this unlimited expressiveness of poli-

cies, we propose making the proofs designated verifier. Thus, any
proof produced for one verifier cannot be used to convince another.
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1 INTRODUCTION
Currently, there is an increasing shift to decentralized digital iden-

tity models, where there is no single governing organization that

has control over identity data origination. Instead, participants

produce and manage their own identifiers and credentials without

deference or permission from any other administrative organization.

The World Wide Web Consortium (W3C) is currently developing

two new standards to realize this emerging model, namely, Decen-

tralized Identifiers (DIDs) [51] and Verifiable Credentials (VCs) [45].

In the ecosystem of Verifiable Credentials, the Issuer issues a

credential containing a set of claims on a Subject and transfers it to a

Holder, who is typically the same entity. The Holder stores the VCs
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in a storage called the Identity Wallet. In response to a request from

the Verifer, the Holder retrieves one or more stored VCs from her

Wallet and presents them to the Verifer. Alternatively, the Holder

can construct Verifiable Presentations (VPs), i.e. collection of claims

that a Holder can contract from different VCs issued by varying

entities. Then, a Holder can prove to a Verifer that it owns a VC

or VP with certain attributes. This is usually achieved through a

unique identifier (e.g., public key), owned by the Holder that enables

her to generate proof of possession on specific claims (e.g., a digital

signature with the corresponding private key).

VCs can be combined with anonymous credentials [14, 19] to

enable the Holder to manage her privacy by choosing the level of

information disclosure. That is, the Holder can select only some of

the attributes in the credentials she owns and prove that they are

certified by a trusted Issuer, without revealing any further informa-

tion; i.e., a signature from the Holder’s unique identifier or other

remaining attributes. This property is called selective disclosure.
One core challenge is the verification of the integrity and origin

of the presented VCs or VPs: How can someone be sure that they
really belong to the claimed entity without disclosing unecessary in-
formation? On a technical level, this translates into Holders having

control of their own VCs and DIDs through their Wallets, which

can ensure that credentials and (private) keys can only become

available to this specific Holder as the actual owner of the issued

wallet credentials. Since it is only the Holder (as the Identity Owner)

that knows the key associated with a DID, the level of control and

credential management assurance relies on possessing and control-

ling the private key for creating (anonymized) VPs. However, is the

integration of only such a single authentication factor enough? For

example, in the case of Europe, the eIDAS regulation [49] clearly de-

fines the requirement for multiple authentication factors to achieve

a Level of Assurance classified as “substantial” (e.g., fingerprints

and secret key).

One of the necessary measures to solve such security gaps, is to

incorporate zero-knowledge proofs [13, 18, 26, 27, 33, 42, 46, 48, 50],

where credential holders can prove that they possess attributes that

satisfy some condition without revealing any other information.

However, several schemes still only support a limited range of pred-

icates [13, 26, 46, 48, 50], such as basic boolean operators, or being

limited to range proofs or set membership proofs. Furthermore,

another challenge, as mentioned in [32], occurs when considering

anonymous credentials on devices, such as smartphones, where we

encounter issues such as credential sharing and the need to cope

with fewer computational resources. To address this issue, authors

of [32] proposed the notion of core/helper anonymous credentials,

where credentials are split between a secure core (e.g., a SIM card)

and a more resourceful helper (e.g., a smartphone). Here the idea is

that the helper cannot use the credential without the core’s help.

Though, as the authors mention, the core’s effort must be minimal

and independent of the credential’s size due to its limited resources.

Finally, most prior literature on anonymous credentials does not
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consider the designated verifier property [35]. Specifically, in most

schemes, there is no attempt to prevent the verifier from leaking

whatever information they learned from the verification process

to other third parties. The designated verifier property is needed

to protect against such malicious activities by dishonest verifiers.

Regardless of whether the holder discloses attributes or proves to

possess attributes that satisfy a policy or a combination of the two,

it should not be possible for verifying parties to misuse or leak

information obtained from the verification process.

Contribution:We present a fully expRessive dEsignaTed veRifier
Anonymous CredenTials (RETRACT) scheme in the core/helper

model of [32] that uses BBS+ signatures for building credentials

and incorporates state-of-the-art verifiable computation techniques

to allow holders to prove arbitrary predicates on their credentials in

zero knowledge. In a nutshell, to combine BBS+ signatures with ver-

ifiable computation, we consider commit-carrying zero-knowledge

Succinct Non-interactive ARguments of Knowledge (cc-zkSNARK)

[17, 30] proof constructions that accept predicates expressed as

arithmetic circuits. We then show how to use well-established proof

statement composition methods [15] for extending a proof of knowl-
edge of a valid BBS+ signature with proof that the commitment

contains attributes from the BBS+ signature while also ensuring

that the overall scheme remains designated verifier. While the gen-

eration of zkSNARK proofs is generally considered slow, the proofs

are short and verified remarkably fast, making zkSNARKs attrac-

tive, especially in Distributed Ledger Technology (DLT), e.g., the

anonymous cryptocurrency Zcash and Ethereum, and for verifiable

credentials. Our prototype implementation is accessible online [3].

2 RELATEDWORKS
Flexible credentials. Following the initial work of Chaum [20],

there has been a long line of work (e.g., [6, 12, 13, 32]) with succes-

sively more efficient and expressive anonymous credentials that

have been widely deployed in several real-world applications, such

as U-Prove [40], and Idemix [16]. Recently, we have also witnessed

a synergy between anonymous credentials and predicate proofs

to improve expressiveness. For example, Trinsic [48] uses BBS+

signatures [4] and allows for range-based predicate proofs using

basic arithmetic operators. Similarly, the Decentralized Identity

Foundation (DIF) allows some algebraic rules and set membership

checks as part of their presentation exchange specification [26].

Another recent solution is Dock [27], which has recently upgraded

from supporting basic predicate proofs, e.g., membership and range

proofs, to supporting more arbitrary predicates expressed in Circom

[34] and proven correct using LegoGro16 [17]. In [18], researchers

proposed zero-knowledge credentials in the decentralized identity

(DID) ecosystem, where holders can employ a general-purpose zk-

SNARK proof system (described in Section 3.5) to produce proofs

of arbitrary computations over their credentials. Similarly, authors

of [42] also consider zkSNARKs and propose a toolkit for creating

complex statements and the composition of credentials.

Designated verifier. While not an anonymous credential scheme,

authors of [31] propose a single-sign-on (SSO) protocol that uses

BBS+ signatures [4] and adopts a form of designated verifier. Specifi-
cally, in their SSO scheme, authentication tags can only be validated

by the verifier of the service for which they were designated. How-

ever, as the authors note, this version of “designated verifier” is

slightly different from that defined initially by Jacobsson [35] (de-

scribed in Section 3.6). Specifically, in [35], the idea of a designated

verifier is to prevent the verifier from convincing others about a

transcript since the verifier could just as well have generated it,

whereas in [31] anyone can verify the signer of authentication tags.

In [25], authors propose functional credentials based on homomor-

phic attribute-hiding predicate encryption schemes. The idea for

holders to prove statements is: given a ciphertext encoding a given

policy, a holder decrypts the ciphertext to convince a verifier that

they know a key for a set of attributes that matches the policy.

However, in their scheme [25], the idea is to keep policies secret

from designated verifiers. While useful in certain applications, this

definition of the designated verifier also differs from that of [35].

Finally, [24] propose using smooth projective hash functions (SPHF)

[23] to allow holders to make designated-verifier proofs.

Core/helper setting. As mentioned in [32], a prominent example

of the core/helper setting is the Direct Anonymous Attestation

(DAA) protocol [9], which was designed for privacy-preserving

remote attestation of platforms. Here the core device is the Trusted

Platform Module (TPM) [47], and the helper is the hosting plat-

form to which the TPM is connected. While DAA is technically a

group signature protocol for creating anonymous signatures (with

optional linkability) on messages to convince a verifier that an

authorized TPM signed a message, some recent works extend the

DAA protocol with attributes (DAA-A), and selective disclosure

[10, 11, 21]. While [21] considered CL [14] and SDH [8] signatures

for credentials, the recent DAA-A schemes [10, 11] shifted to q-

SDH BBS+ signatures [4]. However, noting how DAA-A schemes

are tailored towards a specific core (i.e., the TPM), authors of [32]

proposed core/helper anonymous credentials (CHAC), which uses

a combination of signatures with flexible public keys (SFPK) [5] and

a novel notion of aggregatable attribute-based equivalence class

signatures (AAEQ). In the generalized core/helper model defined

by [32], the core can be any secure element, such as a SIM card,

an NFC-based smart card, a “software-based” Trusted Execution

Environment (TEE) like TrustZone or SGX, or even a TPM.

3 BACKGROUND AND PRELIMINARIES
This section presents the considered primitives and terminologies

used in describing our scheme. Note that we denote sequences and

vectors in bold. Furthermore, by [𝑛] we denote the set of integers
{1, . . . , 𝑛} and by (𝑎𝑖 )𝑖∈[𝐿] , we denote the tuple (𝑎1, . . . , 𝑎𝐿).

3.1 Bilinear Groups and Pairings
Let G1,G2, and G𝑇 be three finite cyclic groups with prime order

𝑝 . We work with bilinear groups (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2), where 𝑒
defines the mapping 𝑒 : G1 × G2 → G𝑇 , which is bilinear, i.e.,

𝑒 (𝑔𝑥
1
, 𝑔

𝑦

2
) = 𝑒 (𝑔1, 𝑔2)𝑥𝑦 , non-degenerate, i.e., for all generators 𝑔1 ∈

G1 and 𝑔2 ∈ G2, 𝑒 (𝑔1, 𝑔2) generates G𝑇 , and efficient, i.e., there

exists an efficient algorithm G(1_) that outputs the bilinear group
and an efficient algorithm to compute 𝑒 (𝑎, 𝑏) for any 𝑎 ∈ G1, 𝑏 ∈ G2.
In our scheme, bilinear groups are used to support the prominent

BBS+ signature scheme described in Section 3.4, which we utilize

to express verifiable credentials as issued by some trusted issuer.
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Furthermore, note that pairings are often classified into one of three

types (see [11] for details). However, for the purposes of this paper,

it suffices to say that we consider the third type (Type-III), which

allows for efficient operations in G1 and is used in the considered

BBS+ signature scheme, which has been proven secure under the

JOC version (supporting Type-III pairings) of the q-Strong Diffie-

Hellman (qSDH) assumption [7]. Finally, we use 1G to denote the

identity element in the group G.

3.2 Pedersen Commitment
The Pedersen commitment scheme [41] is an unconditionally hiding

and computationally binding commitment scheme based on the

discrete logarithm problem. It consists of three algorithms Ped =

(Setup,Commit,VerCommit) that work as follows and satisfy the

notions of correctness, binding, and hiding as defined below.

• Ped.Setup(1_, 𝑛) → ck: given a security parameter and a

desired number of values 𝑛, take (ℎ0, . . . , ℎ𝑛) ←$G𝑛+1
1

, and

output ck← (ℎ0, . . . , ℎ𝑛) as the commitment key.

• Ped.Commit(ck, (𝑢1, . . . , 𝑢𝑛)) → (𝑡, 𝑜): given a commitment

key and a sequence of values, parse ck = (ℎ0, . . . , ℎ𝑛), take
𝑜 ←$Z𝑞 , compute 𝑡 ← ℎ𝑜

0

∏𝑛
𝑖=1 ℎ

𝑢𝑖
𝑖
, and output 𝑡 as the com-

mitment, and 𝑜 as the opening value (blinding factor).

• Ped.VerCommit(ck, 𝑡, (𝑢1, . . . , 𝑢𝑛), 𝑜) → 𝑏 ∈ {0, 1}: given a

commitment key, a commitment, a sequence of values, and

an opening, parse ck = (ℎ0, . . . , ℎ𝑛), and only accept (𝑏 = 1)

the commitment if 𝑡 = ℎ𝑜
0

∏𝑛
𝑖=1 ℎ

𝑢𝑖
𝑖
.

Correctness. For all _ ∈ N and any vector 𝒖 of 𝑛 values we have:

Pr

[
ck← Setup(_, 𝑛)

(𝑡, 𝑜) ← Commit(ck, 𝒖) :
VerCommit(ck, 𝑡, 𝒖, 𝑜) = 1

]
= 1

Binding. For every polynomial-time adversary A we have:

Pr

[
ck← Setup(_, 𝑛)

(𝑡, 𝒖, 𝑜, 𝒖 ′, 𝑜 ′) ← A(ck) :
VerCommit(ck, 𝑡, 𝒖 ′, 𝑜 ′)
∧VerCommit(ck, 𝑡, 𝒖, 𝑜)
∧𝒖 ≠ 𝒖 ′

]
= negl

Hiding. For ck← Setup(_, 𝑛) and every 𝒖, 𝒖 ′, we requireCommit(
ck, 𝒖) ≈ Commit(ck, 𝒖 ′).

3.3 Proof of Knowledge of Algebraic Statements
To prove knowledge of the secret ingredients (𝑢, 𝑜) of a Pedersen
commitment 𝑐 without disclosing either value, i.e., neither the com-

mitted value𝑢 nor its opening 𝑜 , we can run a zero-knowledge proof

of knowledge protocol. There are essentially two common ways

to design non-interactive zero-knowledge (NIZK) proofs: Sigma

protocols and zkSNARK constructions [1]. The former is highly ef-

ficient for proving algebraic statements, while the latter is superior

for more expressive arithmetic representations. In our scheme, we

utilize both: the latter to prove arbitrary predicates expressed as

arithmetic circuits on credential attributes and the former to prove

that those inputs originated from a valid credential.

When referring to zero-knowledge proofs of knowledge of dis-

crete logarithms and statements about them, we adopt the notation

of [11]. For example, 𝑃𝑜𝐾{(𝑎, 𝑏, 𝑐) : 𝑦 = 𝑔𝑎ℎ𝑏 ∧ 𝑦 = 𝑔𝑎 ˜ℎ𝑐 } denotes
a “zero-knowledge proof of knowledge of integers (scalars) a, b, and
c such that 𝑦 = 𝑔𝑎ℎ𝑏 and 𝑦 = 𝑔𝑎 ˜ℎ𝑐 holds,” where 𝑦,𝑔, ℎ,𝑦, 𝑔, and ˜ℎ

are elements of some groups G = ⟨𝑔⟩ = ⟨ℎ⟩ and ˜G = ⟨𝑔⟩ = ⟨ ˜ℎ⟩,
respectively. The convention is that the values in the parenthesis

(𝑎, 𝑏, 𝑐) represent the secret knowledge (witnesses) that is being
proven by using the other values to which the verifier has access.

In our construction, we consider the generalized Schnorr protocol

[44] to create proofs of such composite statements, which, due to

space limitations, is described in Appendix A.

3.4 BBS+ Signatures
Inspired by the group signature scheme in [8], BBS+ signatures [11]

are a multi-message digital signature scheme that allows for signing

an ordered list of messages where the specially produced signature

has a constant size, regardless of the number of messages. In the

context of verifiable credentials, note that we consider “attributes”

instead of “messages”, i.e., a verifiable credential is an ordered set of

attributes (representing different claims) with a corresponding BBS+

signature over those attributes from some trusted issuer. Given such

a BBS+ signature, the credential holder can create zero-knowledge

proofs of knowledge of the signature and the corresponding signed

attributes and optionally disclose select attributes.

In total, a BBS+ signature scheme consist of three algorithms

BBS+ = (KeyGen, Sign,Verify) that work as follows.

• BBS+.KeyGen(𝐿) → (ick, ipk, isk): given a desired number

of attributes 𝐿, take (ℎ0, . . . , ℎ𝐿) ←$G𝐿+1
1

, isk←$Z∗𝑝 , ipk←
𝑔
isk
2

, and output ick← (ℎ0, . . . , ℎ𝐿) as the commitment key

and ipk and isk as the public and secret keys, respectively.

• BBS+.Sign(isk, ick, (𝑎1, . . . , 𝑎𝐿)) → 𝜎 : given a secret key,

a commitment key, a sequence of attributes to sign, parse

ick = (ℎ0, . . . , ℎ𝐿), choose a random 𝑒, 𝑠 ←$Z𝑝 , compute

𝐴 ← (𝑔1ℎ𝑠
0

∏𝐿
𝑖=1 ℎ

𝑎𝑖
𝑖
)1/(𝑒+isk) , and output 𝜎 ← (𝐴, 𝑒, 𝑠) as

the multi-attribute BBS+ signature.

• BBS+.Verify(ipk, ick, (𝑎1, . . . , 𝑎𝐿), 𝜎) → 𝑏 ∈ {0, 1}: given a

public key, a commitment key, a sequence of attributes, and

a purported signature, parse ick = (ℎ0, . . . , ℎ𝐿), 𝜎 = (𝐴, 𝑒, 𝑠),
and accept (𝑏 = 1) the signature only if 𝑒 (𝐴, ipk · 𝑔𝑒

2
) =

𝑒 (𝑔1ℎ𝑠
0

∏𝐿
𝑖=1 ℎ

𝑎𝑖
𝑖
, 𝑔2).

Note that in our construction, we employ an extension of the

above notation, which we describe in Section 5.1.1 to require the

assistance of the credential holder’s core element when producing

presentations (i.e., proofs of knowledge of a BBS+ signature).

3.5 (Commit-Carrying) zkSNARKs
While Sigma protocols are efficient for algebraic statements, they

are significantly slower when it comes to non-algebraic ones [1],

e.g., cryptographic hash functions represented as arithmetic circuits.

Fortunately, constructions called zero-knowledge Succinct Non-

Interactive ARguments of Knowledge (zkSNARKs) [30] present an

effective alternative approach to proving statements about func-

tions represented as Boolean or arithmetic circuitsC, which, in turn,
are expressed in NP-complete languages such as Rank-1-Constraint-

System (R1CS) or Quadratic Arithmetic Programs (QAPs).

In a nutshell, a zkSNARK allows the credential holder to prove

that they have correctly executed an arithmetic circuit C on public

input 𝑥 and secret input 𝑤 (called the witness), as follows. After

taking C as input, a one-time setup is performed to give two public
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keys: an evaluation key ek and a verification key vk. The evaluation
key ek enables credential holders to produce a proof 𝜋 attesting

to the fact that 𝑥 and𝑤 satisfied C. The non-interactive proof 𝜋 is

zero knowledge and a proof of knowledge. The proof reveals nothing
about 𝑢, but anyone can verify its correctness using only vk.

Furthermore, note that a credential holder is expected to supply

attributes from its issued credential as secret witnesses to the arith-

metic circuits to prove that its attributes satisfy some arbitrarily

complex predicate. However, since a holder might cheat, we require

that the holder additionally proves that the secret witness used in

the proof generation matches the attribute in its issued credential.

While the standard zkSNARK construction has no such capability

built-in (and it is costly to express directly in a circuit), there, fortu-

nately, exists an alternative construction called commit-carrying zk-
SNARKs (cc-zkSNARKs) [17], where the proof additionally contains
a commitment (in our case we consider the Pedersen commitment

described in Section 3.2) to some portion𝑢 of the witness, i.e., we as-

sume that the witness can be split into two subdomains𝑤 = (𝑢,𝜔),
where 𝜔 refers to the non-committed part of the witness.

In total, cc-zkSNARK schemes consist of three algorithms ccΠ =

(KeyGen, Prove,VerProof) that work as follows and satisfy the no-

tions of zero-knowledge, completeness, succinctness, knowledge sound-
ness, and binding as defined below.

• ccΠ.KeyGen(C,𝑊 , 1_) → (ck, ek, vk): given an arithmetic

circuit C, a desired number of witnesses to commit to𝑊 , and

a security parameter _, output a common reference string

that includes a commitment key ck with𝑊 + 1 generators,
an evaluation key ek, and a verification key vk.
• ccΠ.Prove(C, ek, 𝑥,𝑤) → (𝑡, 𝜋, 𝑜): given an evaluation key

ek for a circuit C, public input 𝑥 and secret witness 𝑤 =

(𝑢,𝜔) such thatC(𝑥,𝑤) holds, output a proof 𝜋 , commitment

𝑡 , and opening 𝑜 such that Ped.VerCommit(ck, 𝑡, 𝑢, 𝑜) = 1.

• ccΠ.VerProof (C, vk, 𝑥, 𝑡, 𝜋) → 𝑏 ∈ {0, 1}: given a verifica-

tion key vk for a circuit C, public input 𝑥 , a commitment 𝑡 ,

either accepts (𝑏 = 1) or rejects (𝑏 = 0) the proof 𝜋 .

Completeness. For any _ ∈ N and C where C(𝑥,𝑤) = 1, it holds:

Pr

[
(ck, ek, vk) ← KeyGen(C,𝑊 , _)
(𝑡, 𝜋, 𝑜) ← Prove(C, ek, 𝑥,𝑤) :

VerProof (C, vk, 𝑥, 𝑡, 𝜋)
]
= 1

Binding. For every polynomial-time adversary A the following

probability is negl(_):

Pr

[
(ck, ek, vk) ← KeyGen(C,𝑊 , _)
(𝑡, 𝒖, 𝑜, 𝒖 ′, 𝑜 ′) ← A(C, ck, ek, vk) :

VerCommit(ck, 𝑡, 𝒖 ′, 𝑜 ′)
∧VerCommit(ck, 𝑡, 𝒖, 𝑜)
∧𝒖 ≠ 𝒖 ′

]
Besides these notions, knowledge-soundness informally states

that we can efficiently “extract” a valid witness from proofs that

pass verification. Succinctness means that proofs are of size poly(_)
· (_ + log |𝑤 |) and can be verified in time poly(_) (_ + |𝑥 | + log |𝑤 |).
Finally, zero knowledge essentially means that proofs leak nothing

about the witness. See [17] for further details.

Note that we only assume commit-carrying zkSNARKs in the

formalization of our scheme. Here the commitment key depends on

the relation taken by KeyGen, and a commitment is freshly created

by the Prove algorithm and is tied to a single proof. However, note

that the cc-SNARK lifting compiler in [17] can turn any cc-SNARK

into the more versatile commit-and-prove zkSNARK version where

the commitment key is relation-independent and allows for finer

composition of different CP-zkSNARKs. Thus, it follows that our

approach can be extended to work with modular CP-zkSNARKs.

3.6 Designated Verifier Proofs
Let Φ be our proof statement (e.g., proof of knowledge of a BBS+

signature). Jakobsson in [35] introduced the concept of a designated

verifier, which essentially means that in a proof of Φ, we ensure
that the proof can convince only a particular verifier. The idea is

simple, instead of directly proving Φ, we create a transcript 𝜋 of

the disjunctive proof statement Φ ∨ 𝜙𝐵𝑜𝑏 , where 𝜙𝐵𝑜𝑏 is a proof

of knowledge of the designated verifier’s secret key, in this case,

Bob’s. It essentially becomes a designated verifier proof, as Bob,

the designated verifier, can always use his trapdoor to simulate

a transcript without satisfying Φ. However, we can convince Bob

about Φ since we can only produce a correct transcript if we satisfy

Φ as we do not know Bob’s secret key. Furthermore, since a third

party, Cindy, cannot distinguish between a transcript whereΦ holds

or 𝜙𝐵𝑜𝑏 holds, she reasonably rejects the proof and thus effectively

stops a transfer of the conviction.

4 SYSTEM AND THREAT MODEL
Before delving into the protocol details, we present the considered

setting and assumptions concerning the protocol participants.

4.1 System Model
We consider a network setting with four types of entities:

(1) Holder (Helper) is an untrusted, computationally capable

device with a credential containing some attributes/claims

and initially interacts with the issuer to obtain signatures

over its credential. Then, on request, the helper collaborates

with its core element to generate designated verifier proofs
of knowledge of the issuer’s signature over select attributes
while optionally disclosing a subset of attributes and proving

arbitrary relations on the remaining undisclosed attributes.

(2) Holder (Core) is a trusted and resource-constrained element

belonging to a holder and is involved in that holder’s initial

credential issuance phase. Before a credential is issued to the

holder’s primary device (helper), the core element generates

a fresh asymmetric keypair, whose public key is used in the

issuer’s signature over the credential to require the assistance

of the core element in each presentation of the credential.

(3) Designated Verifier is a resource-constrained and poten-

tially dishonest entity with a certified keypair who wishes to

check whether a holder’s credential satisfies some predicate.

(4) Issuer is a trusted entity with a certified keypair and is re-

sponsible for securely issuing credentials to holders, which

includes: (i) verifying the correctness of the attributes claimed

by a holder and (ii) guaranteeing that the involvement of the

trusted core element of the specific holder is needed in the

generation of credential presentations.

4.2 Threat Model
We assume that holders and designated verifiers are mutually dis-

trusting. The holder assumes that the designated verifier might later
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attempt to profit from its credential presentations by leaking them

to third parties to sell whatever information can be inferred from

the underlying proof statement or disclosed attributes as being valid.

Conversely, the designated verifier assumes that the holder will

attempt to cheat in the proof generation by posing an invalid cre-

dential as valid or claiming that its credential satisfies the verifier’s

predicate when it does not.

4.3 Trust Model
As in [35], we assume that Cindy, a third party, will not trust Bob, a

designated verifier, to have produced a proof 𝜋 = Φ ∨ 𝜙𝐵𝑜𝑏 , where
𝜙𝐵𝑜𝑏 is a proof of knowledge of Bob’s secret key and Φ is some

arbitrary proof statement (i.e., policy predicate) which the holder

(Alice) wishes to prove the truth of. We also assume that Cindy is

not an observer of the communication between a credential holder

and the designated verifier. Due to space limitations, we elaborate

on this decision in Appendix B. This assumption naturally holds

in many use cases, especially those based on Distributed Ledger

Technologies, where proofs might be stored on a blockchain.

4.4 Objectives
Let Φ be a predicate defined dynamically by a certified, designated

verifier. Our protocol’s overarching objectives are two-fold: (i) a

designed verifier, Bob, always rejects transcripts for the proof of

Φ ∨ 𝜙𝐵𝑜𝑏 unless Φ correctly holds on credentials issued by the

trusted issuer and the core element of the corresponding credential

holder was involved in producing the transcript, and (ii) a proof pro-

duced to convince a designated verifier, Bob, cannot be used later

to convince another verifier, Cindy. Note that while we consider

the helper potentially dishonest, a well-known problem in such a

setting is that a corrupted helper can always break the privacy of an

anonymous credential system, e.g., by adding identifying metadata.

The core cannot check such de-anonymization attacks. Neverthe-

less, as in [32], we do not tolerate a malicious helper producing

valid credential presentations without interacting with the core.

5 THE PROTOCOL
Overview of our solution. Fig. 1 shows a high-level work-flow of

our scheme considering the different entities described in Section

4.1, which follows the core/helper model of [32]. Before obtaining

verifiable credentials from the issuer, the core generates a crypto-

graphic keypair (step 1), whose secret part never leaves the shielding

of the core. The holder can now request credentials from the issuer

(step 2), where the core is required to supply its public key together

with a proof of knowledge of the secret key (step 3) to ensure that the
core must be involved in all presentations of the issued credentials.

After the issuing (step 4), the verifiable credentials are stored on

the helper (step 5). Then, to check whether a holder in the system

has credentials that satisfy some arbitrarily complex predicate, des-

ignated verifiers can craft a presentation request (step 6), which

includes the predicate, describes the predicate’s accepted attributes,

and states which attributes should be disclosed. Supposing that

a holder decides to answer a presentation request, it asks for its

core’s contribution (step 7) before completing the proof over the

predicate (step 8) and finally sending the designated-verifier proof

(and any disclosed attributes) to the verifier (step 9) who either

Issuer

Designated Veri�er

Holder (Helper)

Secure Element
(Core)

2

3
1

4

7
5

6
8

9

Figure 1: System model and conceptual work-flow.

accepts or rejects the proof. Note that steps 2 to 4 must occur over

authentic channels, which can be realized in multiple ways. How-

ever, in this paper, we are not interested in how the issuer verifies

the holder’s claims before issuing authentic credentials nor in how

we can establish an authentic channel during the issuance phase,

i.e., we assume ideal functionality for the channel.

5.1 Building Blocks
We employ the cryptographic primitives described in Section 3 to

create our protocol, which has several resemblances to the DAA

with attributes (DAA-A) protocol proposed in [11]. Specifically,

authors of [11] extend the BBS+ signature scheme described in

Section 3.4 to require the public part of a TPM-generated secret in

the issuer’s BBS+ signature, thus requiring the TPM’s contribution

whenever the platform wants to produce proofs of knowledge of the
signature. Similarly, we consider the same extension of the BBS+ sig-

nature, which we describe in Section 5.1.1, to require contributions

from the trusted core element of credential holders in credential pre-

sentations. However, note that for clarity in presenting the primary

objectives of this paper, we exclude the signature-based revocation

and the use of pseudonyms from the protocol in [11], which we

instead defer as extensions to decorate our protocol in Section 7.

Recall that the objective of this paper is: (i) extending the BBS+

scheme to support arbitrary predicates over attributes expressed as

arithmetic circuits using cc-zkSNARKs and (ii) making credential

presentations (i.e., proofs) designated verifier. However, note that we
are working with two separate proofs. The first proof a holder must

produce is a proof that its attributes satisfy the predicate using some

sound cc-zkSNARK proof system, which returns, besides a proof

of correctness of the predicate, a Pedersen commitment over the

attributes that were passed as secret witnesses. The second proof

is a composite proof of knowledge of a valid BBS+ signature where

certain undisclosed attributes (as specified by the verifier) match

the secret witnesses in the Pedersen commitment associated with

the zkSNARK proof, thus proving that the attributes that satisfied

the predicate originated from the issued credential. Note that both

proofs must be made designated verifier. We describe how to make

the former proof designated verifier in Section 5.1.2 and the latter

in Section 5.1.3. We then put everything together in Section 5.3.

5.1.1 Split BBS+ Signatures. We denote the extended BBS+ signa-

ture scheme, wherein the issuer commits to the trusted core’s public

key in its BBS+ signature, as a split (core/helper) BBS+ scheme. The

scheme consist of three algorithms sBBS+ = (KeyGen, Sign,Verify)
that work as follows. Note that the scheme’s security follows [11].

• sBBS+.KeyGen(𝐿) → (ick, ipk, isk): given a desired number

of attributes 𝐿, take ick←$G𝐿+2
1

, isk←$Z∗𝑝 , ipk ← 𝑔
isk
2
,
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and output ick, ipk, and isk as the issuer’s commitment key,

public key, and secret key, respectively.

• sBBS+.Sign(isk, ick, cpk, (𝑎1, . . . , 𝑎𝐿)) → 𝜎 : given a secret

key, commitment key, a core’s public key, and a sequence of

attributes to sign, choose a random 𝑒, 𝑠 ←$Z𝑝 , compute 𝐴

← (𝑔1ick𝑠
0
cpk

∏𝐿
𝑖=1 ick

𝑎𝑖
𝑖+1)

1/(𝑒+isk)
, and output 𝜎 ← (𝐴, 𝑒,

𝑠) as the multi-attribute BBS+ signature.

• sBBS+.Verify(ipk, ick, cpk, (𝑎1, . . . , 𝑎𝐿), 𝜎) → 𝑏 ∈ {0, 1}: in
a public key, a commitment key, a core’s public key, a se-

quence of attributes, and a purported signature, parse 𝜎 =

(𝐴, 𝑒, 𝑠), and accept (𝑏 = 1) the signature only if𝐴 ≠ 1G1
and

𝑒 (𝐴, ipk · 𝑔𝑒
2
) = 𝑒 (𝑔1ick𝑠

0
cpk

∏𝐿
𝑖=1ick

𝑎𝑖
𝑖+1, 𝑔2).

Before issuing verifiable BBS+ signatures to credential holders

for credentials with a certain number of attributes 𝐿, an issuer must

first create its keypair: (ick, ipk, isk) ← sBBS+.KeyGen(𝐿) and
register its public key and commitment key (i.e., generators in G1)
at some trusted certificate authority as described in [11].

Assumptions. For brevity, we consider an already registered is-

suer. Furthermore, we assume that protocol participants have been

equipped with the system parameters consisting of a security pa-

rameter _, a bilinear group G1,G2,G𝑇 of prime order 𝑝 with gener-

ators 𝑔1, ick0, . . . , ick𝐿+1 of G1 and 𝑔2 of G2 and a bilinear map 𝑒 ,

generated via G(1_). We further assume a random oracleH : {0, 1}∗
→ {0, 1}_ , which is used for the Fiat-Shamir heuristic [28] to make

non-interactive zero-knowledge proofs in the random oracle model.

PoK of BBS+ Signature. Let𝐷 ⊂ {1, . . . , 𝐿} denote the selection of
attribute indices that a holder wants to disclose as part of its proof

of knowledge and 𝑈 = {1, . . . , 𝐿} \ 𝐷 denote the set of undisclosed

attributes. To prove knowledge of a BBS+ signaturewhile selectively

disclosing attributes 𝑎𝑖 with 𝑖 ∈ 𝐷 , the holder first computes 𝑏 ←
𝑔1ick𝑠0cpk

∏𝐿
𝑖=1 ick

𝑎𝑖
𝑖+1 and then proceeds as follows. Randomize

the credential by taking 𝑟1 ←$Z∗𝑝 , set𝐴
′ ← 𝐴𝑟1 , and set 𝑟3 ← 1/𝑟1.

Set 𝐴← 𝐴′−𝑒 ·𝑏𝑟1 (= 𝐴′isk). Choose 𝑟2 ←$Z𝑝 , set 𝑑 ← 𝑏𝑟1 · ick−𝑟2
0

,

and set 𝑠 ′ ← 𝑠 − 𝑟2 · 𝑟3. The holder now proves knowledge of a

BBS+ signature following (1).

𝜋 ∈ 𝑃𝑜𝐾{(csk, {𝑎𝑖 }𝑖∈𝑈 , 𝑒, 𝑟2, 𝑟3, 𝑠 ′) :

𝐴/𝑑 = 𝐴′−𝑒 ick𝑟2
0
∧ 𝑔1

∏
𝑖∈𝐷

ick𝑎𝑖
𝑖+1 = 𝑑

𝑟3 ick−𝑠
′

0
ick−csk

1

∏
𝑖∈𝑈

ick−𝑎𝑖
𝑖+1 }

(1)

The resulting proof is (𝐴′, 𝐴, 𝑑, 𝜋). To verify a proof, the verifier

checks 𝐴′ ≠ 1G1
, 𝑒 (𝐴′, ipk) = 𝑒 (𝐴,𝑔2), and verifies the proof 𝜋 .

5.1.2 Designated Verifier Circuits. Recall that a trapdoor allows us
to simulate a valid proof without knowing the satisfying witness,

and the simulated proof is indistinguishable from a “real” proof.

While typically, we would not want a prover to have access to a

trapdoor, our scheme depends on trapdoors to make proofs des-
ignated verifier. Without a trapdoor, a proof that a predicate (i.e.,

circuit) was satisfied can be very revealing to third parties for which

the proof was not originally intended. This is particularly true for

circuits representing more complex functions, such as membership

checks, knowledge of preimages (secrets), and range checks.

While it might be ridiculous to include a trapdoor inside simple

circuits where anyone knows a satisfying witness, e.g., a circuit that

only includes a range check, more complex circuits must include

a trapdoor since satisfying witnesses are not publicly known. We

continue by first defining designated verifier circuits in Definition

5.1, and then proceed by giving three examples of trapdoor func-

tions with Bob as the contextual designated verifier. (We compare

the performance of each trapdoor in our evaluation in Section 6.)

Definition 5.1 (Designated Verifier Circuit). Let C be a circuit for

the function 𝑓 on public input 𝑥 and secret witness𝑤 , i.e., C(𝑥,𝑤)
holds only if 𝑓 (𝑥,𝑤) holds. We define a designated verifier circuit,
DVC, as a circuit that accepts 𝑥 = (𝑥1, 𝑥2) and 𝑤 = (𝑢,𝜔), and
includes a second function ℎ, which we call the designated trapdoor,

such thatDVC(𝑥,𝑤) holds either if 𝑓 (𝑥1, 𝑢) holds or ℎ(𝑥2, 𝜔) holds.

Example 5.2 (Trapdoor #1: PoK of RSA secret key). Bob has a

certified RSA keypair with some public modulus 𝑛. We can define

our designated trapdoor ℎ in our circuit DVC((𝑥1, 𝑥2), (𝑢,𝜔)) as:
ℎ(𝑛, 𝑝, 𝑞) : 𝑝 × 𝑞 = 𝑛, where 𝑝 and 𝑞 are passed as secret witnesses

to the circuit in 𝜔 and 𝑛 is passed in 𝑥2. Thus, anyone besides Bob

who sees a proof with 𝑛 as a public input will reject it since Bob

might have cheated. Conversely, anyone except Bob can only create

a valid proof over the circuit with 𝑛 in 𝑥2 if they know a satisfying

witness to 𝑓 (𝑥1, 𝑢) since they do not know Bob’s secret key.

Example 5.3 (Trapdoor #2: PoK of EC secret key). Bob has a cer-
tified EC keypair with public key 𝑦 = 𝑔𝑥 . We can define our des-

ignated trapdoor ℎ in our circuit DVC((𝑥1, 𝑥2), (𝑢,𝜔)) as: ℎ(𝑦, 𝑥) :
𝑦 = 𝑔𝑥 , where 𝑥 is passed as a secret witness to the circuit in 𝜔 and

𝑦 is passed in 𝑥2. The conviction follows that of example 5.2.

Example 5.4 (Trapdoor #3: PoK of preimage). Bob has a secret

value 𝑥 with a certified image 𝑦 = H(𝑥 ∥ 𝑟 ), where H is a sound

hashing function, and 𝑟 is some secret blinding factor initially sup-

plied by Bob. We can define our designated trapdoor ℎ in our circuit

DVC((𝑥1, 𝑥2), (𝑢,𝜔)) as: ℎ(𝑦, 𝑥, 𝑟 ) : 𝑦 = H(𝑥 ∥ 𝑟 ), where 𝑥 and 𝑟 are

passed as secret witnesses to the circuit in 𝜔 and 𝑦 is passed in 𝑥2.

The conviction follows that of example 5.2.

In practice, we need assurance that a predicate includes a trap-

door to which the designated verifier has access. For example, con-

sider a circuit C with a supposed trapdoor from Example 5.3 and

includes ek and vk as its evaluation and verification keys, respec-

tively. We can determine the existence of this trapdoor with (2).

(pk′, sk′) ←$KGen(1_)
(𝑡 ′, 𝜋 ′, 𝑜 ′) ← ccΠ.Prove(C, ek, (𝑥, pk′), ({0, 1}𝑊 , sk′))

ccΠ.VerProof (C, vk, (𝑥, pk′), 𝑡 ′, 𝜋 ′) ?

= 1

(2)

If (2) holds, the circuit is designated verifier according to Defini-

tion 5.1. However, note that such checks require an extra execution

of the proof generation for a circuit, which can be expensive for

large circuits. Thus, in practice, we might outsource such trapdoor

verification either to a certification authority or distributed worker

farms [52] that return proof about the presence of the trapdoor. For

brevity, in the remaining paper, we denote by DVC a circuit that

has been verified to be a designated verifier circuit.

5.1.3 Designated Verifier Sigma Protocols. Let us assume that we

have a credential comprising 𝐿 attributes: (𝑎1, . . . , 𝑎𝐿). Let𝐷 denote

the attribute indices we are supposed to disclose. The remaining

undisclosed attribute indices are𝑈 = {1, . . . , 𝐿}\𝐷 . Furthermore, let
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DVC be a circuit for which we want to prove to the designated ver-

ifier that we have satisfying witnesses. Finally, let 𝒖 = (𝑢1, . . . , 𝑢𝑊 )
specify the sequence of attribute indices that we must supply as

witnesses to the circuit, where 𝒖𝑖 ∈ 𝑈 and𝑊 denotes the slice of

committed witnesses as determined during the circuit’s key genera-

tion, i.e., the circuit’s commitment key ck contains𝑊 +1 generators.
To produce a designated-verifier proof over the circuit using the

specified attributes from our credential, where dvpk is the public
key of the designated verifier, and 𝑥 is some public input, we run:

(𝑡𝑢 , 𝜋, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk), ((𝑎𝒖𝑖 )𝑖∈[𝑊 ] , 𝜔))

To prove knowledge of the secret ingredients of the Pedersen

commitment while also allowing the designated verifier to produce

valid proofs, we form the following disjunctive proof statement:

𝜋 ∈ 𝑃𝑜𝐾{({𝑎𝑖 }𝑖∈𝒖 , 𝑜) ∨ dvsk : 𝑡𝑢 = ck𝑜
0

𝑊∏
𝑖=1

ck𝑎𝒖𝑖
𝑖
∨ dvpk = 𝑔dvsk}

(3)

Then, to produce non-interactive proofs that we know of a solu-

tion to one of the problems without anyone learning which solution

we know, we use the idea described in [15], which is based on the

initial result proposed by Cramer et al. [22]. The idea is based on the

generalization of the Schnorr protocol [44] (described in Appendix

A), where we execute the two proof systems in parallel, but we

additionally allow the prover to “cheat” in one of them in an indis-

tinguishable manner, as follows (computations are done modulo

the curve order 𝑝). Pick 𝑟𝑎𝑖 ←$Z𝑝 for 𝑖 ∈ 𝒖, 𝑟𝑜 , 𝑟dvsk ←$Z𝑝 , and a

random (cheating) challenge 𝑐2 ←$Z𝑝 for the second term of (3)

since we are not the designated verifier. We then compute the two

commitments: 𝑡1 ← ck𝑟𝑜
0

∏𝑊
𝑖=1 ck

𝑟𝑎𝒖𝑖
𝑖

and 𝑡2 ← 𝑔𝑟dvsk · dvpk𝑐2 . To
get the challenge for the first term, 𝑐1, we first compute 𝑐 ← H(𝑡1 ∥
𝑡2 ∥ ck ∥ 𝑔 ∥ 𝑡𝑢 ∥ dvpk) and then 𝑐1 ← 𝑐 − 𝑐2. We can then compute

the challenge responses as: 𝑠𝑎𝑖 ← 𝑟𝑎𝑖 +𝑐1𝑎𝑖 for 𝑖 ∈ 𝒖, 𝑠𝑜 ← 𝑟𝑜 +𝑐1𝑜 ,
and 𝑠𝑟dvsk ← 𝑟dvsk. Our final proof transcript for (3) is 𝜋

′ ← (𝑐1,
𝑐2, 𝑡𝑢 , {𝑠𝑎𝑖 }𝑖∈𝒖 , 𝑠𝑜 , 𝑠𝑟dvsk ), which we give to the designated verifier

together with the zkSNARK proof 𝜋 .

To verify that 𝜋 ′ is a valid transcript for (3), where 𝑡𝑢 ∈ 𝜋 ′ is a
satisfying commitment to 𝜋 , i.e., ccΠ.VerProof (DVC, vk, (𝑥, dvpk),
𝑡𝑢 , 𝜋) = 1 holds, the verifier first reconstructs the commitments: 𝑡 ′

1

← ck𝑠𝑜
0
· (∏𝑊

𝑖=1 ck
𝑠𝑎𝒖𝑖
𝑖
) · 𝑡−𝑐1𝑢 and 𝑡 ′

2
← 𝑔

𝑠𝑟dvsk · dvpk𝑐2 , and then

checks that 𝑐1 + 𝑐2 = H(𝑡 ′
1
∥ 𝑡 ′

2
∥ ck ∥ 𝑔 ∥ 𝑡𝑢 ∥ dvpk) holds. Note that

the only missing ingredient of (3) is proving that the attributes

originated from a valid BBS+ signature, i.e., that the discrete loga-

rithms of the Pedersen commitment 𝑡𝑢 match the attribute indices

specified by 𝒖 in a valid credential, which we explain in Section 5.3.

5.2 Core/Helper Credential Issuance
As described in Section 5.1.1, we assume that protocol participants

have been equipped with the system parameters and the issuer’s

trusted cryptographic materials. Fig. 2 shows the issuance protocol

initiated by a holder that wishes to get the issuer’s BBS+ signature

over its claims. After the issuer has performed all the necessary

steps to verify the authenticity of the holder’s claims, it opens a

communication channel with the holder’s trusted core element.

Here the issuer ensures the core’s active participation whenever

the helper wishes to produce proofs of knowledge of the issuer’s

BBS+ signature over the holder’s claims. To do so, the issuer sends

a fresh challenge to the core, requesting the core to generate a fresh

key pair whose public key should be included in the BBS+ signature.

Note that by including the core’s public key in the signature, we

prevent the helper from independently producing proofs of knowl-
edge of the signature since only the core can produce the necessary

contributions in the Schnorr protocol to prove knowledge of the

public key’s discrete logarithm, i.e., the core secret key csk in (1).

Like [11], we assume that this communication between the issuer

and the core occurs over an authenticated channel and, similarly,

that there is a secure channel between the holder and its core.

When the core has created its key pair, it produces a signed proof
of knowledge that it knows the secret key behind its public key: 𝜋

←$ 𝑆𝑃𝑜𝐾{(csk) : cpk = ickcsk
1
}(𝑛), where 𝑛 is the verifier’s fresh

challenge. The proof and public key are then sent to the issuer, who,

after verifying the proof, proceeds to use its secret key to generate

a BBS+ signature over the holder’s claims that also incorporates the

core’s public key. Finally, given the issuer’s signature, the holder

checks the signature’s validity before storing it in persistent storage.

The holder also stores the product the issuer signed to ease the

computational effort needed to produce credential presentations.

5.3 Designated Verifier Credential Presentations
To demonstrate the protocol, let us consider a simple settingwhere a

credential holder knows of a designated verifier, and the designated

verifier wants to determine whether the holder has valid credentials

whose attributes satisfy some designated verifier circuit DVC. Like
Section 5.1.3, we consider credentials with 𝐿 attributes, where the

order and meaning of the attributes are known
1
. Let 𝐷 denote

the attribute indices the designated verifier wants to be disclosed

such that 𝑈 = {1, . . . , 𝐿} \ 𝐷 contains the remaining undisclosed

attribute indices. Finally, let 𝒖 = (𝑢1, . . . , 𝑢𝑊 ) specify the sequence

of attribute indices that should be passed as circuit witnesses, with

𝒖𝑖 ∈ 𝑈 . Fig. 3 shows the participants engage in the protocol.

Like in Section 5.1.3, to prove that the specified attributes satisfy

the predicate, the holder generates a commit-carrying zkSNARK

proof over the circuit with the specified selection of attributes as

the committed part of the witness:

(𝑡𝑢 , 𝜋 ′, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk), ((𝑎𝒖𝑖 )𝑖∈[𝑊 ] , 𝜔))

Then, to generate a designated-verifier zero-knowledge proof of

a valid BBS+ signature while proving that the committed witnesses

𝑡𝑢 from the zkSNARK proof equal the attributes specified by 𝒖 in

the signed credential, we merge the proof statements of (1) and (3),

resulting in (4). The holder first randomizes its BBS+ signature as

described in Section 5.1.1 and then produces a proof of (4):

𝜋 ∈ 𝑆𝑃𝑜𝐾
{

(csk, {𝑎𝑖 }𝑖∈𝑈 , 𝑒, 𝑟2, 𝑟3, 𝑠 ′, 𝑜) ∨ dvsk :

(
𝐴/𝑑 = 𝐴′−𝑒 ick𝑟2

0
∧ 𝑔1

∏
𝑖∈𝐷

ick𝑎𝑖
𝑖+1 = 𝑑

𝑟3 ick−𝑠
′

0
ick−csk

1

∏
𝑖∈𝑈

ick−𝑎𝑖
𝑖+1

∧ 𝑡𝑢 = ck𝑜
0

𝑊∏
𝑖=1

ck𝑎𝒖𝑖
𝑖

)
∨
(
dvpk = 𝑔dvsk

)}
(𝑛)

(4)

1
In practice, the credentials follow richer and standardized formats (e.g., the schema

defined by W3C [50]), where we also encounter serialization challenges.
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Holder (Core) Holder (Helper) Issuer

ick (ick, ipk, 𝑔1, 𝑔2), (𝑎𝑖 )𝑖∈[𝐿] ick, ipk, isk, 𝑔1 ∈ G1, 𝑔2 ∈ G2

Ask Issuer to sign credentials (𝑎𝑖 )𝑖∈[𝐿]
𝑛 ←$ {0, 1}_

𝑛𝑛
csk←$Z𝑝 , cpk← ickcsk

1

𝑟 ←$Z𝑝

𝑡 ← ick𝑟
1

𝑐 ← H(ick1 ∥ cpk ∥ 𝑡 ∥ 𝑛)
𝑠 ← 𝑟 − csk · 𝑐 𝜋 = (𝑐, 𝑠), cpk 𝜋 = (𝑐, 𝑠), cpk

𝑡 ′ ← ick𝑠
1
cpk𝑐

𝑐′ ← H(ick1 ∥ cpk ∥ 𝑡 ′ ∥ 𝑛)

𝑐′
?

= 𝑐

𝜎 ← sBBS+.Sign(isk, ick, cpk, (𝑎𝑖 )𝑖∈[𝐿] )𝜎 = (𝐴, 𝑒, 𝑠)
sBBS+.Verify(ipk, ick, cpk, (𝑎𝑖 )𝑖∈[𝐿] , 𝜎)

?

= 1

store 𝑏 ← 𝑔1ick𝑠0cpk
∏𝐿

𝑖=1 ick
𝑎𝑖
𝑖+1

Figure 2: Credential issuance using the split BBS+ signature scheme.

This statement is a disjunction of two outer relations. The first

outer relation is a conjunction of three inner relations, which the

holder attempts to prove together with its core, and the second is for

the designated verifier. Note that we create the outer disjunction

following the idea in Section 5.1.3. Specifically, we execute the

Schnorr proof of knowledge protocol for each of the four relations

to prove knowledge of the different discrete logarithms. However,

we use a different half of the challenge in each of the outer relations.

Finally, to verify that 𝜋 is a valid transcript for (4), where 𝑡𝑢 is a

satisfying commitment to 𝜋 ′, i.e., ccΠ.VerProof (DVC, vk, (𝑥, dvpk),
𝑡𝑢 , 𝜋

′) = 1 holds, the verifier reconstructs and verifies the four

commitments as shown in Fig. 3. Then, to verify the accompanying,

randomized BBS+ signature (𝐴′, 𝐴, 𝑑) against the issuer’s public
key, the verifier checks that 𝐴′ ≠ 1G1

and 𝑒 (𝐴′, ipk) = 𝑒 (𝐴,𝑔2).
Note that if the holder attempts to use an invalid sequence of at-

tributes to satisfy the predicate (i.e., one not specified by 𝒖), then the
proof will be rejected. Specifically, since the verifier’s reconstruc-

tion of the 𝑡 ′
3
commitment considers the 𝑠-values corresponding

to the correct sequence of attributes as specified by 𝒖, the recon-
structed commitment would inevitably differ from 𝑡𝑢 , producing a

different challenge 𝑐 ′ and thus causing the proof to be rejected.

5.3.1 Simulating Transcripts. Demonstrating how the protocol is

designated verifier, Fig. 4 shows the designated verifier producing

valid transcripts for arbitrary attributes using the demonstrative

trapdoor in the circuit and satisfying the latter outer relation in (4).

6 PERFORMANCE EVALUATION
Our evaluation aims to answer the questions of (i) how efficient

our protocol is for creating credential presentations and (ii) how

costly the considered method is for making it designated verifier.
Experimental setup. To program demonstrative circuits, we used

xJsnark [37], a high-level code-to-circuit compilation framework

that employs a mix of optimizations to minimize circuit complex-

ity. With xJsnark, our high-level code is compiled into low-level

circuits, which, using the jsnark interface [36], are translated into

the R1CS constraint system and fed into the libsnark [38] back-

end for instantiating a particular zkSNARK proof system over the

circuit. In our case, we considered an implementation [39] of the

LegoGro16 [17] proof system (over the BN254 curve) for producing

commit-carrying zkSNARK proofs. The specific LegoGro16 imple-

mentation is essentially a commit-and-prove variant of libsnark’s

implementation of Groth16 [30]. However, since we only require

the zkSNARK to be commit-carrying, we assume the complexity of

the commit-carrying variant here. As our testbed (holder), we con-

sidered amachine with an AMDRyzen 7 3700X processor and 16 GB

of memory (experiments were conducted in a WSL2 environment).

Notation. By 𝑘G𝑖 , we denote 𝑘 exponentiations (scalar multiplica-

tions) in the groupG𝑖 , by 𝑘G
𝑗
𝑖
we denote 𝑘 𝑗-multi exponentiations,

and by𝑘𝑃 we denote𝑘 pairing operations.We let𝑊 denote the num-

ber of witnesses committed to in the considered commit-carrying

zkSNARK proof system, 𝐿 denote the number of attributes, and 𝐷

and 𝑈 denote the number of disclosed and undisclosed attributes,

respectively. Finally, to reason about the computational complexity

incurred by varying arithmetic circuit sizes, we consider circuits as

R1CS instances where we use𝑀 to denote the number of constraints

and 𝑁 to denote the number of variables in the instance.

Asymptotic performance. Table 1 shows the computational com-

plexity of our construction described in Section 5.3 and includes

a comparison with other related core/helper credential protocols

as described in Section 2. Note, however, that none of the other

schemes consider designated verifiers nor zkSNARKs. Therefore, we
split our protocol’s effort over two rows for comparison purposes.

The difference between ours and the two DAA-A schemes is that

we are not using pseudonyms and we have two challenges (for the

disjunction). Like CHAC [32], our core only needs to compute a sin-

gle EC scalar multiplication, regardless of the number of attributes.

Furthermore, note that for the considered curve, Groth16’s proof

is 127 bytes and contains 3 group elements (2 G1 elements and 1

G2 element), and 3 pairings dominate verification. However, with

the considered commit-carrying variant, we additionally have a

Pedersen commitment to the𝑊 witnesses in G1.
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Holder (Core) Holder (Helper) Designated Verifier

ick, (csk, cpk) (ick, ipk, 𝑔1, 𝑔2), (𝑎𝑖 )𝑖∈[𝐿] , 𝜎 = (𝐴, 𝑒, 𝑠), 𝑏, dvpk (dvsk, dvpk = 𝑔dvsk), (ick, ipk, 𝑔1, 𝑔2), (DVC, ck, ek, vk), 𝑥

𝐷 ⊂ {1, . . . , 𝐿} attribute indices to disclose

𝒖 = (𝑢1, . . . ,𝑢𝑊 ) indices to pass as witness to circuit

𝑛 ←$ {0, 1}_(DVC, ck, ek), 𝐷, 𝒖, 𝑥, 𝑛

Generate cc-zkSNARK proof

𝑤 ← ((𝑎𝒖𝑖 )𝑖∈[𝑊 ] , 𝜔)
(𝑡𝑢 , 𝜋 ′, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk), 𝑤)
Randomize BBS+ credential

𝑟1 ←$Z∗𝑝 , 𝑟2 ←$Z𝑝 , 𝑟3 ← 1

𝑟1

𝐴′ ← 𝐴𝑟1

𝐴← 𝐴′−𝑒 · 𝑏𝑟1
𝑑 ← 𝑏𝑟1 · ick−𝑟2

0

𝑠′ ← 𝑠 − 𝑟2𝑟3
Schnorr PoK of discrete logarithms

𝑟𝑎𝑖 ←$Z𝑝 for 𝑖 ∈ 𝑈 = {1, . . . , 𝐿} \𝐷
𝑟𝑒 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑠′ , 𝑟𝑜 , 𝑟dvsk, 𝑐2 ←$Z𝑝

get Schnorr commitment for secret key𝑟csk ←$Z𝑝

𝑡csk ← ick
𝑟csk
1

𝑡csk
𝑡1 ← 𝐴′𝑟𝑒 · ick𝑟𝑟2

0

𝑡2 ← 𝑑𝑟𝑟3 · ick𝑟𝑠′
0
· 𝑡csk

∏
𝑖∈𝑈 ick

𝑟𝑎𝑖
𝑖+1

𝑡3 ← ck𝑟𝑜
0
·∏𝑊

𝑖=1 ck
𝑟𝑎𝒖𝑖
𝑖

𝑡4 ← 𝑔
𝑟dvsk · dvpk𝑐2

𝑐 ← H(𝑛 ∥𝐴′ ∥𝐴 ∥ 𝑑 ∥ 𝑡1 ∥ 𝑡2 ∥ 𝑡3 ∥ 𝑡4 ∥ 𝑡𝑢 ∥
𝑔 ∥ 𝑔1 ∥𝐷 ∥ 𝒖 ∥ ck ∥ ick ∥ ipk ∥ dvpk)

𝑐1 ← 𝑐 − 𝑐2
get Schnorr response for secret key𝑐1

𝑠csk ← 𝑟csk + 𝑐1 · csk
𝑠csk

𝑠𝑎𝑖 ← 𝑟𝑎𝑖 + 𝑐1𝑎𝑖 for 𝑖 ∈ 𝑈
𝑠𝑒 ← 𝑟𝑒 + 𝑐1𝑒
𝑠𝑟2 ← 𝑟𝑟2 − 𝑐1𝑟2
𝑠𝑟3 ← 𝑟𝑟3 − 𝑐1𝑟3
𝑠𝑠′ ← 𝑟𝑠′ + 𝑐1𝑠′

𝑠𝑜 ← 𝑟𝑜 + 𝑐1𝑜
𝑠𝑟dvsk ← 𝑟dvsk

𝜋 ← (𝑐1, 𝑐2, 𝜋 ′, 𝑡𝑢 , 𝑠csk, {𝑠𝑎𝑖 }𝑖∈𝑈 , 𝑠𝑒 , 𝑠𝑟2 , 𝑠𝑟3 ,

𝑠𝑠′ , 𝑠𝑜 , 𝑠𝑟dvsk )
{𝐴′, 𝐴,𝑑, 𝜋, {𝑎𝑖 }𝑖∈𝐷 }dvpk Verify that ccΠ.VerProof (DVC, vk, (𝑥, dvpk), 𝑡𝑢 , 𝜋 ′)

?

= 1

𝑡 ′
1
← 𝐴′𝑠𝑒 · ick𝑠𝑟2

0
· (𝐴/𝑑)𝑐1

𝑡 ′
2
← 𝑑𝑠𝑟3 · ick𝑠𝑠′

0
· ick𝑠csk

1
· (∏𝑖∈𝑈 ick

𝑠𝑎𝑖
𝑖+1 ) · (𝑔1

∏
𝑖∈𝐷 ick𝑎𝑖

𝑖+1)
𝑐1

𝑡 ′
3
← ck𝑠𝑜

0
· (∏𝑊

𝑖=1 ck
𝑠𝑎𝒖𝑖
𝑖
) · 𝑡−𝑐1𝑢

𝑡 ′
4
← 𝑔

𝑠𝑟dvsk · dvpk𝑐2

𝑐′ ← H(𝑛 ∥𝐴′ ∥𝐴 ∥ 𝑑 ∥ 𝑡 ′
1
∥ 𝑡 ′

2
∥ 𝑡 ′

3
∥ 𝑡 ′

4
∥ 𝑡𝑢 ∥

𝑔 ∥ 𝑔1 ∥𝐷 ∥ 𝒖 ∥ ck ∥ ick ∥ ipk ∥ dvpk)

Verify that 𝑐′ ?

= 𝑐1 + 𝑐2, 𝐴′
?

≠ 1G1 and 𝑒 (𝐴′, ipk) ?

= 𝑒 (𝐴,𝑔2)

Figure 3: Holder proves knowledge of a valid BBS+ signature whose undisclosed attributes satisfy some arbitrary predicate only
to a designated verifier. Since the designated verifier can also create the proof using the trapdoors, it is worthless to anyone else.

Empirical performance. To determine the cost of the different

trapdoors mentioned in Section 5.1.2, we used xJsnark to generate

the corresponding circuits. As also reported at [2], it costs only

2578 constraints to express a function for verifying knowledge of

the two secret prime factors of a 2048-bit RSA key’s modulus as

an arithmetic circuit. However, proving knowledge of an ECDSA

secret key costs almost 700K constraints if we consider the NIST

P-256 curve. For the third choice of a trapdoor, we mentioned that

we could express a hashing function in the circuit and then prove

knowledge of the secret preimage. In our case, we considered the

recent permutation function called Poseidon [29] that was made

to be expressed inexpensively in an arithmetic circuit. With our

implementation of Poseidon, it cost only 241 constraints when

considering an arity of 2 and 262 constraints for an arity of 3, which

allows for preimages fitting three field elements, i.e., a preimage

bitwidth of 762 bits considering the BN254 curve. Note that from our
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Table 1: Comparison of our scheme’s complexity to similar schemes when creating credential presentations by the holder
(helper) and its secure element (core) and verification by the verifier.

Scheme Core Holder (helper) Verifier Credential size Presentation size

DAA-A [11] 3G1 O(𝑈G1) O (𝐿G1) + 2𝑃 2Z𝑝 + 1G1 O(𝑈Z𝑝 ) + 4G1 + 1_
DAA-A [10] 3G1 O(𝑈G1) O (𝐿G1) + 2𝑃 2Z𝑝 + 1G1 O(𝑈Z𝑝 ) + 4G1 + 1_
CHAC [32] 1G1 O(𝐷 (G1 + G2)) O (𝐷𝑃 ) O (𝐿 (G1 + G2)) 6G1 + 3G2

This work (sBBS+) 1G1 O(𝑈G1) O (𝐿G1) + 2𝑃 2Z𝑝 + 1G1 O(𝑈Z𝑝 ) + 3G1 + 2_
This work (ccGroth16) O(2𝑊G1) + O( (3𝑁 +𝑀)G1 + 𝑁G2) O (𝑊G1) + 3𝑃 3G1 + 1G2

Simulate Transcript((𝐴′, 𝐴, 𝑑), (ick, ipk, 𝑔1), (DVC, ck), 𝐷, 𝒖, 𝑥, 𝑛)

(𝑎1, . . . , 𝑎𝐿) ←$Z𝐿𝑝

𝑤 ← ((𝑎𝒖𝑖 )𝑖∈[𝑊 ] , dvsk)
(𝑡𝑢 , 𝜋 ′, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk), 𝑤)
𝑟𝑎𝑖 ←$Z𝑝 for 𝑖 ∈ 𝑈 = {1, . . . , 𝐿} \𝐷
𝑟𝑒 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑠′ , 𝑟csk, 𝑟𝑜 , 𝑟dvsk, 𝑐1 ←$Z𝑝

𝑡1 ← 𝐴′𝑟𝑒 · ick𝑟𝑟2
0
· (𝐴/𝑑)𝑐1

𝑡2 ← 𝑑𝑟𝑟3 · ick𝑟𝑠′
0
· ick𝑟csk

1
· (

∏
𝑖∈𝑈

ick
𝑟𝑎𝑖
𝑖+1 ) · (𝑔1

∏
𝑖∈𝐷

ick𝑎𝑖
𝑖+1)

𝑐1

𝑡3 ← ck𝑟𝑜
0
· (

𝑊∏
𝑖=1

ck
𝑟𝑎𝒖𝑖
𝑖
) · 𝑡−𝑐1𝑢

𝑡4 ← 𝑔
𝑟dvsk

𝑐 ← H(𝑛 ∥𝐴′ ∥𝐴 ∥ 𝑑 ∥ 𝑡1 ∥ 𝑡2 ∥ 𝑡3 ∥ 𝑡4 ∥ 𝑡𝑢 ∥
𝑔 ∥ 𝑔1 ∥𝐷 ∥ 𝒖 ∥ ck ∥ ick ∥ ipk ∥ dvpk)

𝑐2 ← 𝑐 − 𝑐1
𝑠𝑎𝑖 ← 𝑟𝑎𝑖 for 𝑖 ∈ 𝑈
(𝑠𝑒 , 𝑠𝑟2 , 𝑠𝑟3 , 𝑠𝑠′ , 𝑠csk, 𝑠𝑜 ) ← (𝑟𝑒 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑠′ , 𝑟csk, 𝑟𝑜 )
𝑠dvsk ← 𝑟dvsk − 𝑐2 · dvsk
𝜋 ← (𝑐1, 𝑐2, 𝜋 ′, 𝑡𝑢 , 𝑠csk, {𝑠𝑎𝑖 }𝑖∈𝑈 , 𝑠𝑒 , 𝑠𝑟2 , 𝑠𝑟3 , 𝑠𝑠′ , 𝑠𝑜 , 𝑠𝑟dvsk )

return (𝐴′, 𝐴,𝑑, 𝜋, {𝑎𝑖 }𝑖∈𝐷 )

Figure 4: Designated verifier simulating correct transcripts.

timings of generating proofs with libsnark, it was evident that we

prove the satisfaction of circuits at a rate of≈ 77.8 constraints/ms on

our considered setup. Finally, computing the three pairings during

proof verification took approximately 2 ms using libsnark.

7 SECURITY PROPERTIES AND EXTENSIONS
Besides its secure implementation, the proposed RETRACT scheme’s

foundational security is guaranteed by the security of the underly-

ing BBS+ signature scheme [11] and zkSNARK proof system [17, 30].

In the following, we give an intuitive description of the different

security properties our scheme is designed to provide and how it

achieves them. Note that we only cover essential properties here.

Unforgeability. As described in Section 5.3, the verifier will re-

ject a proof if the holder uses attributes whose indices were not

specified by 𝒖. Thus, the holder cannot cheat by choosing a dif-

ferent sequence of attributes to satisfy the predicate. Furthermore,

since a verifier only accepts a proof of (4) if the corresponding

randomized signature is valid under the issuer’s public key, only

the actual holder of a credential issued by the trusted issuer can

produce correct transcripts that a verifier accepts. Therefore, an

entity cannot use forged or otherwise invalid credentials to con-

vince a verifier about satisfying a predicate. Nor is it possible for

an entity to present attributes that it does not possess believably.

Designated verifier.Only the designated verifier can be convinced
by a proof produced by a holder since the verifier can produce indis-

tinguishable transcripts, as demonstrated in Fig. 4. While malicious

verifiers might attempt to infringe on the privacy of credential

holders by crafting predicates to lure out excessive information,

we note that proofs are always limited in convincing a particular

verifier. Furthermore, similar to the revocation of credentials, it is

possible to castrate such misbehaving verifiers in an established

credential system, or we could slightly modify the system setup to

require all predicates to be certified by trusted parties.

Unlinkability & Selective Disclosure. Inherent to anonymous

credentials, different credential presentations from the same holder

should not be linkable, and it should be possible to disclose at-

tributes in a verifiable manner selectively. Both of these properties

are guaranteed by the underlying BBS+ signature scheme.

Dependability. Like [32], regardless of whether credentials are
leaked or a helper device is completely compromised, it should only

be possible to produce valid credential presentations with assistance

from the trusted core associated with the holder for which the

credentials were initially issued. This property is guaranteed by the

split BBS+ signature scheme described in Section 5.1.1.

Optional revocation. An important feature to effectively handle

the dynamic nature of the set of entities of a credential system is

the possibility of revoking the credentials of misbehaving parties.

While not explicitly considered in our construction, there are several

ways to enforce the revocation of specific credentials. For example,

leveraging the expressiveness of circuits, we can include a non-

membership check (e.g., using Merkle trees or RSA accumulators)

and add a conjunctive clause to prevent all revoked credentials from

satisfying the predicate. Another method to enforce revocation

is to require holders to produce separate non-revocation proofs

when presenting their credentials, e.g., using the signature-based

revocation mechanism of [11].

8 CONCLUSIONS
We presented RETRACT, a novel and fully expressive anonymous

credential scheme allowing credential holders to prove knowledge

of satisfying credentials to arbitrary predicates while ensuring that

only the designated verifier believes them. Our construction demon-

strated how to combine state-of-the-art commit-carrying zkSNARK

constructions with the widely used BBS+ signature scheme.
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A SCHNORR PROOF OF DISCRETE LOG
Given a protocol description in the notation in Section 3.3, a com-

mon method of compiling the actual protocol is following the idea

behind the Schnorr proof of knowledge of a discrete logarithm proto-

col [44], which is a traditional three-move zero-knowledge Sigma

protocol, i.e., a commit-challenge-response protocol. The idea is

relatively simple. For proving knowledge of the value 𝑎 in 𝑦 = 𝑔𝑎 ,

the prover generates randomness 𝑟 and sends 𝑡 ← 𝑔𝑟 to the verifier.

Then, the verifier generates a random challenge 𝑐 and sends it to the

prover. The prover now computes the challenge response 𝑠 ← 𝑟 +𝑐𝑎,
and sends 𝑠 to the verifier. The verifier is convinced that the prover

knows the discrete log of𝑦 only if 𝑔𝑠 = 𝑡𝑦𝑐 . Furthermore, to make it

a NIZK, i.e., collapse the three moves into one single move, we can
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use the Fiat-Shamir heuristic [28] in the random oracle model by

replacing the verifier’s random challenge with that of a value from

a hash functionH (modeled as a random oracle) on the prover’s first

message 𝑡 and the input. Thus, in one round, the prover computes

the challenge 𝑐 ← H(𝑔∥𝑦∥𝑡) and response 𝑠 ← 𝑟 − 𝑐𝑚, and then

sends 𝜋 = (𝑐, 𝑠) to the verifier, who computes 𝑡 ′ ← 𝑔𝑠𝑦𝑐 and 𝑐 ′ ←
H(𝑔∥𝑦∥𝑡 ′), and accepts the proof if the challenges match: 𝑐 = 𝑐 ′.

Note that we can generalize the Schnorr method to prove knowl-

edge of the solutions (discrete logarithms) to several terms, each

containing several exponents, where, for each term, 𝑦 = 𝑔𝑎ℎ𝑎 , the

prover transmits one group element and one response value for

each exponent. The general idea for proving the AND (i.e., con-

junction) of multiple statements is to execute them in parallel and

use the same challenge. It gets more complicated for OR proofs,

i.e., the disjunction of statements. In our construction, we use the

idea described in [15] for composing a disjunction of statements to

create designated verifier proofs.

B ON THE BREAK OF THE “STRONG”
DESIGNATED VERIFIER

Note that [35] also proposed the strong designated verifier to es-

sentially prevent Dave, an observer of the protocol interaction

between a holder (Alice) and the designated verifier (Bob), from

being convinced about the statement being proven by Alice (with-

out Bob disclosing its secret key). They argue that we can promote

a protocol to become a strong designated verifier by having Alice

probabilistically encrypt the transcript using Bob’s public key since

then Bob cannot convince Dave about the decrypted message (due

to the probabilistic encryption) since Bob can produce indistin-

guishable transcripts. Later, [43] proposed a more efficient method

of achieving the same strongness property without requiring the

signature to be encrypted by instead requiring Bob’s secret key in

the verification. However, we note here that Bob might succeed in

convincing Dave if we assume that Dave initially observed the spe-

cific transcript being transmitted from Alice to Bob with the help of

verifiable computation (e.g., use of zkSNARKs as described in Sec-

tion 3.5). For example, in the first case, let 𝑐 be the probabilistically

encrypted transcript transferred from Alice to Bob (and observed

by Dave). To convince Dave that 𝑐 decrypts to 𝜋 using Bob’s secret

key 𝑥𝐵𝑜𝑏 (without having to disclose the key), Dave can send a

decryption cipher as an arithmetic circuit CDec to Bob, which takes

an encrypted message as a public input and a decryption key as

the secret witness. Then Bob can generate a zkSNARK proof that

CDec (𝑐, 𝑥𝐵𝑜𝑏 ) = 𝜋 and send it to Dave, who gets convinced that

Alice produced the specific transcript. However, this “attack” is

only possible if Dave initially observed the transmission to obtain

the trusted reference value 𝑐 . Therefore, in our current system, we

assume that any third party, such as Dave, who is interested in

receiving a conviction from dishonest designated verifiers was not
actively observing the protocol interaction between the holder and

the designated verifier.
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