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A B S T R A C T   

Current coastal flood risk assessments fail to capture flood spatial dependence at large scales. In this paper, we 
develop the first global synthetic dataset of spatially-dependent extreme sea level events, by applying an existing 
conditional multivariate statistical model to 40-year global reanalysis sea levels. The resulting dataset contains 
10,000 years of extreme events with realistic spatial dependence under current climate conditions. The bench-
marking against reanalysis data demonstrates a high agreement, with a coefficient of determination (R2) of 0.96 
for the mean event footprint sizes and a mean bias of − 0.04 m for 1 in 50-year water levels. By comparing well- 
known historic events, we show that our approach can produce events with similar spatial characteristics. Our 
dataset enables the future development of spatially-dependent flood hazard maps for deriving accurate large- 
scale risk profiles, which can help yield new insights into the spatial patterns of coastal flooding and support 
coastal communities in devising effective management plans.   

1. Introduction 

Coastal flooding is among the world’s most devastating natural 
hazards (CRED, 2018). In the last two decades (2002–2022), reported 
global economic losses due to coastal floods exceeded US$ 1,900 billion, 
and over 200,000 people lost their lives (CRED, 2023). These impacts 
can be particularly high when a flood event affects a large spatial area, 
that is, a widespread event. For example, the most damaging weather 
and climate disaster between 1980 and 2021 in the U.S. is Hurricane 
Katrina. In late August 2005, it led to widespread flooding in nine states 
and caused approximately US$ 180 billion losses and more than 1,800 
deaths (NOAA, 2022). In a warming future, with accelerating sea level 
rise (Pörtner et al., 2022), and possible changes in storm surges (Little 
et al., 2015), wind waves (Perez et al., 2015) and tides (Mawdsley et al., 
2015), high sea levels will occur more frequently which is expected to 
intensify coastal flood hazard and risk (Tiggeloven et al., 2020; Vitousek 
et al., 2017; Vousdoukas et al., 2018). Without adaptation, 123 cm of 
global mean sea level rise is projected to escalate the annual economic 
damage of coastal flooding to 9.3% of global gross domestic product in 
2100 (Hinkel et al., 2014). Therefore, to better protect coastal com-
munities from flood impacts, it is necessary to reliably assess extreme sea 
levels (i.e. probability of occurrence), their associated flood hazards (i.e. 

inundation extent and depth), and the consequences of these floods (e.g. 
risk). 

Despite the high impact potential of widespread extreme sea levels 
and associated coastal flooding, current risk assessments are typically 
based on an at-site univariate flood frequency analysis (Vorogushyn 
et al., 2018). This approach assumes “complete dependence” scenarios, 
in which return periods of water levels are spatially constant across all 
locations (e.g. Hallegatte et al., 2013; Hinkel et al., 2014; Kirezci et al., 
2020; Tiggeloven et al., 2020). Water levels and their associated return 
periods during actual events, however, vary strongly across space. An-
alyses of historic river floods demonstrate that their spatial patterns 
show asymptotic dependence between sites (Keef et al., 2009, 2013b): 
during an extreme event, proximal locations may experience similar 
extremes and the extremity is likely to decrease as the distance between 
sites increases. As with river floods, extreme sea level events also show 
spatial dependence between sites (Lamb et al., 2010; Paprotny et al., 
2016) and the dependence tends to increase with the increasing event 
extremity (Wyncoll et al., 2016). Therefore, the at-site univariate 
assumption is an unrealistic representation of spatial patterns of extreme 
sea level events. Although at the local scale this approach may be 
acceptable (as water levels may be strongly correlated at different lo-
cations along a short coastline), this assumption becomes problematic as 

* Corresponding author. 
E-mail address: huazhi.li@vu.nl (H. Li).  

Contents lists available at ScienceDirect 

Weather and Climate Extremes 

journal homepage: www.elsevier.com/locate/wace 

https://doi.org/10.1016/j.wace.2023.100596 
Received 20 February 2023; Received in revised form 22 June 2023; Accepted 7 July 2023   

mailto:huazhi.li@vu.nl
www.sciencedirect.com/science/journal/22120947
https://www.elsevier.com/locate/wace
https://doi.org/10.1016/j.wace.2023.100596
https://doi.org/10.1016/j.wace.2023.100596
https://doi.org/10.1016/j.wace.2023.100596
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Weather and Climate Extremes 41 (2023) 100596

2

the spatial scale increases. Besides, coastal flood events (driven by high 
sea levels) of the same severity are found to occur at different fre-
quencies at different locations, as shown for the U.S. (Sweet and Park, 
2014) and Australia (Hague et al., 2022). In this work, we aim to address 
the spatially-constant assumption of the past studies by looking into the 
spatial heterogeneity of return periods of sea level events. 

Capturing spatial dependence of extreme sea level events is para-
mount for risk management and decision-making (Jongman et al., 2014; 
Vorogushyn et al., 2018). For example, international communities and 
governments (e.g. the United Nations Office for Disaster Risk Reduction 
and the European Union) need to know the spatially-dependent proba-
bility distribution of annual losses to develop (trans)national financing 
plans robust to present and future risks, such as the EU solidarity fund 
(Ward et al., 2015). This information is also required in the (re)insur-
ance industry to quantify for pricing and reassure market regulators that 
they can maintain solvency in high loss years. For emergency services, 
accurate estimates of the occurrence probability and potentially affected 
area of a widespread sea level event can be used to arrange temporary 
measures and mobilize sufficient resources in good time and at the right 
locations (Quinn et al., 2019). Lastly, comprehensive knowledge of 
spatial dependence of extreme sea levels can help coastal planners to 
design more efficient and science-based disaster preparedness plans. 
This is especially the case for the spatial planning of critical in-
frastructures. For example, extreme sea level events can cause 
large-scale failures of power systems, as witnessed during Hurricanes 
Maria, Harvey, and Florence (Feng et al., 2022). 

These concerns have driven research to improved flood assessments 
by explicitly accounting for spatial dependence, in particular for river 
floods (e.g. Jongman et al., 2014; Keef et al., 2013b, 2009; Metin et al., 
2020; Nguyen et al., 2020). However, only a limited number of studies 
have addressed the spatial dependence of extreme sea levels. By 
analyzing historic events using tide gauge records, two studies looked 
into the spatial patterns of extreme sea level and skew surge events on 
the coasts of the UK (Haigh et al., 2016) and New Zealand (Stephens 
et al., 2020). Recently, Enríquez et al. (2020) used both reanalysis and 
observed data to assess the spatial footprints of storm surges at the 
global scale. These studies have improved our understanding of spatial 
dependence of extreme sea levels; however, they were limited by the use 
of short-term forcing data, resulting in a relatively small sample of 
extreme events. Although using such an event set can capture the his-
toric spatial dependence, it is not sufficient to represent all possible sea 
level patterns that may occur (Serinaldi and Kilsby, 2017). One notable 
exception is the work of Rueda et al. (2016) who generated synthetic 
events through a weather-type and statistical downscaling emulator to 
characterize the joint probability of extreme waves and storm surges on 
the northern coast of Spain. In addition, Vousdoukas et al. (2020) used a 
probabilistic approach to produce realizations of spatially-dependent 
extreme sea levels for assessing the effectiveness of raising dyke in 
Europe. To date, a global-scale reliable assessment of spatial dependence 
of extreme sea levels is still lacking. Here we address this gap by looking 
into spatial patterns of events driven by meteorological and oceano-
graphic forcing such as storm surges from tropical and extra tropical 
cyclones. 

The approaches used for capturing spatial dependence in river 
flooding could be beneficial and transferrable for simulating the spatial 
patterns of sea level events. In general, two methods exist to model the 
spatial dependence in river flood peaks, namely: (1) continuous hy-
drological simulation (e.g. Falter et al., 2016, 2015; Metin et al., 2020; 
Winter et al., 2019); and (2) event-based statistical approach (e.g. 
Jongman et al., 2014; Nguyen et al., 2020; Quinn et al., 2019; Wing 
et al., 2020). Compared to the continuous hydrological approach, the 
event-based method is much less computationally expensive and allows 
the stochastic generation of a large number of extreme events from the 
statistical model, including those not seen in the records. This approach 
therefore enables the future development of flood hazard maps that 
explicitly account for the spatial dependence (especially of the upper tail 

of the joint distribution), which can then form the basis of reliable es-
timates of the risk distribution across all probabilities. To date, two main 
classes of statistical techniques have been used to model the spatial 
dependence in the event-based approach: copulas (e.g. Brunner et al., 
2019; Couasnon et al., 2018; Jongman et al., 2014; Nguyen et al., 2020) 
and the conditional multivariate exceedance model (e.g. Keef et al., 
2013b, 2009; Quinn et al., 2019; Wing et al., 2020). Both approaches are 
capable of calculating the spatial dependence. However, standard 
copula models are typically constrained to only one type of extremal 
dependence (Heffernan, 2001), while the conditional exceedance model 
offers more flexibility to handle a range of extremal dependence classes 
but at the cost of higher sensitivity (Towe et al., 2019). As a result, 
event-based multivariate extreme models may be a better choice for 
understanding spatial dependence of extreme sea level events at large 
spatial scales. 

In this paper, we leverage these insights from hydrological flood 
modelling to develop the first global synthetic dataset of spatially- 
dependent extreme sea level events using an existing event-based con-
ditional multivariate exceedance approach. We focus on sea level events 
driven by meteorological and oceanographic forcing, and therefore our 
method is not appropriate for examining minor or ‘nuisance’ events 
caused by high tides alone. We use 40-year global extreme sea level 
(mean sea levels, storm surges, and tides) time series (Muis et al., 2022) 
simulated by Global Tide and Surge Model (GTSM) version 3.0 forced 
with ERA5 climate reanalysis (Hersbach et al., 2020), hereafter 
GTSM-ERA5 dataset. The dynamic contribution of waves is not consid-
ered here as the breaking of waves in the nearshore is a local process that 
requires high-resolution data and models to simulate. For the sake of 
simplicity and because we do not foresee extreme sea level events 
impacting areas at quasi-continental scale or larger, we first divide the 
globe into 10 large conterminous regions (see Fig. S1 and Table S1). For 
each region, we perform a clustering of the GTSM-ERA5 stations based 
on Pearson correlations between sea levels. Next, we use the conditional 
multivariate exceedance model (Heffernan and Tawn, 2004) to calculate 
the pairwise dependence within each cluster. The resulting dependence 
patterns are then used to simulate 10,000 years of synthetic extreme sea 
level events. Lastly, we benchmark the synthetic dataset with the input 
GTSM-ERA5 reanalysis dataset by comparing event spatial footprint 
sizes and return levels. We further evaluate this dataset by showing its 
capability of reproducing several well-known historic events. We focus 
on comparisons of very rare events here because such events are rela-
tively difficult to capture (normally only a few resembling events can be 
generated) compared to more frequent but less extreme events (many 
similar events can be generated) using our approach. Besides, including 
such low-probability but potentially high impact events with accurate 
spatial dependence is useful for broad-scale impact and adaptation an-
alyses especially in highly developed and well-protected regions. 

2. Materials and methods 

Fig. 1 summarizes the statistical framework for developing the global 
synthetic dataset of spatially-dependent extreme sea levels. The frame-
work consists of four main steps:  

1. Preprocess the time series of global GTSM-ERA5 total water levels;  
2. Calculate the pairwise spatial dependence between GTSM-ERA5 

stations where spatiotemporal limits are first set to ensure indepen-
dent and identically distributed events;  

3. Generate the spatially-dependent synthetic event set by simulating 
10,000 years of synthetic events of spatially-dependent water levels;  

4. Benchmark the event set based on event footprints and return levels 
and evaluate the event set by examining its capability of reproducing 
several well-known historic events. 
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2.1. Preprocessing global reanalysis water level time series 

We use 40-year global extreme sea level time series (Muis et al., 
2022) simulated by the third generation of the Global Tide and Surge 
Model (GTSM) forced with 10-m wind speed and atmospheric pressure 
from the ERA5 climate reanalysis (Hersbach et al., 2020). The simula-
tion of GTSM-ERA5 reanalysis water levels also considers a 
spatially-varying sea level rise field derived from the Coupled Model 

Intercomparison Project - Phase 5 (CMIP5) experiments (Taylor et al., 
2012). These water levels are 10-min total water level time series con-
sisting of mean sea levels, tides, and storm surges for the historic period 
1979–2018. The time series are stored at 43,119 output points including 
coastal output locations, tide gauge stations, and deep ocean points. The 
spatial resolution of these output stations increases globally from the 
deep ocean toward the coast, which is 5.0◦, 2.5◦, and 1.0◦ for stations 
with a distance of >500 km, 100–500 km, and <100 km from land, 

Fig. 1. Flowchart of four main steps in the methodological framework.  
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respectively. For Europe, the corresponding resolution is 1.0◦, 0.5◦, and 
0.25◦ due to the use of higher-resolution regional climate simulations. 
The GTSM-ERA5 dataset has been previously validated against obser-
vations, which has shown a good agreement between modeled and 
observed water levels (Dullaart et al., 2020; Muis et al., 2020). 

In this study, we restrict our analysis to 17,394 coastal stations 
covering the global coastline, by removing ocean stations as well as 
stations in the Arctic and Antarctica. The water levels at selected stations 
are then linearly detrended by removing the annual mean sea levels to 
adapt to the present climate (Read and Vogel, 2015). Here water levels 
are defined relative to the 1979–2018 mean. We further convert these 
water levels into 3-day maxima to account for the surge traveling time 
(Wyncoll et al., 2016) and ensure independent and identically distrib-
uted events (Enríquez et al., 2020). These preprocessing steps prepare 
quasi-stationary time series for the spatial dependence calculation. 

2.2. Calculating the pairwise spatial dependence between stations 

2.2.1. Spatiotemporal limits for defining independent events 
First, we specify spatiotemporal limits for defining independent and 

identically distributed events. As independence between extreme sea 
levels is well captured by 3-day maxima series (Vousdoukas et al., 
2018), we do not set additional temporal limits to the 3-day water level 
maxima series. A spatial limit is used to account for the physical limits to 
the maximum extent of sea level events because extreme water levels at 
distant locations are less likely to be driven by the same weather event. 
In this paper, we focus primarily on large spatial footprints of extreme 
events and therefore do not perform our analysis in small areas (i.e. at 
the scale of bays, cities, and states). On the other hand, the spatial 
footprints of such events are less likely to extend beyond a 
quasi-continental scale. High tide events may have spatial footprints 
extending on a global scale as the spring and neap tides occur at 
(approximately) the same time everywhere around the world; however 
these events require different methods to characterize (e.g. Hague et al., 
2022; Sweet and Park, 2014) and thus are beyond the scope of this 
study. As a trade-off between these considerations, we follow the 
approach of Enríquez et al. (2020) to divide the globe into 10 large 
conterminous coastal regions and conduct our analysis separately in 
each region. The 10 regions are (1) Northwest Pacific, (2) Southwest 
Pacific, (3) Northwest Atlantic, (4) Southwest Atlantic, (5) Northeast 
Atlantic, (6) Southeast Atlantic, (7) Indian Ocean, (8) North Asia, (9) 
South Asia, and (10) Oceania, see Fig. S1 and Table S1. 

To further estimate the spatial limit in each region, extreme sea 
levels are first identified at each station by applying the peak-over- 
threshold method to the 3-day water level maxima using the 95th 
percentile, following the approach of Enríquez et al. (2020). Next, the 
K-Means algorithm (Hastie et al., 2009) is applied to the extreme sea 
level series to cluster stations in each region into subgroups, in which the 
Pearson correlation is used to measure the similarity between stations. 
To identify the number of clusters (NoC) that can best represent the 
spatial extent of extreme sea level events in each region, we run the 
K-Means model with a range of NoC values from 5 to 30. It can be ex-
pected that with higher NoC, the statistical correlation of clustered 
stations becomes stronger; however, setting the maximum NoC to 30 
prevents the identification of small-scale spatial footprints. Note that we 
select 30 as the upper limit instead of 20 used by Enríquez et al. (2020) 
since this research uses a finer-resolution input dataset in which 
adopting higher NoC values allows for capturing more possible unob-
served spatial patterns. The optimal NoC obtained for each region is the 
one resulting in the highest ratio of mean correlation and average 
standard deviation following the method of Enríquez et al. (2020). 
Table S1 summarizes the final NoC value and the number of stations in 
each region. Detailed clustering information including cluster size and 
station locations can be found in Figs. S2–11 in the Supplementary 
Materials. For simplicity, we allow the dependence to be only calculated 
from a given station to any other stations within each cluster, while 

stations outside this cluster are assumed to have no dependence on the 
given station. 

2.2.2. Multivariate conditional exceedance extreme model 
Within each cluster, we consider a set Δ of d stations (i.e. the number 

of stations identified by the K-Means clustering algorithm) and the water 
level component Xi (i.e. the 3-day maxima water level series) at station i. 
The joint distribution of water levels within a cluster is then defined as 
X = {Xi, i∈ Δ, Δ = {1, …, d}}, in which each Xi has a continuous dis-
tribution. This joint distribution can be separated into independent 
marginal distributions and joint distributions on a common marginal 
distribution (i.e. the dependence structure). To this end, the conditional 
multivariate exceedance model of Heffernan and Tawn (2004) consists 
of two main steps: (1) defining marginal distribution independently at 
each station, and (2) calculating the pairwise dependence between sta-
tions based on regression functions. Full model details can be found in 
Heffernan and Tawn (2004) and Keef et al. (2013b, 2009). 

To convert X onto a marginal scale, the conditional exceedance 
model initially used the Gumbel marginal distribution. However, the 
Laplace distribution is adopted here because it provides better estima-
tions of the linear relationship between extremes (Keef et al., 2013a). 
Following this, we denote the set of water level component Xi, i ∈ Δ,Δ =

{1,…, d} where Xi is the 3-day water level maxima at station i and 
achieve the transformation by: 

Yi =

{
log{2Fi(Xi)},Xi < F− 1

i (0.5)
− log{2[1 − Fi(Xi)]},Xi ≥ F− 1

i (0.5)
(1)  

where Fi is the marginal distribution of Xi. 
Y then has Laplace margins with the probability function: 

Pr
(
Yi < y

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1
2

ey , y < 0

1 −
1
2
e− y, y ≥ 0

(2) 

In this way, both lower and upper tails of Yi are exactly exponential. 
Therefore, for any u > 0 where u is a threshold, the distributions of Yi −

u|Yi > u and − (Yi +u)|Yi < − u are both exponential with a mean of 1. 
These marginal distributions define the probability that a certain water 
level is exceeded at each station. These functions are semi-parametric as 
the water levels above the threshold (i.e. u) are fitted to a generalized 
Pareto distribution while an empirical distribution is used for data below 
the threshold. As suggested by prior studies (Keef et al., 2013b; Quinn 
et al., 2019; Wing et al., 2020), this step requires careful consideration in 
threshold selection given that the quantified threshold should be high 
enough to avoid misestimation of extreme dependence, but low enough 
to ensure sufficient samples with which to fit the generalized Pareto 
model. We therefore use the cross-validatory method (Northrop et al., 
2017) to assist in the threshold diagnosis process. Instead of using a 
unified threshold, we quantify the best-fit threshold for each station and 
use this set of station-wise thresholds as we believe this can best 
represent the extreme distribution pattern for a particular cluster. 

The second step is to calculate the pairwise dependence between 
stations. The dependence model follows the equation below: 

Y − i
⃒
⃒Yi = aYi + Yb

i Z− i for Yi > v (3)  

where Y− i is a vector of marginal distributions excluding Yi, v is the 
threshold above which the dependence is estimated, a is a vector of 
parameters describing the overall strength of the dependence ( −
1 ≤ a ≤ 1, with − 1 ≤ a < 0 and 0 < a ≤ 1 corresponding respectively 
to negative and positive dependence), b is a vector of parameters 
describing how the dependence changes (b < 1, with positive values 
meaning the variance increases as y increases), Z− i is a vector of d − 1 
residuals with non-zero means and independent of Yi. The residuals do 
not follow any simple class of parametric distributions (Keef et al., 
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2013a, 2013b). For this, a quantile-based inference approach is used to 
exploit properties of the model itself for estimating the residuals. Full 
details can be found in Keef et al. (2013b). The equation (3) is used for 
calculating the dependence between two stations and this calculation is 
therefore repeated for all possible pairs within a cluster of interest. That 
is, given a cluster of d stations, in total d2 − 1 pairs of dependence 
structure are modeled, whereby each pair characterizes distinct pa-
rameters aj|i, bj|i and residuals Zj|i for the j th station. 

2.3. Generating a global spatially-dependent synthetic event set 

2.3.1. Stochastic event generation 
In this study, the conditional multivariate exceedance model esti-

mates the conditional distribution of water levels within any cluster of a 
set of stations when the water level at a given station is extreme. This 
information can be used to develop an event set of a large number of 
spatially-dependent events, whereby for every individual event at least 
one station has an extreme water level. The event set is therefore 
expressed by E = {y∈ Rd : ∃i∈ Δ,Δ= {1,…, d}, yi > u}, where u is a 
high threshold. We follow the approach of Keef et al. (2013b) to further 
divide the full set into subsets where events are simulated given each 
station is the conditioning station: Ei = {y∈ Rd : yi > u and yi = max (y)}
for i ∈ Δ. The event set can be quantified by a multinomial distribution 
with ns events (i.e. the total number of events to be generated) and a 
probability vector Pr(Y ∈ Ei)/Pr(Y ∈ E) for i ∈ Δ. 

Following this, ns is first estimated across any given cluster. We use 
the 99th quantile threshold to identify extreme events from the input 3- 
day maxima series to empirically calculate the number of events per year 
for any given cluster. Discrete kernel density estimation (Wansouwé 
et al., 2016) is then applied to generate an annual event count distri-
bution. In this way, the annual event number is allowed to be extrapo-
lated to higher values to a reasonable extent (i.e. there are likely to be 
more events expected to occur in the simulation than in the observa-
tions). For generating a 10,000-year event set, we estimate the total 
number of events by summing up 10,000 values of the number of events 
per year which are randomly sampled from the annual event count 
distribution. 

The next step is to estimate the portion of events for which a given 
station is the conditioning station. We use the empirical data to calculate 
the probability that each station has the largest water level (on the 
Laplace margin) out of all stations during any given event in the cluster. 
To generate Ei, we repeat the following simulation steps until the desired 
number of events is obtained:  

1. Sample Yi from the fitted generalized Pareto distribution at station i, 
conditional on Yi > u;  

2. Independently select a joint residual Zi;  
3. Calculate Y− i based on the dependence model with the estimated 

regression parameters ai, bi, using Eq. (3);  
4. Reject the sample Y if Yi is not maximum over all stations (on the 

marginal scale). 

We use the 99th quantile as the prediction/event sampling threshold 
u. This leads to the development of a 10,000-year event set of spatially- 
dependent events, in which for every individual event at least one sta-
tion has a water level higher than its 99th quantile. Compared to the 
95th quantile used in the clustering analysis, we apply the 99th quantile 
throughout the event generation process. By using this higher threshold, 
we aim to reduce the excessive generation of events (i.e. avoid gener-
ating events with very low return periods) and further minimize the 
computational costs. 

2.3.2. Return period calculation 
From the 10,000-year of spatially-dependent extreme sea level 

events, we empirically estimate the return periods of water levels for 

each station. We do not calculate the return periods statistically (i.e. 
fitting extreme value distributions to water levels), as is commonly 
adopted in extreme sea level studies (e.g. Wahl et al., 2017). A limitation 
of the statistical approach is that the fitted return periods are strongly 
influenced by the selected distribution, especially for higher return pe-
riods (Esteves, 2013). By using an empirical approach, no shape 
parameter needs to be estimated which is a particularly sensitive 
parameter of great influence for the upper tail. Besides, these return 
periods can be calculated without extrapolation of the data. Here we use 
Weibull’s plotting formula because this approach has been proven to 
give the best empirical estimation of return periods compared to other 
methods (Makkonen, 2006). Weibull’s formula is given as: 

Pexc(wl)=
i

n + 1
•

n
m

(4.1)  

T(wl)= 1 /Pexc(wl) (4.2)  

where Pexc(wl) is the exceedance probability of a given water level, i is 
the rank of this water level in the calculated extreme distribution with 1 
referring to the highest water level, n is the number of events in the set, 
m is the temporal length of the set in years (here, m = 10,000). The 
return period T(wl) can then be calculated as the inverse of the ex-
ceedance probability Pexc(wl). The generated event set is representative 
of 10,000-year extreme sea level events. Given that the return period 
calculation is dominated by the rank i, a more uncertain result can be 
expected as the return period becomes higher. Therefore, we only esti-
mate the return period up to 1,000 years. Table S2 summarizes the range 
of lowest estimated water level return periods in each region. 

2.4. Benchmarking and model evaluation 

To benchmark the 10,000-year global synthetic dataset of extreme 
sea level events, we compare the simulated events with extreme events 
from the input GTSM-ERA5 dataset. The extreme events of the GTSM- 
ERA5 dataset are extracted using a 99th quantile threshold (the same 
as the prediction/conditioning threshold) under the same spatiotem-
poral limits. To evaluate the performance of the synthetic set in 
capturing the spatial dependence, we first compare the mean event 
footprint sizes of the synthetic set against those of the GTSM-ERA5 
dataset. As both datasets have the same output stations, the event 
footprint is approximated by the number of stations impacted by a 
certain event (i.e. the number of stations experiencing water level 
greater than the 99th quantile). The mean is calculated from the spatial 
footprints of all events that affect a given station. We also carry out an 
additional analysis to assess the sensitivity of benchmarking results on 
event spatial footprints to the number of clusters chosen for region South 
Asia. The benchmarking results are evaluated by the coefficient of 
determination R2 of mean event spatial footprints. In addition to the 
event footprint comparison, we also compare water levels of these two 
datasets for a range of return periods. In contrast with the empirical 
return period calculation for the synthetic set, we fit a generalized 
Pareto distribution to the GTSM-ERA5 water levels using a peak-over- 
threshold approach to estimate the return levels at each station. We 
use the same spatially-varying thresholds (selected by the cross- 
validatory model, see above) to identify extremes and estimate the 
distribution parameters using the L-moments method. We also calculate 
the 90% confidence interval (i.e. 5th and 95th percentiles) for the esti-
mated return levels based on Monte Carlo simulation with 1,000 repli-
cations. We benchmark the synthetic water levels against the GTSM- 
ERA5 water levels for the return period of 50, 100, and 500 years. The 
comparison is shown using three statistical measures, namely (1) coef-
ficient of determination R2; 2) mean bias (MB); and 3) mean absolute 
percentage error (MAPE). 

Next to comparing the spatial characteristics, we evaluate the event 
set by assessing its performance in reproducing well-known historic 
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extreme sea level events as captured in the GTSM-ERA5 dataset. Such 
events are of most interest for risk management as they occur with low 
probability but often affect a large spatial area with high impacts. We 
consider three historic events driven by two types of storms, tropical 
cyclone (TC) and extratropical cyclone (ETC), in different regions. The 
three events are: (1) ETC Xaver (2013) in northwestern Europe, (2) TC 
Sandy (2012) on the northeastern coast of US, and (3) TC-ETC tran-
sitioning Sanba (2012) in Japan and South Korea. We first extract these 
events from the GTSM-ERA5 dataset and identify the respective condi-
tioning stations (i.e. the station with the highest return period during the 
event). Based on this information, we inspect a number of candidate 
events that have similar spatial characteristics in the synthetic event set. 
We then compare the return periods as well as the corresponding water 
levels station-by-station for these events and fit a linear regression 
model to the water levels. Lastly, we select the events with the highest R2 

value of the regression model as the most resembling event. 

3. Results 

3.1. Benchmarking the synthetic dataset on the basis of event spatial 
footprint sizes 

Fig. 2 (A-J) plots the mean sizes of event spatial footprints in the 
synthetic event set and the GTSM-ERA5 dataset in each. In general, we 
find a close agreement between two datasets, with an average R2 of 0.96 
across the 10 regions. High agreements are found in Northwest Pacific, 
Southwest Pacific, Southwest Atlantic, Southeast Atlantic, Indian Ocean, 
and Oceania, with R2 ≥ 0.97; R2 for Northwest Atlantic and Northeast 
Atlantic are 0.95 and 0.92, respectively. However, in the South Asia 
region, the synthetic dataset shows less good performance (R2 = 0.85) 
and tends to overestimate the mean event footprint at a number of 
stations, especially for footprint size greater than 150 stations. This is 
likely the result of using a smaller number of clusters in this region (only 
6 clusters were identified), whilst the numbers of clusters used in other 
regions are substantially higher (ranging from 20 to 30), see Table S1. 
Potentially unobserved spatial patterns can be explored by using higher 
cluster numbers. This is proved by the figure of sensitivity analysis result 

Fig. 2. Comparison of event spatial footprint sizes between the synthetic event set and the GTSM-ERA5 dataset. The panel shows A-J) scatter density plots of the 
mean footprint sizes for each of the 10 regions where each point in the subplots represents a station, and K) boxplot of all footprint sizes for the 10 regions. The 
density of mean footprint sizes is calculated using the two-dimensional histogram method. Light yellow indicates dense footprint sizes while dark purple shows less 
frequent footprint sizes, with the color bar indicating the percentage of stations (in a region) featuring a given footprint size. The red dashed line represents the 
perfect fit line. In the boxplot, black lines represent the median event footprint sizes. The box edges correspond to the 25th and 75th percentiles, while the whiskers 
correspond to the 5th and 95th percentiles. Outliers are not shown. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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(Fig. S12) which shows that with an increasing number of clusters, the 
agreement becomes increasingly closer (i.e. higher R2). In addition, we 
note that even for regions showing a good agreement, there are minor 
differences in the mean event footprint sizes between the two datasets. 
This is because the synthetic dataset is much longer (10,000 years) and 
therefore contains a considerably larger sample of possible events at 
each station than the GTSM-ERA5 dataset (40 years). This is reflected in 

the comparison of all event footprint sizes (Fig. 2K). Overall, the com-
parison of spatial footprint sizes demonstrates that our approach can 
produce extreme sea level events with observed footprints from the 
reanalysis dataset as well as many new events with realistic spatial 
footprints. 

Fig. 2 also shows the range of mean event footprint sizes for each 
region. We observe relatively small mean event footprints in five regions 
including Northwest Pacific, Southwest Pacific, Southwest Atlantic, 

Fig. 3. Global maps of extreme sea levels with a 50-year return period (RP50). The panel shows A) extreme sea levels (m) derived from the synthetic event set, B) 
difference (m) in water levels between the synthetic set and GTSM-ERA5, and C) the 90% confidence interval range (m) of GTSM-ERA5. The water level difference is 
calculated by subtracting GTSM-ERA5 return levels from those of the synthetic set. The confidence interval range is given by the difference between the 5th and 95th 
percentiles. 
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Southeast Atlantic, and North Asia, with the maxima footprints being 
27–52 stations. Three regions (Northwest Atlantic, Indian Ocean, and 
Oceania) show higher mean footprint sizes with the maxima of 78, 69, 
and 60 stations, respectively. The maximum mean footprint size is 
highly correlated to the number of stations in each cluster as the most 
extreme events are likely to impact nearly all locations within a cluster. 
Therefore, regions with a larger number of stations in each cluster tend 
to characterize notably larger footprint sizes; this is especially the case in 
Northeast Atlantic and South Asia. It is worth noting that there are gaps 
in mean event footprint sizes for some regions (Fig. 2A, B, D). This is 
caused by the different numbers of stations in each cluster. Coastlines 
with complex geographies require more clusters to identify the spatial 
patterns; therefore, such clusters have a relatively smaller spatial extent 
and therefore involve a smaller number of stations. One exception is the 
region South Asia where its coastlines are complex (e.g. many small 
islands); however, only 6 clusters are identified for this region. In 
addition, these gaps can arise from various oceanographic drivers (e.g. 
astronomical tides, TC- and ETC-induced surge levels) and their in-
teractions as different drivers can cause extreme events of distinct 
spatial footprints. 

In addition to the mean footprint size, Fig. 2 shows the mean foot-
print density. The density is defined as the percentage of stations 
experiencing a particular footprint size. We find that each region is 
characterized by distinct patterns in the density distribution of mean 
footprint sizes. For example, Southwest Pacific tends to experience 
events with smaller footprint sizes more often, where two frequent mean 
footprints of approximately 10 and 14 stations can be observed with 
density exceeding 10% and 8%, respectively. Similar patterns can be 
found in Southwest Atlantic and Southeast Atlantic, while extreme 
events impacting larger areas (i.e. more stations affected) are more 
frequent in Northeast Atlantic and South Asia with the highest density of 
around 4% (footprint size 150–200 stations) and 6% (footprint size 
100–150 stations), respectively. In other regions including North Asia 
and Oceania, the mean event footprint sizes are nearly evenly distrib-
uted with the highest density being around 4% (16–24 stations) and 3% 
(15–25 stations). 

3.2. Benchmarking the synthetic dataset on the basis of return levels 

Fig. 3A shows the global map of the extreme sea levels of the syn-
thetic event set for the 50-year return period (RP50). The RP50 water 
levels exceed 5.0 m in areas with a shallow and wide continental shelf 
and a stormy climate. Such regions are Gulf of Alaska (West Canada), 
Hudson Strait (Northeast Canada), Argentina Sea (Southeast Argentina), 
North Sea (Northwest Europe), the northwestern coast of Australia, 
Yellow Sea (Northeast China), and Sea of Okhotsk (Northeast Russia). 
Low water levels (<1.0 m) are found particularly in equatorial areas 
with a steep ocean topography, such as the Congo basin in Africa and the 
East Indies (from Sumatra to New Guinea) in Asia. Several other regions 
also experience low water levels, including the Caribbean area, the 
Mediterranean region, and Sea of Japan. 

The difference in RP50 water levels between the synthetic event set 
and GTSM-ERA5 is shown in Fig. 3B. The synthetic set shows an overall 
high agreement with the GTSM-ERA5 dataset, with R2 of 0.99 (see 

Table 1). Averaged over all the stations, the mean bias (MB) is − 0.04 m 
with a standard deviation (SD) of 0.12 m, while the mean absolute 
percentage error (MAPE) is 2.62% (SD 3.88%). This indicates that 
compared to GTSM-ERA5, the synthetic set slightly underestimates the 
water levels for RP50. At around 93% of the locations, the water level 
differences are smaller than 0.10 m. Large differences (>1.0 m) are 
found in the Gulf Coast of US, the coastline of Bangladesh, southern 
China, and the coast of southern Papua in Indonesia. However, the 
ranges of the 90% confidence intervals for these regions are also larger 
than 1.0 m (Fig. 3C). Extreme sea level events in these regions (except 
southern Papua) are typically caused by tropical cyclones (TCs). From 
the 40-year GTSM-ERA5 input data, we can only capture too few (or 
many) or too weak (or extreme) TC-induced events because of the sto-
chastic nature of TCs. This later results in an incomplete sample and 
misestimation of such events in the synthetic set. 

The synthetic event set shows less good performance in water levels 
for higher return periods. For the RP100 water levels, the MB is − 0.05 m 
(SD 0.16 m) and the MAPE is 3.11% (SD 4.77%) while the MB and MAPE 
of RP500 water levels are − 0.08m (SD 0.55m) and 4.22% (SD 7.08%), 
respectively (see Table 1). Underestimations of return levels are found in 
the same hotspots as those identified in the RP50 water levels, but with 
considerably larger differences (Figs. S13–14). As in previous case, the 
90% confidence interval ranges increase with higher return periods and 
are larger than the water level differences for these regions. This sug-
gests that at least part of the increased differences can be caused by the 
uncertainties from the extreme value analysis to derive return levels for 
the GTSM-ERA5 dataset. With higher return periods, fitting a continuous 
GPD distribution to short-term data (in this study, 40-year water level 
time series) typically leads to more biased (higher) water levels. 

3.3. The capability of reproducing historic events 

Fig. 4 compares the return periods and respective water levels be-
tween these historic events in the GTSM-ERA5 dataset and the resem-
bling events with the most similar spatial characteristics in the synthetic 
set. Visual inspection shows that the spatial patterns of the events in the 
two datasets are similar but the synthetic events are more extreme ac-
cording to the return periods. For ETC Xaver (Fig. 4A), large return 
periods are found on the west coast of UK with the highest return period 
of 525 years in the Wash, while a similar pattern is observed in the 
synthetic event (Fig. 4B) but with a much higher return period of over 
1,000 years at the same location. Similarly, the synthetic event shows 
higher return periods along the coast of northeast and south UK and 
parts of the French coastline. In contrast, the Belgian and Dutch coasts 
experience lower return-period water levels in the synthetic event. 
When looking at the station-by-station comparison of water levels 
(Fig. 4C), we find that the synthetic event shows good performance 
(R2 = 0.91) with a mean bias of − 0.05 m and a standard deviation of 
0.33 m. 

For TC Sandy, the water levels show lower agreement, with a R2 of 
0.77 (mean bias: 0.01m, standard deviation: 0.29 m). However, the 
spatial patterns of return periods show a much better comparison. Both 
events depict large return periods (>100 years) on the coastline of New 
Jersey (NJ), Long Island and the Connecticut (CT). As in the previous 
case, higher return periods in the synthetic event are found. For 
example, only one station experiences a return period of over 1,000 
years in the GTSM-ERA5 event while the return periods at 18 stations 
exceed 1,000 years in the synthetic event. Further south, along the 
coasts of Delaware (DE), Maryland (MA), and Virginia (VA), the return 
periods are lower (<20 years) in both events. 

The spatial comparison of TC-ETC Sanba is shown in Fig. 4 (H-J). For 
water levels, the synthetic event shows the best agreement (R2: 0.93) 
among the three events. The mean bias and the standard deviation are 
0.03 m and 0.12 m, respectively. For both events, the northwestern coast 
of Kyushu shows high return periods (most stations show >500-year 
return periods). Along the coastline of Chugoku, Shikoku, and the south 

Table 1 
Model performance of the water levels between the synthetic event set and 
GTSM-ERA5 for 50-, 100-, and 500-year return periods. The model perfor-
mance is assessed by three statistical measures which are coefficient of deter-
mination R2, mean bias (MB), and mean absolute percentage error (MAPE). The 
standard deviations (SDs) of MB and MAPE are shown in the brackets.  

Return period (year) R2 MB (m) MAPE (%) 

50 0.99 − 0.04 (0.12) 2.62 (3.88) 
100 0.98 − 0.05 (0.16) 3.11 (4.77) 
500 0.88 − 0.08 (0.55) 4.22 (7.08)  
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coast of South Korea, the return periods in the synthetic event are 
slightly overestimated compared to the GTSM-ERA5 event. On Jesu Is-
land, return periods are in good agreement. 

This comparison demonstrates that the spatial dependence of his-
toric extreme sea level events driven by different types of storms is well 
captured in our dataset. Besides, we find that extreme events can affect 
not only contiguous but unconnected stretches of coast, and sometimes 
even several countries, as observed in ETC Xaver and ETC-TC Sanba. We 
also exemplify that the return periods of widespread events are spatially 
heterogeneous where the largest difference in return periods of different 
locations within an event can be more than 1,000 years. 

4. Discussion and conclusion 

We have presented the first global synthetic dataset of spatially- 
dependent extreme sea level events for the current climate, using an 

event-based conditional multivariate exceedance model. This dataset is 
comprised of 10,000 years of individual extreme events with realistic 
spatial dependence along the global coastline. Using such a dataset can 
help overcome the inaccurate spatial dependence assumption (i.e. the 
at-site univariate approach) and the sampling issue (i.e. an incomplete 
sample of extreme events derived from the short-term input data) which 
have limited past large-scale extreme sea level and coastal flood studies. 
The benchmarking of the synthetic event set against the GTSM-ERA5 
reanalysis dataset demonstrates that our approach can well capture 
the spatial characteristics in extreme sea level events. The mean event 
footprints have an average R2 of 0.96 across the globe. The bench-
marking on water levels also shows a good performance with a global 
mean bias of − 0.04 m for the 50-year return period, although differences 
are relatively large in the US Gulf Coast, the Bangladesh coastline, 
southern China, and southern Papua in Indonesia. The comparison of 
historic extreme sea level events indicates that the synthetic set can 

Fig. 4. Comparison between the GTSM-ERA5 historic events and simulated events with similar spatial characteristics from the synthetic event set. Three historic 
floods are: ETC Xaver (A-C), TC Sandy (D-F), and TC-ETC Sanba (H-J). Return periods of these events are plotted for the GTSM-ERA5 dataset (first column) and the 
synthetic event set (central column), while the comparison of corresponding water levels is shown in the right column. 
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produce events with similar spatial patterns of widespread historic 
events but with synthetic events to be more extreme. 

To generate the synthetic dataset, we first apply the K-Means clus-
tering model to estimate the maximum spatial extent of extreme sea 
level events for dependence calculation. The spatial footprints were 
previously examined in several studies (Enríquez et al., 2020; Haigh 
et al., 2016; Stephens et al., 2020). For the UK coast, four broad types of 
spatial footprints of extreme sea level events were identified (Haigh 
et al., 2016). All these four footprints are reflected in the clusters we 
obtain for the Northeast Atlantic region (Fig. S6) but with our clusters 
more extended. For example, the category one footprint in the study of 
Haigh et al. (2016) is captured in cluster 10 in our study which extends 
to the coastline of northeastern France. We also demonstrate the benefit 
of using our synthetic dataset over using a reanalysis dataset of 40 years 
for calculating return periods. Compared to the empirically derived re-
turn periods, fitting a continuous GPD distribution to short-timespan 
data typically leads to more uncertain/biased water levels (especially 
for low-probability events), although a few exceptions are found in 
several TC-prone regions. With the comparison of historic sea level 
events, we show the importance of accounting for spatial dependence in 
large-scale extreme sea level assessments. We find that extreme sea level 
events can affect a large spatial area; not only contiguous but uncon-
nected stretches of coast, and sometimes even several countries can be 
impacted by the same event. Besides, the return periods of water levels 
at different locations within an event are spatially heterogeneous where 
the largest difference in return periods can be more than 1,000 years. 
Hence, using the at-site univariate assumption (i.e. spatially-constant 
return periods) would strongly misestimate the flood hazard and risk, 
as documented in several river flood risk studies (Jongman et al., 2014; 
Metin et al., 2020). In addition, this misestimation is expected to become 
larger as the spatial scale increases (Nguyen et al., 2020). 

In our analysis, we assume that the spatial dependence only exists 
within the clusters and therefore stations outside these clusters have 
zero dependence. However, it can be expected that there will be some 
events which show different spatial footprints that extend beyond the 
clustering boundaries. An improvement could be made by also consid-
ering the dependence between adjacent clusters as previously done in 
studies for river flooding (Quinn et al., 2019; Wing et al., 2020). Simi-
larly, we consider a 3-day window for ensuring independence although 
this time lag can vary for specific locations. Future work is recom-
mended to use different lags such as 3-day maxima in a 9-day window 
and to further assess the sensitivity to these assumptions. In addition, we 
only evaluate the synthetic dataset by benchmarking against the 
modeled GTSM-ERA5 dataset. The evaluation of the synthetic dataset 
could be extended to validation against observational data at tidal 
gauges such as the GESLA Version 3 (Haigh et al., 2022). For locations 
where gauge records are scarce or too short, satellite altimetry (Caze-
nave et al., 2022; Tellman et al., 2021) becomes an alternative. By 
comparing event spatial footprint sizes, we find that there are gaps in 
footprints for some regions. Future analysis can investigate the relation 
of different footprints to the complexity of the coastal geography and the 
oceanographic drivers (Rueda et al., 2017). Benchmarking on return 
levels shows that the synthetic dataset has a lower performance in 
TC-prone regions because of the stochastic nature of TCs and corre-
sponding incomplete TC-induced events sampled from the input dataset. 
Future work could therefore consider using additional synthetic datasets 
for a long time series of TC activity, such as the Synthetic Tropical 
cyclone geneRation Model (STORM) (Bloemendaal et al., 2020), and the 
corresponding return periods from the COastal dAtaset of Storm Tide 
Return Periods (COAST-RP) dataset (Dullaart et al., 2021). Waves are 
also an important component contributing to extreme sea levels and 
associated spatial dependence (Idier et al., 2019; Santos et al., 2017). We 
therefore recommend to include wave setup in the future analyses. 
Although we seek to assess the spatial dependence of all possible sea 
level events, our approach, based on extreme value theory, cannot 
characterize sea levels that drive chronic tidal flood events (Ghanbari 

et al., 2019). With relative sea level rise, these events are occurring more 
frequently (Hague et al., 2022; Sweet and Park, 2014) and their impacts 
are increasing in some coastal regions (Moftakhari et al., 2018). An 
interesting future research direction would be to design a framework 
that can capture the spatial dependence of tidal water levels, and to 
incorporate frequent but minor flood events in large-scale hazard and 
risk assessment, as is already done for local case studies (e.g. Habel et al., 
2020; Hino et al., 2019). 

Our global synthetic dataset provides a first step toward improving 
global-scale coastal flood impact assessments by explicitly accounting 
for the spatial dependence of extreme sea levels. For example, this 
dataset can be used to develop coastal flood hazard maps with realistic 
spatial dependence for deriving improved large-scale spatially-depen-
dent risk profiles than simply the average annual loss that have been 
applied in current risk studies. Such information is especially useful for 
international communities and organizations (such as the European 
Union) where the flood management responsibilities are shared between 
member states. Furthermore, this dataset can be used to examine how 
the spatial dependence can affect the risk estimate of coastal flooding, as 
previously done at local scales (Lamb et al., 2010) and for river flooding 
(Jongman et al., 2014; Metin et al., 2020; Nguyen et al., 2020). 
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