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Abstract:

Mountain treelines are thought to be sensitive to climate change. 
However, how climate impacts mountain treelines is not yet fully 
understood as treelines may also be affected by other human activities. 
Here we focus on “closed-loop” mountain treelines (CLMT) that 
completely encircle a mountain and are less likely to have been 
influenced by human land-use change. We detect a total length of 
~916,425 km of CLMT across 243 mountain ranges globally and reveal a 
bimodal latitudinal distribution of treeline elevations with higher treeline 
elevations occurring at greater distances from the coast. Spatially, we 
find that temperature is the main climatic driver of treeline elevation in 
boreal and tropical regions, whereas precipitation drives CLMT position in 
temperate zones. Temporally, we show that 70% of CLMT have moved 
upwards, with a mean shift rate of 1.2 m/year over the first decade of 
the 21st century. CLMT are shifting fastest in the tropics (mean of 3 
m/year), but with greater variability. Our work provides a new mountain 
treeline database that isolates climate impacts from other anthropogenic 
pressures, and has important implications for biodiversity, natural 
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23 Abstract

24 Mountain treelines are thought to be sensitive to climate change. However, how climate impacts 

25 mountain treelines is not yet fully understood as treelines may also be affected by other human 

26 activities. Here we focus on “closed-loop” mountain treelines (CLMT) that completely encircle 

27 a mountain and are less likely to have been influenced by human land-use change. We detect a 

28 total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a 

29 bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring 

30 at greater distances from the coast. Spatially, we find that temperature is the main climatic driver 

31 of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position 

32 in temperate zones. Temporally, we show that 70% of CLMT have moved upwards, with a 

33 mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest 

34 in the tropics (mean of 3 m/year), but with greater variability. Our work provides a new 

35 mountain treeline database that isolates climate impacts from other anthropogenic pressures, 

36 and has important implications for biodiversity, natural resources, and ecosystem adaptation in 

37 a changing climate. 

38

39 Keywords: treeline, forest boundary, climate, mountain ecosystems, alpine area
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41 1. Introduction

42 The mountain treeline is the upper altitudinal limit of tree growth toward the top of mountains, 

43 a transitional zone from forests to treeless alpine vegetation (Körner & Paulsen, 2004). Treeline 

44 ecotones play important environmental roles, including as habitats for endemic species and by 

45 contributing to water supply (Grace, 1989). Mountain treelines are important indicators of the 

46 impact of climate change on upland ecosystems (Verrall & Pickering, 2020; Lu et al., 2021) as 

47 they are strongly associated with growing season lengths and minimum daily temperatures 

48 (Paulsen & Körner 2014). Consequently, as a response to global warming, mountain treelines 

49 are expected to shift upward as high elevations become more favourable for tree establishment 

50 under a changing climate (Holtmeier & Broll, 2005; Du et al., 2018). Furthermore, treeline 

51 shifts give rise to novel high-elevation vegetation patterns and could redefine habitable area for 

52 forest-dependent species in a warmer future world (Bolton et al., 2018; Mohapatra et al., 2019). 

53 However, the treelines in many mountain regions have been heavily altered by land-use change 

54 and land-use management (Gehrig-Fasel et al., 2007; Ameztegui et al., 2016). Such land-use 

55 driven treelines are generally lower than the elevation of the local theoretical climatic treelines, 

56 making it difficult to isolate potential influences of climate on treeline position and obscuring 

57 the impact of climate change on treeline shifts. Therefore, accurate and reproducible detection 

58 of natural mountain treelines and their shifts are of great importance to understanding global 

59 climate change and the associated response of vegetation dynamics in alpine areas in natural 

60 systems. 

61

62 Previous studies reporting local treeline sites have mainly relied on field investigation (Wardle 

63 & Coleman, 1992; Liang et al., 2014; Elliott et al., 2015; Sigdel et al., 2018). While such studies 

64 have enhanced our understanding of treeline patterns, a key limitation of field-based studies is 

65 sparse geographic coverage. Remote sensing can overcome such a limitation by providing 

66 globally consistent coverage, but the determination of treeline positions only through visually 

67 interpreting satellite imagery (Paulsen & Körner, 2014; Irl et al., 2016; Karger et al., 2019) is 

68 time-consuming and labour-intensive at large spatial scales. Recently, regional attempts to 

69 combine remote sensing data with automated image processing techniques have emerged (Wei 

70 et al., 2020; Xu et al., 2020; Wang et al., 2022; Birre et al., 2023), but inconsistent analytical 

71 approaches and treeline definitions complicate regional comparisons and make it difficult to 

72 generalize global patterns.. Early assessment at the global scale suggested that low temperatures 

73 limited tree growth at treelines (Körner & Paulsen, 2004), but there is also regional evidence 

74 that tree growth at the treeline does not increase under global warming due to moisture 
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75 limitations (Liang et al., 2014; Lyu et al., 2019; Camarero et al., 2021). A generalizable pattern 

76 of the climatic limiting factors of global treelines is still lacking.

77

78 The aforementioned challenges and limitations associated with delineating treelines and 

79 determining climatic influences on treeline positions have hindered our understanding of the 

80 global impact of climate on treelines in natural systems. To address this issue, we focused on 

81 “closed-loop” mountain treelines (CLMT)—treelines with a continuous band of tree cover 

82 around a mountain. Such systems are less likely to have been influenced by land-use change. 

83 By focusing on this subset of treelines, we are better able to exclude treelines that may be 

84 impacted by topographic constraints or anthropogenic land use in order to isolate the effects of 

85 climate on mountain treelines in natural systems. An advance over previous studies that only 

86 provide a handful of data points for each treeline is a complete depiction of treeline at 30 m 

87 resolution. Our approach allows us to calculate the treeline elevation around the entire treeline, 

88 providing unprecedented detail on the variability of treeline elevation at the local scale. More 

89 importantly, using CLMT as a proxy for natural treelines with little influence from land-use 

90 change allows us to make a new and more robust assessment of how natural treelines are 

91 responding to changes in climate. 

92

93 Here, we map closed-loop treelines in mountain regions globally in 2000 based on remote 

94 sensing, via integrating a high-resolution tree cover map (Hansen et al., 2013) with a digital 

95 elevation model at the same spatial resolution (Tachikawa et al., 2011). For this purpose, we 

96 develop a novel automatic detection algorithm that can produce consistent characterizations of 

97 CLMT across space. Our detection of mountain treeline is based on tree cover data that consider 

98 trees as any vegetation taller than 5 m (Hansen et al., 2013), using a 5% tree cover threshold to 

99 delineate forested and non-forested areas. The algorithm starts from the highest elevation point 

100 for each mountain range and generates a forest boundary map from which we extract the closed-

101 loop treelines. To further ensure that our CLMT are natural treelines that are not impacted by 

102 anthropogenic disturbances, we conduct a manual inspection of high-resolution imagery to 

103 remove treelines with any indication of anthropogenic land use and restrict our analysis to 

104 regions where the human footprint is low (Mu et al., 2022). To understand which bioclimatic 

105 factors control the position of natural mountain treelines from global to local scales, we use the 

106 gradient boosting decision trees (GBDT) model (Friedman, 2001) to calculate the feature 

107 importance of each temperature or precipitation variable. Further, we map the new natural 
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108 treeline positions in 2010 using the same algorithm above and the amount of tree cover in 2010 

109 (Hansen et al., 2013) to explore the shifting of mountain treelines in natural systems. 

110

111 2. Methods 

112 2.1. Tree canopy cover data 

113 We used a high-resolution remote sensing global map of tree canopy cover for the year 2000 

114 (available at https://earthenginepartners.appspot.com/science-2013-global-

115 forest/download_v1.7.html; Hansen et al., 2013) to delineate forested and non-forested areas. 

116 The dataset was produced at a 30 m resolution based on multiple types of forest sample data 

117 and spectral curves of Landsat time series using a decision tree method (Hansen et al., 2013). 

118 To test which tree cover threshold is suitable for treeline mapping, we undertook a sensitivity 

119 analysis with different thresholds in mountains, finding there is little difference among different 

120 thresholds from 0 to 10% (examples refer to Figs. S1–S3). Thus, we took the mean value of 0 

121 to 10%, namely 5%, as the tree cover threshold, and define the treeline to be the transition zone 

122 above which tree cover is ≤5% and below which tree cover is >5%. We then binary-classified 

123 the tree canopy cover data using the threshold, assigning a value of 1 for the alpine land zone 

124 (the area above treeline) with tree cover ≤5% (non-forested area), and 0 for pixels with greater 

125 than 5% tree cover (forested area). 

126

127 2.2. Topography data

128 We combined global mountain polygons with a high-resolution digital elevation model to 

129 restrict the search area of mountain treelines. Mountain boundaries were collected from the 

130 Global Mountain Biodiversity Assessment (GMBA) inventory (version 1.2; available at 

131 https://ilias.unibe.ch/goto_ilias3_unibe_cat_1000515.html; Körner et al., 2017). The GMBA 

132 inventory delineated global mountains into discrete regions (polygons) based on topographic 

133 ruggedness metrics and expert delineation (Körner et al., 2017). The elevation information in 

134 mountains was provided by the Advanced Spaceborne Thermal Emission and Reflection 

135 Radiometer Global Digital Elevation Model (version 3; available at https://earthdata.nasa.gov/; 

136 Tachikawa et al., 2011) at a spatial resolution of 30 m.

137

138 2.3. Iterative mountain treeline extraction algorithm 

139 We developed an algorithm to automatically detect CLMT (Fig. S4). We first determined the 

140 coordinates of the highest peak within each mountain region. The algorithm starts at this peak 

141 point if it is within the alpine area that is non-forested, then expands outward (i.e., downslope), 
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142 and determines all other pixels of the image that are connected to the point and equivalent 

143 (marked as “1”). The eight neighbourhood region of the pixel  is expressed as: 𝐼(𝑥,𝑦)

144                                                                                            (1)

145 where I, j are integers. In the collection of the eight neighbourhood pixels, if I(x,y) = I(x+i,y+j), 

146 there are connected relationships. The connected domain generated by this method is the 

147 connected alpine area. Because the algorithm determines the starting search point, we marked 

148 only one connected domain (namely the treeline zone) after one iteration. 

149

150 To accelerate the efficiency of the algorithm, we set search blocks to determine the full 

151 altitudinal range of treelines within mountain ranges (Fig. S4). Specifically, the first round of 

152 the search takes the highest point of the mountain as the centre and the buffer zone with a side 

153 length of R as the search area for the treeline. After testing, the square area with 8,000 

154 rows/ranks (side length R about 240 km) covered most alpine areas of mountains. For some of 

155 the mountaintops larger than this range, we expanded the side length to ~720 km to ensure that 

156 all close-loop mountain treelines of the world’s mountaintops were covered. 

157

158 There may be multiple treelines within a mountain range because a mountain may have multiple 

159 peaks. To account for this, we next searched for the second highest starting point (i.e., the 

160 highest point of the unsearched part) and repeated the process until the selected highest point 

161 was covered by forests (tree cover >5%). 

162

163 After each iteration, the loops that were determined to be “open” were removed. Focusing only 

164 on closed treeline loops generated from the algorithm, we then visually inspected all loops using 

165 Google Earth (with spatial resolution ranging from 15 m to ~15 cm) to further exclude treelines 

166 with apparent signs of anthropogenic disturbances, such as roads, buildings, or croplands and 

167 removed the part of water bodies (i.e., pixels that were determined to be water). Last, we filled 

168 all the holes in the closed-loop polygons using the “imfill” function and extracted the edges of 

169 the binary images using the “bwperim” function in Matlab R2019a to obtain the CLMT 

170 positions. 

171

172 To validate the robustness of the elevational distribution of CLMT derived from satellite images, 

173 at the pixel level, we used an independent validation dataset by manual interpretation using 

174 Google Earth’s high-resolution images. We randomly produced 100 validation samples at a 

175 spatial resolution of 30 m. On a larger scale, we validated our CLMT database by comparison 
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176 with in situ measures (n = 62; Table S1). For each treeline site, we corresponded it to the closest 

177 treeline loop detected in this study and compared its elevation with the range of the 

178 corresponding treeline loop.  

179

180 2.4. Climate data

181 Considering the effect of climatic lag effects on treelines (Harsch et al., 2009), we used the 

182 climate data from WorldClim (version 2.1; https://www.worldclim.org/data/worldclim21.html; 

183 Fick and Hijmans, 2017), which provided the average for the years 1970–2000 at a resolution 

184 of 30 seconds (~1 km2), to understand which climate variables are important in controlling 

185 treeline elevations. We used bioclimatic variables, which were derived from monthly 

186 temperature and precipitation. A total of eight temperature variables and eight precipitation 

187 variables were included, representing annual trends, seasonality, and extreme or limiting 

188 environmental factors. They are annual mean temperature (annual T), temperature seasonality 

189 (T seasonality; calculated as the standard deviation of the monthly mean temperatures, then 

190 multiply by 100), the maximum temperature of the warmest month (maximum T), the minimum 

191 temperature of the coldest month (minimum T), mean temperature of the wettest quarter (wet 

192 season T), mean temperature of the driest quarter (dry season T), mean temperature of the 

193 warmest quarter (warm season T), mean temperature of the coldest quarter (cold season T), 

194 annual precipitation (annual P), precipitation of the wettest month (maximum P), precipitation 

195 of the driest month (minimum P), precipitation seasonality (P seasonality; calculated as the 

196 coefficient of variation, which is the ratio of the standard deviation to the mean), precipitation 

197 of the wettest quarter (wet season P), precipitation of the driest quarter (dry season P), 

198 precipitation of the warmest quarter (warm season P), and precipitation of the coldest quarter 

199 (cold season P). A ‘quarter’ here refers to any consecutive three months. For example, the 

200 coldest quarter consists of the three months that are colder than any other set of three 

201 consecutive months. For each pixel determined to be on a CLMT, we extracted the values of all 

202 16 climate variables. 

203

204 2.5. Gradient boosting decision trees (GBDT) model 

205 We applied a GBDT method to model the treeline elevation as a function of climate factors. 

206 The GBDT model is a type of tree model with good interpretability for feature values 

207 (Friedman, 2001), which assembles and iterates over multiple regression trees, with the values 

208 of the negative gradient of the loss function in the model as an approximation of the residuals 

209 of the lifting tree algorithm in the regression problem (Ke et al., 2017). It is flexible in handling 
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210 large amounts of data and often performs well in dealing with complex relationships in data 

211 (Ke et al., 2017). The GBDT initializes a weak learner, estimating a constant value of the loss 

212 of function minimization, and then creates decision trees according to the datasets and performs 

213 iterative training on them. Next, it calculates the negative gradient for loss of function (residuals) 

214 corresponding to each tree, fits a regression tree to the residuals to obtain the leaf node region 

215 of the m-th tree, and minimizes loss of function by estimating the values of all leaf node regions 

216 using a linear search. Last, GBDT repeats the above steps until the target evaluation indicator 

217 is optimal. Using this model, we calculated the feature importance of each variable and 

218 determined the dependent correlations for each factor after the model was built. The GBDT 

219 analysis was undertaken in Python 3.7 with the “sklearn.ensemble” module. 

220

221 We carried out the GBDT analyses at global and local scales, as well as separately for different 

222 climatic belts (i.e., boreal, temperate, and tropical regions). At the global scale, we considered 

223 each treeline loop as a sample, namely, mean elevation in a loop of the treeline was the 

224 dependent variable and the average of climate variables in a loop were the independent 

225 variables. A total of 1,690 samples (treeline loops) were used for the global model. At the local 

226 scale, we regarded one treeline pixel as a sample. Hence, in each treeline loop, the repeated 

227 GBDT model represents the local effect of climate factors on treeline positions. 

228

229 2.6. Mountain treeline shift rate 

230 We mapped the new treeline positions in 2010 based on the global 2010 tree cover data 

231 (available at https://glad.umd.edu/Potapov/TCC_2010/; Hansen et al., 2013; Potapov et al., 

232 2015), which is an update of the 2000 tree cover product. Using this dataset, we re-ran the 

233 algorithm around treelines to detect the new closed-loop treelines in 2010. Starting from the 

234 highest elevation point we detected before, we expanded the rectangular area of the original 

235 treeline around by 10 km as the search area. Then we manually checked the results from the 

236 1,690 treeline loops to (i) exclude treelines without closed loops; (ii) isolate examples of 

237 “broken treeline loops” and restrict them to corresponding areas in 2000 and 2010 (Fig. S5); 

238 and (iii) remove outliers (>95th percentile of both increasing and decreasing rates) to avoid the 

239 inclusion of any special cases with extremely steep changes. This filtering resulted in 1,110 

240 treeline loops in 2010 (65.7% of all treelines initially assessed) being available for analysis of 

241 the treeline change. The main reason for the reduction in number of treeline loops between 2000 

242 and 2010 is that some of the closed-loop treelines detected in 2000 did not form closed loops in 

243 2010. We then calculated the mean elevation of closed-loop treelines in 2010 and the 
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244 corresponding treelines in 2000 and used the difference to represent the treeline change over 

245 the 10-year period. The treeline shift rate (m/year) at each treeline loop was calculated as 

246 follows: 

247                                                                           (2)

248

249 3. Results 

250 3.1. A map of global closed-loop mountain treelines

251 We detected 27,468,662 closed-loop mountain treeline positions (pixels at 30 m resolution) 

252 across 243 mountain ranges globally. The total length of the closed-loop treelines we detected 

253 is ~916,425 km. Those treeline pixels form 1,690 treeline loops covering all continents except 

254 Antarctica, ranging from 64°N (Khrebet Polyarnyy, Russia) to 46°S (Princess Mountains, New 

255 Zealand), with mean elevations spanning from 489 ±283 m on Khrebet Chayatyn (Russia) to 

256 4,528 ±104 m on Ruwenzori (Uganda, Kenya). The average length of these closed-loop 

257 treelines is 542 km, and the average alpine land area above them is 142 km2. To visualize global 

258 patterns of the elevation of CLMT, we calculated the mean elevation for each treeline loop and 

259 plotted their locations using the mean latitude and longitude of treeline pixels at 30 m resolution 

260 in each loop (Fig. 1a). The CLMT derived from satellite tree cover data are consistent with fine 

261 resolution remote sensing images available on Google Earth (Fig. 1b–g). At the pixel level, the 

262 CLMT showed good agreement with manually interpreted data at 30 m resolution (R2 = 0.96; 

263 Fig. S6). On a larger scale, the validity of our CLMT database was further supported by 

264 corroboration against in situ measures from previous studies (n = 62 measurements; Table S1), 

265 which fall within the elevation range of CLMT loops (R2 = 0.98; Fig. S7). 

266

267 We found a bimodal pattern for the closed-loop mountain treeline elevation along latitude, with 

268 peaks at the equator and ~25°N (Fig. 2a). Between 0° and 10°, the elevation of CLMT is 

269 symmetrical in the northern and southern hemispheres, but beyond this range, treeline 

270 elevations in the northern hemisphere are higher than those in the southern hemisphere at 

271 equivalent latitudes (Fig. 2a), which is attributed to the oceanic influence on a smaller southern 

272 landmass (Testolin et al., 2020). Our global CLMT distribution is consistent with previous 

273 global assessments, though there are some differences. In the tropics, the elevation of CLMT 

274 reaches up to 3,500 m (Fig. 2), a lower elevation than in a recent global assessment by Testolin 

275 et al. (2020) that reported tropical treelines higher than 4000 m. This discrepancy may be due 

276 to our strict definition of trees, >5 m height, as well as the exclusion of some unilateral and non-
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277 closed treelines in high mountains. At low latitude (especially at 0-20°N), there is large 

278 variation in the range of CLMT elevation (Fig. 2a). Among different continents, South America 

279 has a large CLMT elevation range variation. At 50°N–60°N and 20°N–30°N, many mountains 

280 in Asia and North America have similar treeline elevations, whereas there is a rather different 

281 behaviour at 30°N–50°N where treelines in North America are higher than those in Europe and 

282 Asia (Fig. 2a). To help understand what causes this behaviour, we calculated the distance to the 

283 coast for each treeline. We found lower treelines in coastal mountains at the same latitude (Fig. 

284 2a) as has been suggested in the literature (Irl et al., 2016), which can be largely attributed to 

285 the thermo‐dynamic effect of large high‐elevation landmasses (Karger et al., 2019). At 340°N–

286 60°N, mountains close to the coast have lower treelines than their latitude might suggest (i.e., 

287 fall below the fitted curve; Fig. 2a). Similarly, along with longitude decreasing from 150°W to 

288 100°W, treeline elevations in North America increase due to an increase in the distance to the 

289 coast (Fig. 2b). 

290

291 3.2. Climatic determinants of closed-loop mountain treelines

292 We found that T seasonality, cold season P, and warm season T predict nearly 60% of the spatial 

293 distribution of CLMT globally (Fig. 3a). We then assessed how the three leading factors 

294 modulated the elevation of CLMT spatially. The results showed the abrupt transition of CLMT 

295 elevation occurring at the T seasonality threshold of ~9℃, but attenuated transitions in areas 

296 where T seasonality exceeded 10℃ (Fig. S8a). Similarly, there is a CLMT elevation gradient 

297 that is spatially driven by cold season P, with abrupt transitions occurring at the thresholds of 

298 320 mm and 450 mm along the gradient of cold season P (Fig. S8b). By contrast, we did not 

299 find such a dramatic transition of CLMT elevation along the warm season T gradient (Fig. S8c). 

300

301 Collectively, temperature-related factors (64%) are more important than precipitation-related 

302 factors for limiting CLMT elevations on a global scale (Fig. 3a). In different latitudinal belts, 

303 temperature-related factors are most important in boreal and tropical regions, especially the 

304 temperature of the warmest and the wettest quarters, respectively, while precipitation dominates 

305 the CLMT elevation in temperate regions (Fig. 3b–d). Our results confirm the importance of 

306 temperature during the warm part of the year in the boreal zone (Jobbágy & Jackson, 2000), but 

307 suggest that precipitation is more important than temperature in temperate regions. It agrees 

308 with climatic sensitivity of tree growth in the Norther Hemisphere (Gao et al., 2022). Especially 

309 under dry environmental conditions, moisture availability is crucial to limiting tree growth in 

310 the treeline ecotone (Liang et al., 2014; Ren et al., 2018). 
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311

312 Our study provides vastly more data points for each treeline compared to previous global 

313 assessments (Jobbágy & Jackson, 2000; Körner & Paulsen, 2004), allowing us to explore for 

314 the first time what controls treeline position at a local scale. We found that temperature remains 

315 the dominant explanation for the altitudinal variation of 76% of the treeline within a single 

316 treeline loop with similar climatic conditions (Fig. S9). 

317

318 3.3. Shifts in closed-loop mountain treelines

319 Between 2000 and 2010, mountain treelines have shifted upwards at 777 out of the 1,110 

320 treeline loops (70%) and downward at 333 treeline loops (Fig. 4a). The mean global treeline 

321 shift rate was an upward shift of 1.2 m/year, which is consistent with case studies of treeline 

322 change, with rates >1 m/year reported in the literature (Table S2). A synthesis of treeline shift 

323 rates reported in the literature suggests the rate was 0.67 m/year before 1970 compared to 4.36 

324 m/year after 1970 and 6.16 m/year after 2000 (Fig. S10; Table S2). This provides evidence that 

325 the rate of change in treeline elevation is accelerating, possibly due to recent rapid climate 

326 change (Bolton et al., 2018). Treeline shift rates in the tropics (mean of 3.1 m/year) were higher 

327 than those in boreal and temperate regions (Fig. 4b). The faster changes in the topics could be 

328 related to hydrothermal conditions: in the tropics, higher temperature and more abundant 

329 precipitation bring a longer growing season, which naturally favours the growth of seedlings 

330 and young trees. By contrast, there is a slight downward shift in temperate regions (an average 

331 of -0.5 m/year), where the position of the treeline is dominated by precipitation (Fig. 3c). This 

332 could be due to decreasing precipitation in some mountain areas of the temperate zone, for 

333 example in northern China (Piao et al., 2010). 

334

335 Although the tropical CLMT have the fastest shift rates, their variability is the largest, ranging 

336 from -10.2 to 16.9 m/year (Fig. 4b). In the tropics, treeline shift rates greater than 10 m/year in 

337 the mountains of Malawi, Papua New Guinea, and Indonesia may reflect a more extreme trend 

338 in these tropical systems. In other regions, there are also some treelines that have shifted much 

339 more than expected (>10 m/year; Fig. 4b): in boreal regions, these expectations are mainly in 

340 Russia and Canada; in temperate regions, they are geographically concentrated in East Asia 

341 (North Korea, Japan, and China). On the contrary, there are also cases of treelines receding at 

342 a high rate, possibly driven by fire in some areas, either through the physical destruction of trees 

343 that acts to lower the existing treelines, or through the destruction of seedlings established 

344 upslope that acts to prevent treeline advances (Kim & Lee, 2015). For example, treelines have 
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345 significantly receded in the western USA where climate and vegetation are favourable for fire 

346 (Seven Devils Mountains, Swan Range, etc.; Fig. 4a). 

347

348 In addition, independent analysis for the changes in annual maximum Normalized Difference 

349 Vegetation Index (NDVI) at CLMT that we identified for the year 2000 shows the NDVI has 

350 significantly increased by 3.3% by 2020, at a rate of 0.0012 per year (P < 0.01; Fig. S11a). 

351 There are significant positive trends in NDVI at treeline zones in boreal, temperate, and tropical 

352 regions during 2000-2020 (P < 0.01), and tropical areas have the highest rate, approaching 

353 0.0016 per year (Fig. S11b). The increase in NDVI occurred at most treeline zones (~90%; Fig. 

354 S11c). This greening at the treeline may also be conducive to upward movement of the treeline 

355 in the future.

356

357 4. Discussion

358 4.1. Comparison of treeline datasets before and after considering human footprint

359 Although we have examined CLMT by manual interpretation to remove anthropogenic 

360 treelines, we further conduct a stricter assessment of human pressures to check whether our 

361 results would still be impacted by human activity. We used a global Human Footprint dataset 

362 (Mu et al., 2022) and found 83% of our CLMT in wilderness (Human Footprint < 1) or in highly 

363 intact areas (Human Footprint <4). We then removed those treelines with human footprint 

364 values ≥ 4, re-ran the analysis with the higher human footprint values excluded, and updated all 

365 the results above (Figs. S12-14). By comparing these new results with those using the whole 

366 dataset, we found a similar pattern along latitude and longitude gradients (Figs. 2 and S12). The 

367 results regarding climate dominants (Figs. 3 and S13) and treeline shift rates (Figs. 4b and S14) 

368 were also consistent using either approach. Thus, the additional criterion to further focus our 

369 analysis on treelines with no human disturbance does not alter our overall results or conclusions, 

370 and further confirms that our CLMT product can well represent the change and pattern of 

371 climatic treelines.  

372

373 4.2. Implications of treeline shifts for carbon, biodiversity, and hydrology

374 Changing treeline position can affect the carbon cycle, biodiversity, and hydrological processes 

375 in mountain environments. Mountain treelines moving upward to higher elevations increase 

376 woody biomass at and above the treeline, accumulating carbon and increasing their ability to 

377 act as carbon sinks (Lopatin et al., 2006; Tarnocai et al., 2009). However, such increases may 

378 be offset by increases in soil respiration, leading to a net loss of ecosystem carbon (Wilmking 
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379 et al., 2006; Hartley et al., 2012). The ascent of mountain treelines also substantially influences 

380 biodiversity patterns at high elevations, with enhanced habitat loss of endemic alpine species 

381 within a narrow range of mountains (Wang et al., 2022) and potential expansion of habitat for 

382 forest-dependent species whose upper range limits coincide with the treeline ecotones (Elsen et 

383 al., 2017). For alpine species isolated at the top of mountains, upward treeline shifts could 

384 increase the risk of extinction, where there is not enough room for the alpine zone to move 

385 upward under future climate change (Dirnböck et al., 2011). In Siberia, for example, we show 

386 many treelines have shifted upwards (Fig. 4b), inevitably reducing the area of the tundra, which 

387 is rich in floristic and species diversity and supports indigenous land use types. The expansion 

388 of Siberian forests has been predicted to continue, thus causing huge losses of tundra in the 

389 future (Kruse & Herzschuh, 2022). While we focused here on treeline shifts in areas with 

390 minimal human impacts, treeline ascent in areas with pronounced human disturbance will 

391 further hinder species’ ability to track vegetation changes and likely lead to more pronounced 

392 population declines (Feeley & Silman, 2010; Elsen et al., 2020). There are many instances with 

393 high high-elevation pressure especially from burning, grazing, and wood harvesting (Bader et 

394 al., 2008; Jiménez-García et al., 2021). The combined impact of shifting treelines and human 

395 disturbances may also affect local livelihoods and act as a double-whammy for sensitive alpine 

396 species. In addition, tree expansions into the formerly treeless area may alter downstream water 

397 supply. Recent advances of the treeline have decreased the area of alpine tundra, thereby 

398 affecting its critical role as a reservoir of freshwater resources and in water release (Barredo et 

399 al., 2020). 

400

401 4.3. Uncertainties and caveats 

402 To isolate the impacts of climate on treelines, our analysis identifies CLMT that completely 

403 encircle a mountain. However, focusing on this kind of treelines could omit some climate-

404 related treelines as climatic treelines may not be in a closed loop shape in some cases. We 

405 acknowledge that our CLMT database does not include all climatic treelines, but is a subset of 

406 climatic treelines that specifically form a closed loop, because these enable us to analyse 

407 climatic determinants with greater confidence. We also note that tree cover can increase in 

408 various ways, either through new or existing trees growing above the 5 m height threshold, or 

409 existing trees having increased canopy cover. However, our analysis is based on the definition 

410 of treeline according to remotely sensed tree cover, and we used this definition to assess treeline 

411 position at two time periods and assess change. While our analysis period is short and errors 

412 will exist at a pixel scale, our global detection of a shifting treeline provides an early indication 
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413 of climate-induced changes that need to be carefully monitored in the future. To reduce 

414 uncertainties and further advance our understanding of treeline dynamics, future studies require 

415 more high-resolution remote sensing products for a longer period and more field data in alpine 

416 treeline zones for cross-validation. 

417

418 5. Conclusion 

419 Our study develops a novel remote sensing-based algorithm to map closed-loop treelines across 

420 global mountain regions, isolating the effects of climate on treeline position. Our approach 

421 provides a globally consistent way of detecting and monitoring closed-loop treelines around 

422 mountains, which are more likely to reflect natural systems with minimal impact of land-use 

423 change. Focusing on these closed-loop treelines as a proxy for natural treelines allows us to 

424 isolate the impacts of climate and climate change on the elevation distribution and change of 

425 treelines. We found temperature was the dominant control on natural treelines both at a global 

426 and local scale. Our results indicated an upward migration of treelines over the period 2000 to 

427 2010 in boreal and tropical regions but a slight downward shift in temperate zones. Our new 

428 findings and the global closed-loop mountain treeline database produced in this study also 

429 provides a useful tool for biodiversity and carbon assessments, ecological modelling, and 

430 analyses of adaptation of species to future climate change. 

431
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596 Figure Legends 

597 Figure 1. Global distribution of closed-loop mountain treeline (CLMT) elevation. To 

598 improve readability, figure a is based on the mean value of each closed-loop mountain treeline 

599 (at each 30-m pixel). Grey boundaries indicate mountain regions defined by GMBA inventory 

600 data. b–g show examples of CLMT extraction results superimposed with Google Earth images. 

601 The yellow line represents the position of the treeline, and the green circle shows the highest 

602 elevation point that formed the starting point of each search by the treeline algorithm. 

603

604 Figure 2. Global latitudinal and longitudinal variation of closed-loop mountain treeline 

605 (CLMT) elevation. Different symbols represent different regions and colours represent the 

606 distance to the coast. The data points show the mean elevation of all of the pixels in the CLMT. 

607 The error bar is the elevation range of the corresponding treeline loop. 

608

609 Figure 3. Climate drivers controlling the variability in treeline elevation for the globe (a), 

610 boreal (≥50°N, b), temperate (23.5° – 50°N/S, c) and tropical (23.5°N – 23.5°S, d) regions. 

611

612 Figure 4. Closed-loop mountain treeline (CLMT) shift rate during 2000-2010. a, Spatial 

613 pattern of CLMT shift rate. b, Box-plot showing CLMT shift rate in boreal (≥50°N), temperate 

614 (23.5° – 50°N/S) and tropical (23.5°N – 23.5°S) regions (central line: median; red dot: mean; 

615 box: 25th and 75th percentiles, respectively; error bar: maximum and minimum whisker values; 

616 +: maximum and minimum values). The black dashed line is the zero line. Numbers of the 

617 studied CLMT are shown above the boxes. 

618
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619

620 Figure 1. Global distribution of closed-loop mountain treeline (CLMT) elevation. To improve readability, figure a is based on the 

621 mean value of each closed-loop mountain treeline (at each 30-m pixel). Grey boundaries indicate mountain regions defined by GMBA 

622 inventory data. b–g show examples of CLMT extraction results superimposed with Google Earth images. The yellow line represents the 

623 position of the treeline, and the green circle shows the highest elevation point that formed the starting point of each search by the treeline 

624 algorithm. 

625
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626

627 Figure 2. Global latitudinal and longitudinal variation of closed-loop mountain treeline 

628 (CLMT) elevation. Different symbols represent different regions and colours represent the 

629 distance to the coast. The data points show the mean elevation of all of the pixels in the CLMT. 

630 The error bar is the elevation range of the corresponding treeline loop. 
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631
632 Figure 3. Climate drivers controlling the variability in treeline elevation for the globe (a), 

633 boreal (≥50°N, b), temperate (23.5° – 50°N/S, c) and tropical (23.5°N – 23.5°S, d) regions. 

634
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635
636 Figure 4. Closed-loop mountain treeline (CLMT) shift rate during 2000-2010. a, Spatial pattern of CLMT shift rate. b, Box-plot 

637 showing the CLMT shift rate in boreal (≥50°N), temperate (23.5° – 50°N/S) and tropical (23.5°N – 23.5°S) regions (central line: median; 

638 red dot: mean; box: 25th and 75th percentiles, respectively; error bar: maximum and minimum whisker values; +: maximum and minimum 

639 values). The black dashed line is the zero line. Numbers of the studied CLMT are shown above the boxes. 

Page 26 of 25Global Change Biology


