

CXCR4-targeted radio-theragnostics based on the endogenous ligand EPI-X4 for oncological applications

<u>Raghuvir H. Gaonkar¹, Jacopo Millul¹, Rosalba Mansi¹, Mirja Harms², Jan Münch^{2,3}, Melpomeni Fani¹</u>

¹Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland

²Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany

³Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany

CXCR4-targeted imaging and therapy has been an area of intensive research due to the overexpression of CXCR4 in several cancer types. We utilized the Endogenous Peptide Inhibitor of CXCR4 (EPI-X4), a human serum albumin fragment (1), as scaffold for developing novel CXCR4-targeting radio-theragnostics. Out of a small library of EPI-X4 derivatives, we identified ⁶⁸Ga-/¹⁷⁷Lu-JMF-04 (DILRWSRKK(⁶⁸Ga-/¹⁷⁷Lu-DOTA)-NH₂) as the derivative able to visualize CXCR4-expressing tumors. However, ⁶⁸Ga-/¹⁷⁷Lu-JMF-04 had undesirably high kidney uptake. In a follow-up structure optimization study, we developed two optimized derivatives, JMF-10 (lacking one lysine) and JMF-11 (in addition having 6aminohexanoic acid as a spacer. Both the new derivatives were evaluated in vitro and in vivo and compared with JMF-04.

EPI-X4-based radiotracers: The DOTA-conjugated EPI-X4 derivatives were incubated with ¹⁷⁷LuCl₃ (40-150 MBq) in ammonium acetate buffer (0.4 M, pH 5.0) for 20-30 min at 95°C. Quality control was performed by radio-HPLC. Radiolabeling yield was ≥97% and radiochemical purity ≥95% at apparent molar activities of 30-80 MBq/nmol.

Table 1. Physicochemical properties of the ¹⁷⁷Lu-labeled radiotracers.

Compound code	Molecular weight	Retention time t _R (min)	Radiochemical Purity (RCP)
¹⁷⁷ Lu-JMF-04	1471.7	8.4	≥95 %
¹⁷⁷ Lu-JMF-10	1343.1	8.6	≥95 %

Log D: The octanol-water distribution coefficient at pH 7.4 (log D) was determined by shake-flask method. The two new radiotracers, ¹⁷⁷Lu-JMF-10 and ¹⁷⁷Lu-JMF11, had very similar log D (-2.99±0.31 and -2.88±0.31, respectively), being more lipophilic than the reference 177 Lu-JMF-04 (log $D = -3.45 \pm 0.06$).

	¹⁷⁷ Lu-JMF-11	1456.3	8.7	≥95 %	
--	--------------------------	--------	-----	-------	--

*Column: Phenomenex Jupiter Proteo C12 (90 Å, 250 × 4.6 mm) column Gradient: Gradient: 5-50% solvent B in 15 min ($A = H_2O$ [0.1%TFA], B = ACN [0.1% TFA])

Figure 2. Lipophilicities of the ¹⁷⁷Lu-labeled radiotracers.

Figure 3. Shelf-life of the ¹⁷⁷Lu-labeled radiotracers.

Figure 3. SPECT/CT images of ¹⁷⁷Lu-labeled radiotracers at 1h p.i.

SPECT/CT imaging: Nude mice bearing Jurkat xenografts were euthanized 1 hour post injection (p.i.) of 200 pmol/~15 MBq of the ¹⁷⁷Lu-labeled radiotracers (Figure 3). ¹⁷⁷Lu-JMF-10 and ¹⁷⁷Lu-JMF-11 showed massive reduction in kidney uptake in comparison to ¹⁷⁷Lu-JMF-04, while the accumulation in the tumor remained at the same level.

Biodistribtuion: Quantitative biodistribution was performed for all three ¹⁷⁷Lu-labeled tracers (200 pmol/0.8-1 MBq) in Jurkat xenograft tumor model at 1h p.i. While, there was no significant difference in tumor uptake between ¹⁷⁷Lu-JMF-04 and ¹⁷⁷Lu-JMF10 (2.25±0.43 vs 1.71±0.17 % injected activity per gram of tissue (% I.A./g), ¹⁷⁷Lu-JMF-11 had a lower tumor uptake (1.24±0.21 %I.A./g) and hence was omitted from further evaluation. As also seen from the SPECT/CT imaging, a 15- and 19-fold reduction in the kidney uptake was observed for ¹⁷⁷Lu-JMF-10 and ¹⁷⁷Lu-JMF-11, compared to ¹⁷⁷Lu-JMF-04.

Figure 4. Biodistribtuion of ¹⁷⁷Lu-labeled radiotracers at 1h p.i. The results are expressed as % I.A/G.

PET/CT imaging and biodistribution: The ⁶⁸Ga-counterparts behaved very similar to the ¹⁷⁷Lu-labeled ones. They

<u>In vivo metabolic stability:</u> Mice were injected with 500 pmol/~18 MBq of ¹⁷⁷Lu-JMF-04 and ¹⁷⁷Lu-JMF-10 and at 5, 15, and 30 min blood was collected, centrifuged and the plasma was separated and analysed. Both radiotracers displayed very similar stability at all investigated time points, remaining ~50 % intact in plasma after 30 min.

displayed similar tumor uptake and massive reduction in kidney uptake for the ⁶⁸Ga-JMF-10 in comparison to ⁶⁸Ga-JMF-04. When quantified the tumor uptake was found to be 2.24±0.57 %I.A/g and 2.45±0.46 %I.A./g for ⁶⁸Ga-JMF-04 and ⁶⁸Ga-JMF-10 respectively.

Figure 5. PET/CT images of ⁶⁸Ga-JMF-04 and ⁶⁸Ga-JMF-10 at 1h p.i.

Compound code	% intact peptide			
	5 min	15 min	30 min	
¹⁷⁷ Lu-JMF-04	71 ± 5	58 ± 7	53 ± 6	
¹⁷⁷ Lu-JMF-10	73 ± 1	58 ± 3	49 ± 7	

Conclusion

The kidney uptake was significantly reduced in the two optimized derivatives while maintaining similar tumor uptake for JMF-10.

This study designates JMF-10 as the lead derivative and further optimization in the direction of improving affinity is in progress.

References

Ziraffi, O., et al. *Cell Rep* **2015**;11(5):737-47.

b

%**.**A