
Confidence interval for a ratio of parameters
Gilles Guillot

May 17, 2017

Abstract

We consider the problem of providing a confidence interval when the parameter of interest is R = θ1/θ2

where θ1 and θ2 are two unknown parameters. The Delta method and the Fieller method are general and
can be implemented in any context. Other methods can not be applied when only summary statistics are
available. There is no guarantee that the actual coverage probability matches the nominal coverage.
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We consider the problem of providing a confidence interval when the parameter of interest is R = θ1/θ2 where
θ1 and θ2 are two unknown parameters. This problem is not well addressed by standard methods (because
classical assumptions such as Normal or Student distribution make little sense for a ratio) and therefore
received little attention in classical textbooks. We outline briefly the main methods that have been proposed
earlier and comment on their usefulness in the context of the estimation of relative toxicity when data are
extracted from the literature. The specificity of this context is that estimates of θ1 and θ2 together with
estimates of the associated standard deviation (denoted below θ̂1, θ̂2, s1 and s2 are available) but neither the
individual data points that have been used to obtain those estimates nor even the sample sizes are routinely
available.

The ratio estimator is biased.

If θ̂1 and θ̂2 are estimators of θ1 and θ2, the most obvious estimator of R is the estimator obtained by
forming the ratio of estimators, namely R̂ = θ̂1/θ̂2. Its expectation is E

[
θ̂1/θ̂2

]
= E[θ̂1]E[1/θ̂2] (assuming

independence of θ1 and θ2). Usually E[1/θ̂2] 6= 1/E[θ̂2] and R̂ is biased, even if θ̂1 and θ̂2 are both unbiased.
Jensen’s inequality implies that E[1/θ̂2] ≥ 1/E[θ̂2]. θ̂1/θ̂2 over estimates the true ratio.

For example, if θ̂1 and θ̂2 are unbiased, independent and log-normally distributed and denoting by µ. and σ.
their log-mean and log-sd, we have:

R = θ1/θ2 = exp(µθ̂1
+ σ2

θ̂1
/2)/ exp(µθ̂2

+ σ2
θ̂2
/2)

= exp(µθ̂1
− µθ̂2

+ (σ2
θ̂1
− σ2

θ̂2
)/2) (1)

whereas

E[R̂] = exp(µθ̂1
− µθ̂2

+ (σ2
θ̂1

+ σ2
θ̂2

)/2) (2)

R̂ over-estimates R by a multiplicative factor equal to exp(σ2
θ̂2

).

Delta method

The Delta method is based on a Taylor series approximation of R̂ = θ̂1/θ̂2 around θ1/θ2 that is used to obtain
estimates of the expectation and of the variance of R̂ (Cox 1998; Casella and Berger 2002; Faraggi, Izikson,
and Reiser 2003; Franz 2007; Hirschberg and Lye 2010). Assuming that R̂ follows a normal distribution, the
1−α confidence interval is obtained as R̂± z× s.d. where z is the upper α/2 quantile of the standard normal
distribution. The approximations made in this method are dubious and it is expected to behave poorly. Its
main advantage are its conceptual simplicity and ease of implementation.
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Fieller’s method

Fieller’s method (Fieller 1954) is based on the assumption that (θ̂1, θ̂2) follows a bivariate Normal dis-
tribution For testing θ1/θ2 = R0 (which amounts to testing θ1 = R0θ2), the two-sided t-test based on
(θ̂1−R0θ̂2)/Var[θ̂1−R0θ̂2]1/2 is optimal in some sense. The rejection region for this test is the set of values r
satisfying (θ̂1 − rθ̂2) > tVar[θ̂1 − rθ̂2]1/2. Finding an explicit form for the confidence interval requires solving
a quadratic equation in r. The confidence interval can be of the form (L,U), (U,+∞) (0, U) or (0,+∞)
depending on the number of solutions of the quadratic equation (Raftery and Schweder 1993; Buonaccorsi
2001; Franz 2007; Von Luxburg and Franz 2009; Hirschberg and Lye 2010)

Raftery and Schweder’s Bayesian method

The method introduced by Raftery and Schweder (1993) is based on the assumption that the joint posterior
distribution of (θ̂1, θ̂2) is bivariate Normal. Assuming that estimates at hand θ̂1 and θ̂2 on one hand, and s1

and s2 on the other hand are the posterior means and variances of θ1 and θ2 and that θ2 is positive (which
holds most often for toxicological parameters), then
P (R ≤ r) = P (θ1 − rθ2 ≤ 0) = Φ(−(θ̂1 − rθ̂2)/V ar[θ̂1 − rθ̂2|Data]1/2) where Φ denotes the cumulative
distribution function (c.d.f.) of a standard normal distribution. The latter can be used to obtain numerically
a Bayesian estimation interval for R. This method is based on an assumption similar to the one underlying
Fieller’s method (joint normality of estimators).

Bootstrap method

Choquet et al. (1999) proposed a method based on re-sampling with replacement the data that have been
used to produce θ̂1 and θ̂2 (bootstrapping). We note that this approach is based on a biased estimate of R
and that in a simulation study, Choquet et al. (1999) report that empirical coverage frequencies did not
match nominal coverage probabilities. In addition, when estimates θ̂1 and θ̂2 have been retrieved from the
scientific literature, the data that have been used to produce them are usually not available.

Likelihood ratio test method

If θ̂1 and θ̂2 have been obtained by maximizing a likelihood under a given model (see e.g. LD50 under a logistic
regression, Faraggi, Izikson, and Reiser 2003), then a ratio of likelihood is asymptotically χ2 distributed. This
approach requires to know how many data points have been used to obtain θ̂1 and θ̂2 (number of degrees of
freedom of the χ2), an information usually not available when data have been extracted from the scientific
literature.
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Methods designed for the ratio of means of log-normal distributions

Chen and Zhou (2006) review five methods of constructing confidence intervals for the ratio of means of
two log-normal distributions. (See also Wu et al. 2002; L. Jiang, Rekkas, and Wong 2014; Jafari and
Abdollahnezhad 2017 for related material).

Likelihood based approaches

Chen and Zhou (2006) present three likelihood-based approach referred therein as the maximum likelihood
approach, the signed log-likelihood ratio approach and the modified signed log-likelihood ratio approach. We
present briefly the maximum likelihood approach.

Notation: X = logU with U ∼ N(µ1, σ
2
1) and Y = log V with V ∼ N(µ2, σ

2
2).

ψ = log[E(X)/E(Y )] = m1 −m2 + σ2
1/2− σ2

2/2 and θ = (µ1, µ2, σ
2
1 , σ

2
2)

Steps

1. Compute θ̂ = (µ̂1, µ̂2, σ̂
2
1 , σ̂

2
2), ML estimate of θ

2. ψ̂ = µ̂1 − µ̂2 + σ̂2
1/2− σ̂2

2/2 is the ML estimate of ψ
3. Compute an estimate τ̂ of Var[ψ̂]1/2 (this estimate is a function of µ̂1, µ̂2, σ̂

2
1 , σ̂

2
2 and of the sizes of the

sample that have been used to obtain them)
4. ψ̂ being asymptotically Normal, a (1− α) confidence interval for ψ is ψ̂ ± zα/2τ̂

5. A (1− α) confidence interval for E(X)/E(Y ) is exp(ψ̂ ± zα/2τ̂).

This method requires the individual data and not only summary statistics.

Bootsrap approach

• Compute θ̂ = (µ̂1, µ̂2, σ̂
2
1 , σ̂

2
2) as defined above

• (For j=1 to m)

– Generate n1 samples from a N(µ1, σ
2
1) and n2 samples from N(µ2, σ

2
2)

– Calculate, using the bootstrap sample, estimate for ψ and τ as defined above denote these ψ̂j and
τ̂j

– Compute the test statistic Sj = (ψ̂j − ψ̂)/τ̂j

• Find the α/2 and 1− α/2 quantiles of (Sj)j=1,...,m .

A (1− α) confidence interval for ψ is [ψ̂ + Sα/2τ̂ ; ψ̂ + S1−α/2τ̂ ]

As noted by Chen and Zhou (2006) “unlike some bootstrap approaches, the above does in fact make parametric
assumptions. Specifically, it assumes that the data are lognormally distributed. The method does not however
explicitly state or assume the nature of the statistic’s distribution; instead, the distribution is explored
computationally via the use of the bootstrap samples”.

This method requires the individual and not only summary statistics such as estimated means and variances.
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Approximate log-normal method

1. It is assumed that θ̂i follows a log-normal distributions.

2. Denoting by mθ̂i
and sθ̂i the mean and sd of θ̂i and by µθ̂i and σθ̂i the mean and sd of ln(θ̂i), we have

µθ̂i = ln

 mθ̂i√
1 +

s2
θ̂i

m2
θ̂i

 and σθ̂i =

√√√√ln
(

1 +
s2
θ̂i

m2
θ̂i

)

3. We have only one replicate of θ̂i, so the best estimate of its expectation is θ̂i itself. An estimate of the
SD of θ̂i (the standard error) is available and denoted ŝθ̂i

4. Substituting θ̂i to µθ̂i and ŝθ̂i to sθ̂i in equations above provide estimated parameters on the log scale.

5. Under the log-normal assumption for θ̂1 and θ̂2, θ̂1/θ̂2 is also log-normally distributed with log-mean
and log-variance µθ̂1/θ̂2

= µθ̂1
− µθ̂2

and σ2
θ̂1/θ̂2

= σ2
θ̂1

+ σ2
θ̂2

which can be estimated by combining
parameters obtained at previous step.

6. One can then compute quantiles q(α/2)
θ̂1/θ̂2

and q(1−α/2)
θ̂1/θ̂2

for θ̂1/θ̂2.

A simulation study of coverage probability

Set-up

We simulate mortality data with a logistic regression as dose-response model. The probability of death for
an individual exposed to a dose d is 1/(1 + exp(−(β0 + β1d))). Under this model, the dose at which the
probability of death is 50% (LD50) is −β0/β1. We attempt to mimic experimental conditions recommended
in OECD guidelines for the testing of chemicals on honeybees: fives doses and at least three replicate test
groups, each of ten bees. Under a given set of “experimental conditions”, we estimate LD50 by maximum
likelihood for each replicate. Then we average the various estimates and compute an estimate of the standard
error as the standard deviation of the set of ML estimates divided by the square root of the number of
replicates.

Results

We compute 95% confidence intervals with the Delta and the Fieller methods. The results reported in each
row below are obtained each with 500 independent data-sets.

Table 1: Simulations with 3 batches of 10 individuals for each dose.

LD50.1 LD50.2 Ratio 1/2 Coverage Delta Coverage Fieller

4.0 4.0 1.0 89.2 89.0
13.3 4.0 3.3 90.6 89.8
20.0 2.2 9.0 91.8 88.6
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LD50.1 LD50.2 Ratio 1/2 Coverage Delta Coverage Fieller

4.0 13.3 0.3 86.6 88.0
2.2 20.0 0.1 75.4 84.4

Table 2: Simulations with 10 batches of 10 individuals for each
dose.

LD50.1 LD50.2 Ratio 1/2 Coverage Delta Coverage Fieller

4.0 4.0 1.0 92.4 92.2
13.3 4.0 3.3 95.2 94.4
20.0 2.2 9.0 95.8 94.6
4.0 13.3 0.3 90.6 93.0
2.2 20.0 0.1 77.4 87.4

Conclusion

The Delta method and the Fieller method can be implemented all the time. Other methods can not be applied
when only summary statistics are available. The Delta and Fieller methods are based on the assumptions
that parameter estimates are Gaussian which is unlikely to make fully sense on toxicological parameter such
as LD50, in particular when obtained with small sample size. Under this specific model and this limited set
of simulations, one of the two methods achieves a better accuracy on the other one. There is no guarantee
that the actual coverage probability matches the nominal coverage.
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Appendix: R code for simulation study of coverage

######################
## functions

## Simulating data
sim.logist = function(nrep,# nb of replications

doses,# vector of doses
batch.size, # nb of individuals in a batch
beta0,beta1# intercept and slope in linear predictor
)

{
## simulate "mortality" data under dose-response logistic regression model
## nrep replicates
## return ML estimates of LD50 parameters for each replicate and takes the average
LD50.tilde = rep(NA,nrep)
for(irep in 1:nrep)
{
responses = rbinom(n = length(doses),

size = rep(batch.size,length(doses)),
prob = 1/(1+exp(-(beta0+beta1*doses))))

## estimating parameter
res.glm = glm(formula=cbind(responses,batch.size-responses)~doses,

family=binomial(link='logit'),
data = data.frame(doses=doses,responses=responses))

LD50.tilde[irep] = (- coef(res.glm)[1] / coef(res.glm)[2])
}
LD50.hat = mean(LD50.tilde)
sd.LD50.hat = sd(LD50.tilde)/sqrt(nrep)
res = c(LD50.hat,sd.LD50.hat,-beta0/beta1)
names(res) = c('LD50.hat','sd.LD50.hat','LD50.true')
return(res)

}
## END function simulating data

######################
## CI Delta method
CI.Delta = function(theta1.hat, sd1.hat,

theta2.hat, sd2.hat,# estimate and estimated sd of estimator
alpha # theoretical coverage (1-alpha)
)

{
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## CI Delta method
## Hirschberg, J., and J. Lye. 2010.
## “A Geometric Comparison of the Delta and Fieller Confidence Intervals.”
## The American Statistician 64 (3): 234–41, Eq. 3-6
## We assume here independence between theta1.hat and theta2.hat
z = qnorm(p=1-alpha/2)
R.hat = theta1.hat/theta2.hat
sd.R.hat = sqrt(sd1.hat^2 + R.hat^2 * sd2.hat^2) /theta2.hat
L = R.hat - z*sd.R.hat
U = R.hat + z*sd.R.hat
res = c(R.hat,L,U)
names(res) = c('R.hat','L','U')
return(res)

}
## END CI Delta method

##############
## CI Fieller (approximated, cf comments below)
CI.Fieller = function(theta1.hat, sd1.hat,

theta2.hat, sd2.hat,# estimate and estimated sd of estimator
alpha # theoretical coverage (1-alpha)

)
{
## CI Fieller
# Raftery, A E, and T. Schweder. 1993.
## “Inference About the Ratio of Two Parameters, with Application to
# Whale Censusing.” The American Statistician 47 (4): 259–64. Eq. 1-2
# We assume here independence between theta1.hat and theta2.hat
# the size of the sample used to obtain the estimates
# and their sd is assumed to be unknown
# we substitute the quantile of a Normal(0,1) to that of a St(?)
# that should be used in principle
z = qnorm(p=1-alpha/2)
if( (theta1.hat/sd1.hat <= z) & (theta2.hat/sd2.hat <= z) )
{
L = 0 ; U = Inf
}else
{
rad = (theta1.hat^2 * sd2.hat^2 + theta2.hat^2 * sd1.hat^2 -

z^2 * sd1.hat^2 * sd2.hat^2 )
L = (theta1.hat * theta2.hat - z*sqrt(rad) )/( theta2.hat^2 - z * sd2.hat^2 )
U = (theta1.hat * theta2.hat + z*sqrt(rad) )/( theta2.hat^2 - z * sd2.hat^2 )
if((theta1.hat/sd1.hat > z) & (theta2.hat/sd2.hat <= z) ){L = U ; U = Inf}
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if((theta1.hat/sd1.hat <= z) & (theta2.hat/sd2.hat > z) ){L = 0}
}

R.hat = theta1.hat/theta2.hat
res = c(R.hat,L,U)
names(res) = c('R.hat','L','U')
return(res)

}
## END CI Fieller

# ############
# ## CI Raftery & Schweder Bayesian
# CI.RSB = function(theta1.hat, sd1.hat,
# theta2.hat, sd2.hat,# estimate and estimated sd of estimator
# alpha # theoretical coverage (1-alpha)
# ## END CI.RSB

###########
## CI Approx LN
CI.LN = function(theta1.hat, sd1.hat,

theta2.hat, sd2.hat,# estimate and estimated sd of estimator
alpha # theoretical coverage (1-alpha)

)
{
# parameters of underlying Normal variables
mu1 = log(theta1.hat/sqrt(1+(sd1.hat/theta1.hat)^2))
mu2 = log(theta2.hat/sqrt(1+(sd2.hat/theta2.hat)^2))
sigma1 = sqrt(log(1+(sd1.hat/theta1.hat)^2))
sigma2 = sqrt(log(1+(sd2.hat/theta2.hat)^2))
## parameters of Normal underlying ratio
mu.R =mu1 -mu2
sigma.R = sqrt(sigma1^2 + sigma2^2)
L = qlnorm(meanlog=mu.R, sdlog=sigma.R, p=alpha/2)
U = qlnorm(meanlog=mu.R, sdlog=sigma.R, p=1-alpha/2)
R.hat = theta1.hat/theta2.hat
res = c(R.hat,L,U)
names(res) = c('R.hat','L','U')
return(res)

}
## END CI Approx LN

##
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# dat1 = sim.logist(nrep=30,
# doses=c(2,4,8,10,20),
# batch.size=5,
# beta0 =-2,
# beta1 = .5) ; dat1
# dat2 = sim.logist(nrep=30,
# doses=c(2,4,8,10,20),
# batch.size=5,
# beta0 =-2,
# beta1 = .15) ; dat2
# CI.Delta(dat1[1],dat1[2],
# dat2[1],dat2[2],
# alpha=.05)
# CI.Fieller(dat1[1],dat1[2],
# dat2[1],dat2[2],
# alpha=.05)
# dat1['LD50.true']/dat2['LD50.true']

#################
## Coverage for Delta and Fieller
coverage = function(doses,nrep,bach.size,nsets,

beta0.1,beta1.1,beta0.2,beta1.2,alpha)
{
## computing coverage for Delta and Fieller's
cover.Delta = cover.Fieller = 0
## Loop on datasets
for(iset in 1:nsets)
{
# print(100*iset/nsets)
dat1 = sim.logist(nrep=nrep,

doses=doses,
batch.size=batch.size,
beta0 = beta0.1,
beta1 = beta1.1)

dat2 = sim.logist(nrep=nrep,
doses=doses,
batch.size=batch.size,
beta0 = beta0.2,
beta1 = beta1.2)

R.true = dat1['LD50.true']/dat2['LD50.true']
CI.D = CI.Delta(dat1[1],dat1[2],

dat2[1],dat2[2],
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alpha=alpha)[2:3]
CI.F = CI.Fieller(dat1[1],dat1[2],

dat2[1],dat2[2],
alpha=alpha)

if((R.true >= CI.D['L']) & (R.true <= CI.D['U']))
{ cover.Delta = cover.Delta+1 }

if((R.true >= CI.F['L']) & (R.true <= CI.F['U']))
{ cover.Fieller = cover.Fieller+1 }

}
cover.Delta = cover.Delta/nsets
cover.Fieller = cover.Fieller/nsets
res = c(cover.Delta,cover.Fieller)
names(res) = c('cover.Delta','cover.Fieller')
return(res)

}
## END coverage

## END OF FILE
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