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Abstract 

Image stitching is a method of producing a wider field of view by combining several overlapping images. 

With four main stages in the image stitching process, the algorithms used at each stage can have a dramatic 

impact on the success of stitching an image. For each stage, there are a wide range of algorithms to choose 

from and it can be a challenge to identify a stitching pipeline that will produce the best results. In this 

paper, we study the approaches involved in each of the four stages of image stitching. A real-world dataset 

is utilised to evaluate each algorithm, where images are transformed to different perspectives. The 

similarities of these images are compared to a warped perspective image obtained using the homographies 

provided by the dataset. The pipelines tested were limited to producing accurate results up to and including 

a 50° perspective change. Pipelines utilising BRISK’s feature detector, FREAK, and Brute Force produced 

significant results. However, pipelines incorporating ORB, FAST, or BRIEF produce poor results when 

compared to other feature detection and feature description algorithms. Generally, the ratio test hindered 

the matched pairs process, although there were exceptions. Finally, the inlier/outlier detection algorithms, 

USAC and RANSAC, had similar performances with no definitive data to suggest that, in general, one 

outperforms the other. 
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1 Introduction  

 Computer Vision (CV) applications such as 

autonomous vehicles, security systems, and sports 

analytics benefit from an image with a wide field 

of view (FOV) and high resolution. However, 

obtaining an image with a wide FOV and high 

resolution can be a challenge. A wide-angle lens 

can replace a standard lens to fix this, however this 

distorts the image, reducing its quality. Moreover, 

the image is still restricted to the original resolution of the capture device. Image stitching is a technique that 

produces panoramic images without the use of a wide-angle lens and can be done with either moving or static 

cameras. Merging overlapping images of a scene through image stitching provides a high-resolution image with a 

broad field of view without the distortions of wide-angle lenses. This provides a viable method for creating a wider 

FOV [Wang and Yang, 2020]. Feature-based approaches to image stitching include feature detection, feature 

description, feature matching, outlier removal, homography estimation, and transformation of pixels to the stitched 

image [Jakubović and Velagić, 2018]. This paper evaluates multiple algorithms across four stages of feature-based 

image stitching, as listed in Figure 1, determining the techniques that produce the highest quality results. 

Figure 1: Image Warping Pipeline and Algorithms 



1.1 Feature Detectors and Descriptors 

Feature detectors search for distinctive visual components within an image. Figure 1’s Stage 1 lists several feature 

detector algorithms. When matching features appear in multiple images of the same scene, they can be used to locate 

overlapping areas and stitch the images together. Feature descriptors represent the detected feature's local pixel 

neighbourhood. A unique description of a feature is provided by descriptors, enabling feature matching across 

different images. Stage 2 of Figure 1 outlines several feature descriptor algorithms. 

A ubiquitous feature detection and descriptor approach is the Scale Invariant Feature Transform (SIFT) 

[Lowe, 2004]. The SIFT feature detector utilises an image pyramid representation to provide invariance to scale 

changes [Leutenegger et al., 2011]. SIFT identifies features by using the Difference of Gaussians (DoG) approach 

to detect gradient changes and the Hessian to reject edge points. The SIFT descriptor utilises a histogram of local 

and global gradients to describe the neighbourhood of pixels around each detected feature. While SIFT has been 

considered one of the benchmark approaches to feature detection and description it has a disadvantage in that it 

requires significant computation.  

As an alternative the Speeded-Up Robust Features (SURF) approach [Bay et al., 2006] uses a different image 

representation technique to reduce the computation. Rather than using an image pyramid and applying DoG, SURF 

uses Haar wavelet-based image filters which are applied at different scales across the image. SURF also includes a 

feature descriptor utilising a Haar wavelet distribution.  

KAZE is an alternative feature detector and descriptor which takes inspiration from SIFT and SURF 

[Leutenegger et al., 2011]. It utilises a similar process for detecting features as SIFT while using a homogeneous 

process for computing descriptors as SURF. A variant of KAZE, Accelerated-KAZE (AKAZE), reduces the time 

needed to detect the features within the pyramidical framework by implementing the Fast Explicit Diffusion 

framework [Alcantarilla et al., 2013].  

The Features from Accelerated Segment Test (FAST) corner detector [Trajković and Hedley, 1998] is a fast 

but stable corner detection algorithm able to identify corners with high accuracy. The Binary Robust invariant 

scalable keypoints (BRISK) feature detector improves upon FAST [Leutenegger et al., 2011], providing the 

efficiency of FAST whilst being invariant to scale and rotation due to the use of a pyramidal structure similar to that 

of SIFT. The BRISK feature descriptor uses a deterministic sampling pattern to ensure uniform density around the 

keypoint (an especially distinctive feature often invariant to image transformations) and retrieve its direction to 

maintain rotational invariance [Leutenegger et al., 2011]. By using fewer sampling points than bitwise comparisons, 

the feature descriptor lowers the number of comparisons and complexity [Leutenegger et al., 2011].  

The Binary Robust Independent Elementary Features (BRIEF) is an alternative feature descriptor with an 

emphasis on reducing the memory consumption of the algorithm [Calonder et al., 2010]. Descriptors are computed 

from images by directly comparing intensities of point pairs using intensity difference tests.  

The improved variation of FAST, orientated FAST (oFAST), incorporated an orientation operator using the 

intensity centroid approach [Rosin, 1999]. This enabled more information detailing the keypoint’s orientation to be 

utilised by the descriptor. The oFAST and Rotated Brief (ORB) algorithm is based on FAST and the BRIEF 

descriptor [Calonder et al., 2010]. Rotated BRIEF (rBRIEF) was proposed [Rublee et al., 2011] as a modified 

version of BRIEF, aiming to reduce its sensitivity to in-plane rotations.  

The conclusion drawn from real-world data was that ORB had better performance than SIFT and sometimes 

SURF when compared [Rublee et al., 2011]. Fast Retina Keypoint (FREAK) is an alternative feature descriptor 

inspired by the human visual system [Alahi et al., 2012]. Like BRISK, FREAK utilises a retinal circular sampling 

grid. Compared to BRISK, FREAK has a higher density of points that are closer to the centre [Alahi et al., 2012]. 

1.2 Feature Matchers 

The feature matching methods, seen in Stage 3 of Figure 1, utilise the descriptors generated from the 2nd stage 

feature descriptors as seen in Figure 1. With descriptors acting as a unique signature of each feature point, enabling 

points across both images to be compared and matched. The Fast Library for Approximate Nearest Neighbours 



(FLANN) and Brute-force (BF) are feature matchers, both utilising Euclidean distance to measure the similarity 

between feature points on each image [Noble, 2016, Muja and Lowe, 2014]. The BF approach compares descriptors 

of all features in one image with those in another image [Noble, 2016]. While FLANN utilises approximations 

comparing few features by utilising the k-Nearest Neighbours (kNN) algorithm to produce pairs faster than BF but 

at the cost of reduced accuracy [Muja and Lowe, 2014]. Previous research has suggested utilising BF with the kNN 

ratio test [Jakubović and Velagić, 2018], reduces the number of possible matches in the event of multiple points 

competing for a match.  

1.3 Outlier Removal for Homography Estimation 

Homography is a 2-D perspective transformation that aims to map the pixels in a source image to a destination 

image and as such has a direct application in image stitching. Algorithms, such as Random Sample Consensus 

(RANSAC), Universal RANSAC (USAC), and Progressive Sample Consensus (PROSAC), are applied in Stage 4 

as seen in Figure 1 for the identification of inlying matched pairs and the removal of outliers [Raguram et al., 2013]. 

RANSAC has been commonly employed for classifying between inliers and outliers [Caparas, 2020, Jakubović and 

Velagić, 2018, Tong et al., 2021]. USAC, an alternative to RANSAC, produced results that are more in line with 

the ground truth when compared to RANSAC and PROSAC, a substitute algorithm that favours speed over accuracy 

[Raguram et al., 2013]. Inliers are used to estimate homography, which generates a matrix for mapping an image to 

a different perspective [Sharma and Jain, 2020]. 

1.4 State-of-the-Art Approaches 

AKAZE is considered a state-of-the-art feature detector and descriptor algorithm, outperforming SIFT, SURF, 

ORB, and BRISK using a variety of datasets [Sharma and Jain, 2020, Tong et al., 2021]. While FREAK is a state-

of-the-art feature descriptor, outperforming the feature descriptors SIFT, SURF, and BRISK [Alahi et al., 2012]. 

Meanwhile, within the matching stage, BF is state-of-the-art, producing more accurate descriptor pairings than 

FLANN, while incorporating kNN increases BF’s effectiveness [Noble, 2016, Caparas, 2020]. USAC is a state-of-

the-art algorithm for removing outlying matched pairs, as it produced more accurate results compared with 

RANSAC and PROSAC [Raguram et al., 2013]. 

Multiple standard lens cameras with overlapping FOVs can be used for applications like sports analytics to 

create a single-perspective view and enhance resolution through image stitching. Fast image stitching is better 

achieved with feature-based methods instead of end-to-end deep learning approaches. The latter requires re-running 

the entire stitching process for each frame, due to its architecture [Yi et al., 2016]. 

2 Methodology 

Our overall approach is based on defining an image stitching pipeline with multiple algorithms available for each 

stage. Our aim is to compare algorithms for each stage of image stitching to establish the most effective pipeline. 

Figure 1 shows this pipeline, with each stage having multiple algorithms. By utilising the feature detectors of Stage 

1 such as SIFT, ORB, BRISK, AKAZE, and FAST, we can determine the most effective algorithm for detecting 

keypoints in each image. Due to licensing restrictions, testing SURF will not be possible, so it will be left out of the 

method and results. Comparing corner detectors, such as FAST with its variants (ORB and BRISK) to pyramidal-

based algorithms like SIFT or AKAZE, will determine the better feature detector.  

The feature descriptors of Stage 2 are compared against each other to determine the best method for creating 

descriptors given the keypoints identified in Stage 1. The feature descriptors of SIFT, ORB, BRISK, and AKAZE 

are compared alongside the stand-alone feature descriptors of BRIEF and FREAK. For example, one pipeline would 



use the SIFT feature detector and FREAK 

descriptor, while another pipeline would use 

the SIFT feature detector and descriptor. 

Stage 3 produces pairs of 

corresponding keypoints that are within the 

overlapping regions of the images to be 

stitched. Because FLANN performed poorly 

in the past, it was excluded from the data. The 

algorithms of Stage 3 comprise of BF and BF 

kNN. These two algorithms are compared against each other, to determine what influence the matching algorithm 

has on the success of a pipeline. When implementing BF kNN, the threshold is set to 0.75, testing the ratio of 

distance, enabling additional flexibility when determining the keypoints for matching in each image. 

Stage 4 assesses two outlier elimination algorithms. More specifically, a comparison between RANSAC and 

USAC is being made. The resulting inlying matched pairs will be utilised to estimate the homography. 

Due to the focus on perspective transformation, the Oxford Affine Covariant Regions Viewpoint Graffiti 

(OACRVG) dataset [Mikolajczyk and Schmid, 2005] is utilised to assess the performance of the different algorithms 

which make up the stitching pipeline. OACRVG is a 

standard test dataset utilised in multiple image stitching 

experiments focusing on perspective warping 

[Calonder et al., 2010, Leutenegger et al., 2011]. The 

dataset contains six images, each of size 800x640 

pixels and includes homographies to map the first 

image with the other five images, treating image one as 

a pair with each subsequent image [Mikolajczyk and 

Schmid, 2005]. Additionally, there is a viewing angle 

change of 40° between images one and three, with an 

increase of 10° of change for each subsequent image 

[Mikolajczyk and Schmid, 2004]. 

Using four of the best inlier matched pairs from 

Stage 4 of the pipeline, the homography is estimated for 

each image in the OACRVG dataset being mapped onto 

image one. Estimating the homography requires the 

eight degrees of freedom afforded by the four matched 

pairs to compute the homography. The two images are 

mapped onto a 2D plane, to enable a common 

viewpoint between the images. Once the homography 

is estimated, every image is warped onto image one 

through a perspective transformation, as illustrated in 

Figure 2. The homographies provided by the OACRVG 

dataset were used to create the warped images, which 

can be seen in Figure 3. We aim to compare the 

pipelines mentioned and shown in Figure 1 to identify 

the ones that produce warped images of comparable 

quality to those produced by the homographies 

available in the dataset. Processing pipelines and 

algorithms are implemented using OpenCV 4.6.0 

[Bradski, 2000] and Numpy 1.24.2 [Van Der Walt et 

al., 2011].  

Image # Actual Image Warped Image 

2 

  

3 

  

4 

  

5 

  

6 

  

Figure 3: Actual and Expected Warped Images, 

mapping images 2, 3, 4, 5 and 6 onto image 1 

generated using the inverted homographies provided 

by the OACRVG dataset. 

Figure 2: Perspective Transformation of Image 3 to 1. 



3 Results 

The Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and 

Feature Similarity Index (FSIM) have previously been utilised to measure performance and concluded that while 

each method produced consistent results throughout, SSIM and FSIM are normalised and easier to interpret when 

compared with the absolute errors of MSE and PSNR [Sara et al., 2019]. PSNR and FSIM were chosen here to 

evaluate the warped images utilising the Image Similarity Measures toolbox [Müller et al., 2020].  

Table 1 shows the mean FSIM and PSNR results for each pipeline on each image. FSIM is normalised 

between 0 and 1 where the higher the value, the more similar the images are [Sharma and Jain, 2020]. FSIM 

distinguishes complex parts of an image by detecting changes in light and gradient [Sara et al., 2019]. PSNR is the 

ratio calculated between the highest signal power and the power of the distorted noise [Sara et al., 2019]. Seven 

pipelines are among the top ten FSIM and PSNR from Table 1. Four of the seven pipelines that performed the best 

used BRISK, SIFT, and AKAZE detectors and descriptors, and three used BRISK and AKAZE detectors with a 

FREAK descriptor. Five of the pipelines employ BF, while two incorporate BF kNN as a matcher. RANSAC was 

utilised in three of the seven pipelines while USAC was utilised in four of the pipelines. While the best performing 

pipeline utilised USAC, RANSAC performed admirably, taking 2nd and 3rd place in Table 1 (ranked by PSNR). 

# Pipeline FSIM ↑ PSNR ↑   # Pipeline FSIM PSNR 

1 BRISK – FREAK – BF – USAC 0.604 93.605  24 BRISK - BRIEF - BF - USAC 0.472 87.681 

2 SIFT – SIFT – BF kNN – RANSAC 0.581 93.326  25 SIFT – FREAK – BF kNN – USAC 0.430 87.086 

3 BRISK – FREAK – BF – RANSAC 0.596 93.018  26 SIFT – FREAK – BF – USAC 0.451 87.083 

4 AKAZE – AKAZE – BF – USAC 0.560 92.224  26 ORB – BRIEF – BF – USAC 0.445 86.972 

5 BRISK – BRISK – BF – RANSAC 0.563 91.749 
 

28 
SIFT – FREAK – BF kNN – 

RANSAC 
0.426 86.970 

6 AKAZE – FREAK – BF – RANSAC 0.512 91.685  29 BRISK – BRIEF – BF – RANSAC 0.421 86.392 

7 SIFT – SIFT – BF kNN – USAC 0.571 91.637  30 AKAZE – BRIEF – BF – RANSAC 0.406 86.279 

8 AKAZE – FREAK – BF – USAC 0.556 91.194  31 ORB – BRIEF – BF – RANSAC 0.416 85.945 

9 
BRISK – FREAK – BF kNN – 

RANSAC 
0.532 90.956 

 
32 SIFT – BRIEF – BF – USAC 0.382 85.405 

10 AKAZE – AKAZE – BF – RANSAC 0.519 90.891  33 SIFT – BRIEF – BF – RANSAC 0.384 85.056 

11 
BRISK – FREAK – BF kNN – 

USAC 
0.547 90.643 

 
34 FAST – FREAK – BF – RANSAC 0.259 82.350 

12 SIFT – SIFT – BF – USAC 0.559 90.640 
 

35 
BRISK – BRIEF – BF kNN – 

RANSAC 
0.300 81.930 

13 
AKAZE – FREAK – BF kNN – 

RANSAC 
0.498 90.232 

 
36 FAST – BRIEF – BF – RANSAC 0.288 81.742 

14 SIFT – SIFT – BF – RANSAC 0.539 90.208 
 

37 
FAST – FREAK – BF kNN – 

RANSAC 
0.267 81.691 

15 BRISK – BRISK – BF kNN – USAC 0.515 90.096 
 

38 
AKAZE – BRIEF – BF kNN – 

USAC 
0.286 81.515 

16 
AKAZE – FREAK – BF kNN – 

USAC 
0.504 89.717 

 
39 

BRISK – BRIEF – BF kNN – 

USAC 
0.293 81.251 

17 ORB – ORB – BF – USAC 0.481 89.459 
 

40 
SIFT – BRIEF – BF kNN – 

RANSAC 
0.279 81.146 

18 SIFT – FREAK – BF – RANSAC 0.489 88.821 
 

41 
AKAZE – BRIEF – BF kNN – 

RANSAC 
0.276 81.085 

19 ORB – FREAK – BF – USAC 0.504 88.745  42 FAST – FREAK – BF – USAC 0.264 81.037 

20 ORB – ORB – BF – RANSAC 0.467 88.182 
 

43 
FAST – FREAK – BF kNN – 

USAC 
0.259 80.427 

21 BRISK – BF kNN – RANSAC 0.456 88.165  44 FAST – BRIEF – BF kNN – USAC 0.252 80.296 

22 ORB – FREAK – BF – RANSAC 0.485 88.046  45 SIFT – BRIEF – BF kNN – USAC 0.254 80.188 

23 AKAZE – BRIEF – BF – USAC 0.464 87.910 
 

46 
FAST – BRIEF – BF kNN – 

RANSAC 
0.228 79.720 

Table 1: Combined FSIM and PSNR mean results of the pipelines ranked by PSNR metric. 



As shown in Table 2, the best pipeline from Table 1 was unable to produce a warped image to beyond image 

4 (50° rotation), suggesting that, even though the pipeline scored the highest, there could potentially be a restriction 

in their ability to handle significant perspective transformations. In accordance with the conclusion from [Rublee et 

al., 2011], the simplicity of FAST hampers its performance. FAST is sub-par, producing the worst results, as it could 

not determine the orientation of a keypoint. ORB was the least successful out of the comprehensive feature detector 

and descriptors, with only two warped images generated using BF. This supports the conclusions of [Alahi et al., 

2012], while disagreeing with [Rublee et al., 2011], with SIFT outperforming or at least performing at the same 

level as ORB. The pipelines incorporating BRISK for both feature detection and descriptors performed at the same 

level as ones that incorporated SIFT and AKAZE for both stages, with BRISK – BRISK – BF – RANSAC, falling 

within the top five of Table 1. This is in line with the conclusions of [Leutenegger et al., 2011], with BRISK as a 

feature descriptor performing competitively against SIFT. The BRISK feature detector approach outperforms other 

FAST corner detection-based algorithms in terms of PSNR and FSIM scores due to the scaling invariance BRISK 

provides. Four pipelines that use this version of FAST are among the top ten for FSIM and PSNR. This implies that 

BRISK's feature detector is the most skilled at generating superior keypoints, resulting in a broader image viewpoint. 

Image # 2 3 4 5 6 

Result 

     

PSNR 105.263 101.760 100.116 80.386 80.501 

FSIM 0.868355 0.822749 0.800981 0.24983 0.276183 

Pipeline BRISK – FREAK – BF – USAC 

Table 2: Comparison of the best method from Table 1 for each of the images based on the PSNR metric. 

As most of the pipelines involving SIFT and BRISK outperformed their AKAZE counterparts, these findings 

contrast with [Tong et al., 2021, Sharma and Jain, 2020]. Even though AKAZE yielded higher PSNR and FSIM 

scores compared to SIFT when BF and RANSAC were used in Stages 3 and 4, it was generally less effective than 

SIFT or BRISK-based pipelines, indicating that this is not the norm. When comparing BRIEF and FREAK, the 

dedicated feature descriptors, FREAK, produced higher PSNR and FSIM scores. FREAK is utilised in five of the 

top ten PSNR mean results, and also utilised in four of the FSIM results. BRIEF’s poor performances can be traced 

to its inadequate performance with in-plane rotations. This result concurs with [Alahi et al., 2012], finding that 

FREAK outperformed the feature descriptors of BRISK, SIFT, AKAZE, and ORB.  

Within the top ten FSIM and PSNR results in Table 1, seven utilised BF, compared with three using BF kNN. 

Finding fewer but more precisely matched pairs can reduce the possibility that a homography matrix is estimated. 

However, if there are over four matched pairs, but they are not matched correctly, the homography will be 

incorrectly calculated, producing an inaccurately warped image. This is not the case for all instances of kNN, with 

SIFT – SIFT – BF kNN – RANSAC producing a higher PSNR and FSIM score than its BF counterpart, with the 

former placing 2nd; while the latter performed worse placing 14th in Table 1. This suggests that kNN is preferable 

when enough features, with corresponding descriptors are detected.  

Producing the highest similarity of FSIM and PSNR, BRISK – FREAK – BF – USAC suggests USAC 

minimised the number of matched pair outliers for estimating the homography, while its RANSAC equivalent 

pipeline placed 3rd with a slight decrease in overall performance. However, some pipelines utilising RANSAC 

outperformed their USAC counterparts, as shown with SIFT - SIFT - BF kNN – RANSAC and SIFT - SIFT - BF 



kNN – RANSAC, with PSNR scores of 93.326 and 91.637, respectively. This disparity suggests neither algorithm 

outperforms the other, suggesting that they are of equal standing. The key factors affecting the performances of a 

warped image are the feature detectors, descriptors, and matching algorithms used in Stages 1, 2, and 3. Thus, it is 

recommended that pipelines with different algorithms be employed. 

4 Conclusion 

This paper compared the performances of image warping pipelines with 4 stages. The pipelines that used BRISK or 

SIFT in Stage 1 showed the best results for various perspectives using the OACRVG dataset. Using SIFT, BRISK, 

and AKAZE in Stages 1 and 2 yielded high PSNR and FSIM scores. Meanwhile, pipelines utilising FREAK perform 

similarly to or outperformed the other feature descriptors. Concluding that FREAK is a state-of-the-art feature 

descriptor, supporting the conclusion of [Alahi et al., 2012]. Pipelines with a ratio test (kNN) performed worse than 

matchers without, although exceptions exist. Furthermore, there is no definitive data to suggest that there is a 

significant performance increase in USAC compared to RANSAC that can be fully explained by the outlier removal 

approach, to the contrary of [Raguram et al., 2013]. Notwithstanding the accomplishments of the pipelines, the 

findings show they can only handle a maximum perspective change of 50°. This could be due to factors such as the 

dataset’s resolution with a smaller overlapping region affecting the ability to warp the image. We intend to develop 

this research further by applying it to sports analytics. Further testing of the pipelines should involve the use of 

multiple datasets with different resolutions and environments, such as sports fields. Finally, DL approaches 

producing a homography matrix may provide an alternative solution to the pipelines discussed in this paper. 
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