ChemPhysChem

Supporting Information

Directly Bound Deuterons Increase X-Nuclei Hyperpolarization using Dynamic Nuclear Polarization

Catriona H. E. Rooney⁺, Ayelet Gamliel⁺, David Shaul, Damian J. Tyler, James T. Grist⁺, and Rachel Katz-Brull^{+*}

Supporting information

Note S1. Materials and Methods

Chemicals

The OX063 radical (GE Healthcare, Chalfont Saint Giles, UK) was obtained from Oxford Instruments Molecular Biotools (Oxford, UK). [$^{13}C_6$]Glc was purchased from Sigma-Aldrich (Rehovot, Israel). [$^{13}C_6$]2DG was purchased from Omicron Biochemicals (South Bend, IN, USA). [$^{13}C_6$,D₇]Glc was obtained from Cambridge Isotope Laboratories (Tewksbury, MA, USA). [$^{13}C_6$,D₈]2DG was obtained from 13C Molecular (Fayetteville, NC, USA). Gd³⁺ as gadoteric acid - gadoterate meglumine was obtained from Guerbet (Dotarem, Villepinte, France). [$^{15}N_2$]urea was obtained from Cambridge Isotope Laboratories (Tewksbury, MA, USA). Sodium [^{15}N]nitrate was obtained from Sigma-Aldrich (Dorset, UK).

Spin polarization

¹³C spin polarization was performed in a dDNP spin polarizer (HyperSense, Oxford Instruments Molecular Biotools, Oxford, UK) operating at 3.35 T. Irradiation was performed with a power of 100 mW at 1.5 K for 1.5-2 h. The polarization data were recorded using the built-in spectrometer within the polarizer. Microwave frequency was optimized for each formulation. The first maxima for each of the sugar formulations used in this study was found to be the same (Figure S1), and this frequency was used for monitoring the polarization buildup process.

¹⁵N spin polarization was carried out in an alpha prototype spin polarizer (Oxford Instruments Molecular Biotools, Oxford, UK), operating at 3.35 T, and equipped with a custom-built tuning-and-matching box that enabled monitoring of ¹⁵N solid-state signal using the original ¹³C solid-state probe of the polarizer. The tuning-and-matching box consisted of a Pi-match impedance circuit made with two variable capacitors to enable operation at the desired frequency (14.45 MHz). The solid-state signal was observed on a Varian spectrometer (Agilent, Santa Clara, CA). For ¹⁵N labeled compounds, polarization buildup experiments were carried out at ~1.2 K with a microwave power of 100 mW, for 1.5-2 h. Microwave frequency was optimized for each formulation.

Composition of formulations for polarization

Typical formulations for the hyperpolarization of the sugar analogs are described below and in Table S1. The concentration of the sugar in the formulation was calculated by dividing the number of moles by the calculated volume of the solution. The latter was calculated according to the mass of H_2O or D_2O solution that was added, corrected for 1) the density of D_2O (1.11 g/ml, for solutions in D_2O), and 2) the solutions' volume increase upon the addition of the sugar, as described in Table S5.

Formulation #1A: $[^{13}C_6, D_7]$ Glc in D_2O

202 mg of $[{}^{13}C_6$, $D_7]$ Glc were combined with 289 mg of a D_2O solution containing 20.0 mM of OX063 and 1.3 mM of Gd³⁺. The final concentrations in this formulation were 14 mM of OX063, 0.91 mM of Gd³⁺, and 2.1 µmol of $[{}^{13}C_6D_7]$ Glc per mg formulation (2.8 M).

Formulation #1B: [¹³C₆]Glc in D₂O

196 mg of $[{}^{13}C_6]$ Glc were combined with 245 mg of a D₂O solution containing 20 mM of OX063 and 1.3 mM of Gd³⁺. The final concentrations in this formulation were 13.3 mM of OX063, 0.87 mM of Gd³⁺, and 2.4 µmol of $[{}^{13}C_6]$ Glc per mg formulation (3.2 M).

Formulation#2A: [¹³C₆, D₈]2DG in D₂O

234 mg of $[{}^{13}C_6$, D₈]2DG were combined and with 335 mg of D₂O solution containing 20 mM of OX063 and 1.3 mM of Gd³⁺. The final concentrations in this formulation were 14 mM OX063, 0.91 mM Gd³⁺ and 2.3 µmol of $[{}^{13}C_6D_8]$ 2DG per mg formulation (3.0 M).

Formulation #2B: $[^{13}C_6]$ 2DG in D₂O

159 mg of $[{}^{13}C_6]2DG$ were combined with 227 mg of a D₂O solution containing 20 mM of OX063 and 1.3 mM of Gd³⁺. The final concentrations in this formulation were 14 mM of OX063, 0.91 mM of Gd³⁺, and 2.4 µmol of $[{}^{13}C_6]2DG$ per mg formulation (3.2 M).

Typical formulations for the ¹⁵N-labeled compounds are described below and in Table S1.

Formulation #3A: [¹⁵N₂]urea in D₂O:glycerol

70.9 mg of [$^{15}N_2$]urea were combined with 186.6 mg of a 60:40 D₂O:glycerol solution and 3.4 mg of OX063. The final concentrations in this formulation were 14.9 mM OX063 and 4.38 µmol of [$^{15}N_2$]urea per mg formulation.

Formulation #3B: [¹⁵N₂]urea in H₂O:glycerol

70.9 mg of $[^{15}N_2]$ urea were combined with 186.6 mg of a 60:40 H₂O:glycerol solution and 3.4 mg of OX063. The final concentrations in this formulation were 14.1 mM OX063 and 4.38 µmol of $[^{15}N_2]$ urea per mg formulation.

Formulation #4A: sodium [¹⁵N]nitrate in D₂O:glycerol

210.4 mg of a D₂O solution containing 7.5 M of [¹⁵N]nitrate were combined with 64.6 mg of glycerol and 4.3 mg of OX063. The final concentrations in this formulation were 12.5 mM OX063 and 5.09 μ mol of [¹⁵N]nitrate per mg formulation.

Formulation # 4B: sodium [¹⁵N]nitrate in H₂O:glycerol

210.4 mg of a H₂O solution containing 7.5 M of [¹⁵N]nitrate was combined with 64.6 mg of glycerol and 4.3 mg of OX063. The final concentrations in this formulation were 11.5 mM OX063 and 5.65 μ mol of [¹⁵N]nitrate per mg formulation.

Data analysis for polarization buildup

For ¹³C polarization, the data were obtained using the polarizer's internal software. For ¹⁵N polarization, each frequency domain spectrum was analyzed using a single Lorentzian line fitting and integration in Matlab (Mathworks, Natick, MA, USA). The polarization buildup time courses were fitted using the curve fitting option in Matlab, using the polarization buildup equation (Eq. 1), where $P_{(t)}$ is the polarization level at each time point, P_{max} is the maximal polarization level that could be reached, and T_b is the polarization buildup time constant.

$$P_{t} = P_{max} \left(1 - e^{-\frac{t}{T_{b}}} \right)$$
 Eq. 1

Table S1. Formulations' components

Stable isotope	Formulation	Sugar	Total H ₂ O or	Sugar /	Sugar	OX063 final	Gd ³⁺ final	D ₂ O /
labeled sugar	#	(mg)	D ₂ O added	solution	concentration	concentration	Concentration	H_2O
			(mg)	ratio	(M)	(mM)	(mM)	
¹³ C D ICla	1A	202	289	0.70	2.8	14.0	0.91	D ₂ O
$\begin{bmatrix} C_6, D_7 \end{bmatrix}$ OIC	1C	195	251	0.70	2.8	13.9	0.91	H ₂ O
[¹³ C ₆]Glc	1B	196	245	0.80	3.2	13.3	0.87	D ₂ O
[¹³ C ₆ , D ₈]2DG	2A	234	335	0.70	3.0	14.0	0.91	D ₂ O
[¹³ C ₆]2DG	2B	159	227	0.70	3.2	14.0	0.91	D ₂ O
¹⁵ N-labeled	Formulation	¹⁵ N-	Total	¹⁵ N-		OX063 final		D ₂ O /
compound	#	labeled	H ₂ O:glycerol	labeled		concentration		H_2O
		compound	or	compound		(mM)		with
		(mg)	D ₂ O:glycerol	/ solution				glycerol
			added (mg)*	ratio				
[¹⁵ N ₂]urea	3A	70.9	186.6	0.38		14.9		D ₂ O
[¹⁵ N ₂]urea	3B	70.9	186.6	0.38		14.1		H ₂ O
Sodium	4A	88.1	275	0.32		12.5		D ₂ O
[¹⁵ N]nitrate								
Sodium	4B	97.8	275	0.36		11.5		H ₂ O
[¹⁵ N]nitrate								

About 480-600 mg of each formulation were placed in the polarizer cup for monitoring MW irradiation profiles, and for recording the polarization buildup of $[^{13}C_6]2DG$ and $[^{13}C_6]Glc$ (formulations #1B and 2B). For recording the polarization buildup of $[^{15}N]$ urea and sodium $[^{15}N]$ nitrate approximately 110-120 mg and 190-200 mg of each formulation was used, respectively.

Table S2. Conditions and characteristics of deuterated and non-deuterated sugars' polarization.

Formulation	Formulation Temperature Bu		Maximal	Weight of	umol/	umol	Maximal	
(K)		time	polarization	formulation	mg	in the	polarization level	
		constant	level	in the cup		cup	normalized to umol	
		(min)	(a.u.)	(mg)		1	sugar in the cup	
[¹³ C ₆ ,D ₇]Glc in D ₂ O #1A	1.5	22	2,927	2,927 2.1 1,023		1,023	286	
[¹³ C ₆ ,D ₇]Glc in D ₂ O #1A	1.5	26	3,489	3,489	2.1	938	372	
[¹³ C ₆ ,D ₇]Glc in D ₂ O #1A	1.5	20	2,053	2,053	2.1	853	241	
[¹³ C ₆ ,D ₇]Glc in D ₂ O #1A	1.5	23	292	292	2.1	82	358	
[¹³ C ₆ ,D ₇]Glc in D ₂ O #1A	1.5	27	484	484	2.1	84	577	
[¹³ C ₆ ,D ₇]Glc in D ₂ O #1A	1.5	18	441	441	2.1	85	522	
[¹³ C ₆ ,D ₇]Glc in D ₂ O #1A	1.5	30	403	403	2.1	86	469	
Average ± standard de	eviation	24 ± 4		Average ± standard deviation		403 ± 124		
[¹³ C ₆ ,D ₇]Glc in H ₂ O #1C	1.5	22	3,529	442	2.3	1,017	347	
[¹³ C ₆ ,D ₇]Glc in H ₂ O #1C	1.5	23	3,947	418	2.3	961	411	
$[^{13}C_6, D_7]$ Glc in H ₂ O #1C 1.5		20	2,293	394	2.3	906	253	
Average ± standard de	eviation	22 ± 2		Average ± sta	ndard dev	iation	337 ± 79	
[¹³ C ₆]Glc in D ₂ O #1B	1.5	27	207	438	2.4	1,051	20	
[¹³ C ₆]Glc in D ₂ O #1B	1.5	5	283	430	2.4	1,032	27	
[¹³ C ₆]Glc in D ₂ O #1B	1.5	7	215	422	2.4	1,012	21	
Average ± standard de	eviation	13 ± 12		Average ± standard deviation		23 ± 4		
[¹³ C ₆ ,D ₈]2DG in D ₂ O #2A	1.5	22	3,391	564	2.3	1,297	261	
[¹³ C ₆ ,D ₈]2DG in D ₂ O #2A	1.5	22	3,397	532	2.3	1,223	278	
[¹³ C ₆ ,D ₈]2DG in D ₂ O #2A	1.5	21	2,515	500	2.3	1,149	219	
Average ± standard deviation		22 ± 1		Average ± sta	ndard dev	iation	253 ± 30	
[¹³ C ₆]2DG in D ₂ O #2B	1.5	17	346	384	2.4	922	38	
[¹³ C ₆]2DG in D ₂ O #2B	1.5	10	390	360	2.4	864	45	
$[^{13}C_6]2DG \text{ in } D_2O \#2B$ 1.5		7	305	336	2.4	806	38	
Average ± standard deviation		11 ± 5		Average \pm sta	ndard dev	iation	40 ± 4	

Chronological order of experimental	Formulation	Sample weight (mg)
measurements*		
Ι	1A	487
II	1A	487
III	1C	442
IV	1B	438
V	2B	384
VI	2A	564

Table S3. Chronological order of ¹³C MW sweep measurements for the sugar formulations.

All studies were performed on different days.

Chronological order of	Formulation	Sample weight	
experimental measurements		(mg)	
1	1A	487	
2	1C	442	
3	1B	438	
4	2B	384	
5	2A	564	
6	1A	487	
7	1C	442	
8	1B	438	
9	2B	384	
10	2A	564	
11	1A	487	
12	1C	442	
13	1B	438	
14	2B	384	
15	2A	564	
16	1A	40.9	
17	1A	40.3	
18	1A	40.0	
19	1A	38.9	

Table S4. Chronological order of ³C polarization buildup measurements for the sugar formulations.

Mixture	Volume of H ₂ O	Weight of glucose	Glucose-to-water	Final volume	Factor of
number	used in mixture	used in mixture	ratio	of mixture	volume
	test	test	(g/g)	(mL)	increase
	(mL)	(g)			
1	5.00	4.000	0.8	7.50	1.50
2	5.00	3.505	0.7	7.15	1.43
3	5.00	2.992	0.6	6.84	1.37

Table S5. Volume increase in mixtures of glucose and water which were used in the formulations.

* All mixtures were prepared and tested at room temperature (about 20 °C), using DDW and naturally abundant D-glucose.

Table S6. The various conditions of protonation and deuteration of X-nuclei tested in this work.

Compound	Proton	Proton	Proton	Enhancement of maximal
1	binding	binding site	binding	polarization due to
	site	protonated?	site	deuteration of proton binding
	available?	-	deuterated?	sites or bath
$[^{13}C_6, D_7]Glc$	Yes	No	Yes	17.5
$[^{13}C_6]Glc$	Yes	Yes	No	
$[^{13}C_6, D_8]2DG$	Yes	No	Yes	6.3
[¹³ C ₆]2DG	Yes	Yes	No	
[¹⁵ N ₂]urea in D ₂ O:glycerol	Yes	No/Partly	Yes/Partly	2.2
[¹⁵ N ₂]urea in H ₂ O:glycerol	Yes	Yes	No	
Sodium [¹⁵ N ₂]nitrate in	No	NA	NA	None
D ₂ O:glycerol				
Sodium [¹⁵ N ₂]nitrate in	No	NA	NA	
H ₂ O:glycerol				

NA – not applicable.

Compound	Nucleus	T ₁ (s)	TE / HP	Concentration of agent and osmolarity	Temp.	Magneti c Field	Publication
[1- ¹³ C]D-glucose	¹³ C	2	HP	0,5,11,0,11,10,9	37 °C	14T	Harada <i>et al.</i> 2010^1
	$^{13}\text{C-C}_1\alpha$	13.4					
	¹³ C-C ₁ β	13.5		40 mM, 400 mOsm			
	$^{13}C-(C_2+C_5)\alpha$	13.6				70	
	$^{13}\text{C-C}_2\beta$	12.7	<u>.7</u> .5 .9		27.00		Allouche-
	$^{13}\text{C-C}_3\alpha$	12.5			3/ °C	/1	Arnon <i>et al.</i> 2013^2
	$^{13}\text{C-C}_4(\alpha + \beta)$	11.9					2013
	$^{13}C-(C_3+C_5)\beta$	12.9					
	$^{13}\text{C-C}_6(\alpha + \beta)$	9.7					
[¹³ C ₆ ,D ₇]D-glucose	¹³ C-all	9.5	HP	26 mM, 314 mOsm	20 °C	3T	Allouche- Arnon <i>et al.</i> 2013 ²
	$^{13}\text{C-C}_1\beta$	12.0				21 °C	
	$^{13}\text{C-C}_1\alpha$	12.2	-	P 11 mM, 300 mOsm	21 °C		
	¹³ C-C ₆	9.3					
	13 C-C ₁ β	16.9			40 °C		
	$^{13}\text{C-C}_1\alpha$	16.8					
	$^{13}\text{C-C}_{6}$	12.3					Sapir <i>et al.</i>
	$^{13}\text{C-C}_1\beta$	14.3			21 °C 5		
	$^{13}\text{C-C}_1\alpha$	14.3	HP			5.8T	
	¹³ C-C ₆	10.2				0.01	20193
	$^{13}\text{C-C}_2\beta$	9.8					
$[^{13}C_6, D_8]$ 2-deoxy-D-glucose	$^{13}\text{C-C}_2\alpha$	9.8				-	
	$^{13}C-C_1\beta$	24.0			40 °C		
	$\frac{^{13}\text{C-C}_1\alpha}{^{13}\text{C-C}_1\alpha}$	23.5	-				
	$^{13}C-C_6$	16./	_				
	$^{13}\text{C}-\text{C}_2\beta$	15.9	-				
		13.2			15 25 °C		
		140	-		15-25 C		
[¹⁵ N, D. Juroa		226	_		25-35 C	-	Harris <i>et al.</i> ⁴
$\left[\frac{1}{2}, \frac{1}{2}$	¹⁵ N	308	HP		<u> </u>	-	
		351			45-55 °C	5.8T	
		382	_		<u> </u>		
$[^{15}N_2]$ urea ($[^{15}N_2]$ urea dissolved in H ₂ O)	¹⁵ N	33	HP		35-40 °C		
		172			10-19 °C		
	odium [¹⁵ N]nitrate	139	- HP	19-29 mM, D ₂ O	20-23 °C	5.8T	
		109			34-44 °C		Gamliel <i>et al.</i> ⁵
Sodium [¹⁵ N]nitrate		105			40-50 °C		
		98			33-44 °C		
		102		19-29 mM, saline	33-44 °C		

TE, Thermal equilibrium; HP, Hyperpolarized; Temp., temperature; RT, room temperature.

Figure S1. MW frequency sweep profiles of deuterated and non-deuterated ¹³C-labeled sugars in H₂O and in D₂O.

The first maxima of the sugar formulations used in the current study were found to be the same and this frequency was used for recording the polarization buildup time courses.

The data were normalized to the highest point of each profile. Data are presented as obtained from the polarizer's spectrometer, in magnitude mode.

Figure S2. Individual time courses and curve fitting for polarization buildup of deuterated and non-deuterated ¹³C-uniformly-labeled sugars.

The actual polarization levels in arbitrary units for each time course were corrected for the number of sugar moles in the cup. The dotted line was plotted using the buildup time constant and maximal polarization level that resulted from curve fitting of each experimental time course to Eq. 1.

Figure S3. Example intensity profiles of MW sweeps obtained with the formulations containing ^{15}N in D₂O:glycerol.

The data were normalized to the lowest point of each profile. A) $[^{15}N_2]$ urea, B) sodium $[^{15}N]$ nitrate.

Figure S4. Individual polarization buildup data for ¹⁵N-labeled agents.

Figure S5. Solid-state polarization buildup and decay of ¹³C-labeled 2DG with or without deuteration.

Further to obtaining higher polarization levels for the X-nuclei which were directly bound to deuterons, we wished to explore the potential mechanism underlying this observation. A possible explanation has to do with prolongation of the solid-state T_1 , which would allow favorable buildup conditions. To this end, the experiments described in Figure 1B and Table 1 with ¹³C- and deuterium-labeled-2DG analogs were reproduced on a second Hypersense polarizer at the University of Oxford.

A) A reproduction of the experiments shown in Figure 1B, with the same samples used for producing Figure 1B (n=3, for each sample, Formulations 2A and 2B).

B) At the end of each buildup duration, the MW irradiation was stopped, and the polarization level was monitored during its decay.

 M_z was calculated from the M_{xy} data shown in this plot using the conversion: $M_{xy}(t)=M_z(t)\cdot\sin(\theta)$, where θ , the flip angle for excitation, was 5°. The decay of $M_z(t)$ data was then used to calculate the T₁ of [¹³C₆,D₈]2DG and [¹³C₆]2DG in solid-state.

The solid-state T_1 of $[{}^{13}C_6, D_8]$ 2DG was found to be 1.8-fold longer than that of $[{}^{13}C_6]$ 2DG (185.7± 36.2 min and 101.7± 32.5 min, respectively). In this set of experiments the increase in maximal polarization level of the deuterated compound was 14.8-fold (more than in the previous set of experiments, Table 1) and the buildup time constant increased 1.2-fold (less

than in the previous set of experiments, Table 1). These differences are likely due to slightly different temperatures of the sample during the DNP process across the two spin polarization systems, as it was previously shown that such sugar molecules' polarization is very sensitive to the temperature of the sample during the DNP process ⁶. Nevertheless, the higher polarization level of the ¹³C sites directly bound to deuterons was reproduced and the T_1 in solid-state was indeed prolonged, providing a possible explanation for this observation.

References

- 1. Harada M, Kubo H, Abe T, Maezawa H, Otsuka H. Selection of endogenous C-13 substrates for observation of intracellular metabolism using the dynamic nuclear polarization technique. *Japanese Journal of Radiology*. 2010;28(2):173-179.
- 2. Allouche-Arnon H, Wade T, Waldner LF, et al. In vivo magnetic resonance imaging of glucose initial experience. *Contrast Media Mol Imaging*. 2013;8(1):72-82.
- 3. Sapir G, Harris T, Uppala S, et al. C-13(6),D-8 2-deoxyglucose phosphorylation by hexokinase shows selectivity for the beta-anomer. *Sci Rep.* 2019;9.
- 4. Harris T, Gamliel A, Uppala S, et al. Long-lived N-15 hyperpolarization and rapid relaxation as a potential basis for repeated first pass perfusion imaging marked effects of deuteration and temperature. *ChemPhysChem.* 2018;19(17):2148-2152.
- 5. Gamliel A, Uppala S, Sapir G, et al. Hyperpolarized N-15 nitrate as a potential long lived hyperpolarized contrast agent for MRI. *J Magn Reson.* 2019;299:188-195.
- 6. Harris T, Gamliel A, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. The effect of Gadolinium doping in C-13(6),H-2(7) glucose formulations on C-13 dynamic nuclear polarization at 3.35 T. *ChemPhysChem.* 2020.