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Abstract

In this work, we propose FLVoogd, an updated federated learning method in which servers
and clients collaboratively eliminate Byzantine attacks while preserving privacy. In par-
ticular, servers use automatic Density-based Spatial Clustering of Applications with Noise
(DBSCAN) combined with Secure Multi-party Computation (SMPC) to cluster the benign
majority without acquiring sensitive personal information. Meanwhile, clients build dual
models and perform test-based distance controlling to adjust their local models toward
the global one to achieve personalizing. Our framework is automatic and adaptive that
servers/clients don’t need to tune the parameters during the training. In addition, our
framework leverages SMPC’s operations, including multiplications, additions, and compar-
isons, where costly operations, like division and square root, are not required. Evaluations
are carried out on some conventional datasets from the image classification field. The result
shows that FLVoogd can effectively reject malicious uploads in most scenarios; meanwhile,
it avoids data leakage from the server side.

Keywords: federated learning; secure-multi-party computation; differential privacy

1. Introduction

Unlike the centralized learning setting, where a server collects substantial users’ data to
build a model for predictions, Federated Learning (FL) requires the model parameters that
clients train independently with their data and devices. In FL paradigm frameworks, such
as FedAvg McMahan et al. (2016), the server iteratively aggregates local models trained by
individuals and sends the global one back to clients for their local updates, to achieve col-
laborative training. Since no actual data is sent to the server, this paradigm was considered
privacy-preserving. In the past half-decade, FL has been widely researched and applied in
many fields such as image recognition Li et al. (2021a), natural language processing Liu
et al. (2021), financial system Long et al. (2020), and medical care Dayan et al. (2021).

However, such a framework still faces two main challenges - privacy and security. On the
one hand, the conventional FL setting cannot get rid of the disclosure of clients’ information
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and even enlarge the attacking surface Aono et al. (2017). Not only can the server be an
adversary to infer the information from local models sent by clients in this scenario, but also
every participant can perform the inference attack on the global model constructed by each
individual. Therefore, some research employs SMPC to encrypt the uploads, such as Nguyen
et al. (2021a). However, the cost of the design or operations is high, especially when
dealing with the division and the square root. On the other hand, without countermeasures,
adversaries can arbitrarily substitute the data with the poisoned one Wang et al. (2020) or
even directly change the upload into a meaningless random number, leading their uploads
to betray the regulation. To eliminate the attacking consequence, some research, like Li
et al. (2021b) and Rieger et al. (2022), builds a practical defensive framework, but with too
unintuitive hyper-parameters to tune for different situations.

To improve the efficiency and save expensive operations, we develop an updated frame-
work that combines SMPC Knott et al. (2021); OpenMined (2021), DBSCAN Ester et al.
(1996), differential privacy Geyer et al. (2017), and personalized local model Li et al. (2021b)
to eliminate the malicious uploaded parameters without revealing any sensitive information
and guarantee (ϵ, δ)-DP after the aggregation. Compared with the past research, our frame-
work 1)filters the abnormal uploads without knowing their sensitive information; 2)performs
the training process adaptively, requiring no parameter tuning; 3)uses SMPC operations
efficiently supported by most protocols. We leverage the conventional image classification
dataset to evaluate the framework. The results show that the filter can reject the Byzantine
attacks under most situations without degrading the model performance, and the trade-off
between predicting accuracy and DP strength can be customized for different scenarios.

2. Background and Problem Setting

2.1. Adversarial Attack

We use state-of-art attacks to test our FL’s robustness and named from A1 to A6.
•Random upload (A1): As its name suggests, the adversary substitutes the factual update
with a random noise chosen from X ∼ N (0, 1). Consequently, the average of parameters
can arbitrarily deviate from wavg = 1

n

∑n
i=1wi to wdev = 1

m

∑m
i=1wi+

1
n−m

∑n
i=m+1N (0, 1),

where m is the number of honest updates and (n−m) is the number of malicious updates.
•Krum attack (A2): It is designed to crack the Krum aggregation rule. In a nutshell,
Krum selects one vector from a set of n vectors that is the most comparable to the rest.
Even if a compromised client gives the chosen vector, the impact is limited in this situation.
However, when adversaries try to invalidate the Krum aggregation rule, they can conspire
to elaborate a set of vectors to make KR(w′

1, ..., w
′
f , ..., wn) output w

′
1 such that w′

1 mostly
inversely differs from the true selected one without being attacked Fang et al. (2020).
•Trimmed-mean attack (A3): Trimmed-mean sorts n updates for each jth parameter
sort(w1j , ..., wnj), eliminates the highest and smallest β amount from the sorted list, and
averages the remaining (n− 2β) parameters as the global model’s jth parameter Yin et al.
(2018). To enervate this aggregation rule, adversaries collude to submit deviating models
in the opposite direction that the global model would change in the absence of attacks.
•Label flipping (A4): Each adversary converts the label of a sample from l to L− l − 1,
where l is the truth label of the sample, and L is the total number of classes Muñoz-González
et al. (2017). For instance, adversaries label digit “0” as “9” and digit “9” as “0” to label-
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flip the MNIST data.
•Backdoor triggering (A5): This kind of attack is also known as trojan attacks Gu et al.
(2017). The adversary inserts a specific pattern into training samples or uses existing ones
to render the corresponding testing samples with that pattern classified as the desired class.
This pattern functions as a trigger. After the global model learns this pattern, it will be
triggered and output the misled prediction. If the adversary uses the existing pattern in
the sample, this backdoor attack is a semantic backdoor attack Rieger et al. (2022).
•Edge-case attack(A6): Under the edge-case attack setting, adversaries aim to attack the
heavy-tail of the prediction Wang et al. (2020). They try to find or manufacture samples
that the model predicts correctly but with a comparably low confidence value; then, they
label those samples with a label they want. The intuition behind it is that the model cannot
assure the correctness of predictions even if the result is correct, as the predicting score is
not such high, so it can be easily misled by the attacker who feeds those edge-case samples
with wrong labels.

2.2. DBSCAN

DBSCAN is initially designed for clustering and distinguishing the noise from the high
dimensional database depending on the variance of density Ester et al. (1996). A non-
negligible quantity of samples should be in the cluster if a cluster is formed, while the cluster
can hardly be formed in areas where samples are located sparsely. These “depopulated
zones” can be used as gaps to separate the different classes and to sift out noisy samples.
We will consistently follow some of the concepts and symbols used in Ester et al. (1996).
NEps(p) represents neighbors of a point p within a range with radius Eps (Eps is a preset
hyper-parameter). A point p is a corepoint, if |NEps| ≥ MinPts (MinPts is a preset
hyper-parameter). In addition, a corepoint is the centroid of a cluster, so in other words,
a cluster is only formed when its centroid is a corepoint. A point p is a borderpoint, if
its neighbours contain at least one corepoint. It should be noted that a point can be a
borderpoint for different clusters, but it will be only assigned to a unique cluster eventually,
and it depends on which cluster it assigns the point to first. If a point is neither a corepoint
nor a borderpoint, it will be classified as noise.

2.3. SMPC

As mentioned, uploading weights instead of the raw data to the server is not privacy-
preserving. As shown in Zhang and Luo (2020), model parameters can disclose some in-
formation about individual data. For example, adversaries can use generative adversary
networks to reconstruct the class representatives from the aggregated parameters. This
powerful reconstruction is more harmful if it happens on the server side because the server
can steal the class representatives from each individual uploading. To avoid revealing the
uploads to the server, SMPC can be used for private aggregation, and the result will only
be revealed eventually. Following the structures in Nguyen et al. (2021b,a); Rieger et al.
(2022), we will use Secure 2-party Computation (S2PC), a ramification of SMPC, to guar-
antee that the individual upload will not be plain-text to the server. Under the S2PC
setting, each client will not directly send the model parameters to the server but separate
the upload into two parts and share one with the server for aggregation and another with
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the external server. As both servers hold merely one piece of the secret, the secret cannot
be known if they do not collude, because it is computationally infeasible for a single server
to reconstruct the actual data from decrypting the individual upload. Based on the se-
cret sharing scheme, each server can do arithmetic operations relying on its own share and
through some communication. To achieve this, two libraries CrypTen1 Knott et al. (2021)
and SyMPC2 OpenMined (2021) derived from PySyft are used for the experiment. Both of
them use secret sharing but with different protocols to achieve S2PC. CrypTen is currently
designed only for semi-honest parties, while SyMPC can tolerate minor malicious parties.

2.4. Security Assumption

We primarily consider possible server-side and client-side risks. There are two types of
servers in our setting. Firstly, servers can be honest-but-curious who infer the actual data
or relevant information from uploads while heeding the regulation. Secondly, if FLVoodg
runs under SyMPC-Falcon Wagh et al. (2020), servers can be malicious (minority) who
betray the secure aggregation rule and send an incorrect model back to participants. In
terms of participants, in each round, less than half of them can be malicious and perform
byzantine attacks 2.1 to deteriorate the performance of the global model. In addition,
any client can be curious about information from others and performs client-level inference
attacks Geyer et al. (2017), inferring whether a particular client participates in the training,
given a specific dataset of that client.

3. FLVoogd Overview and Design

3.1. FLVoogd Server

Figure 1: FLVoogd server framework.

The overview of our framework, FLVoogd with SMPC, is shown in Fig. 1. Initially,
each client computes the l2-norm of its uploaded parameters wi as the amplitude ||w||i ←√∑

j w
2
ij and unitizes the parameters to wi ← wi

||w||i as the direction. The unitizing can

simplify the later SMPC computations, e.g., cosine distance where costly division and square
root operations Nguyen et al. (2021a) are saved. Besides, the client performs the same for
the parameters from the last layer and obtains the unitized last layer parameters vi. The

1. https://github.com/facebookresearch/CrypTen
2. https://github.com/OpenMined/SyMPC

https://github.com/facebookresearch/CrypTen
https://github.com/OpenMined/SyMPC
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reason for extracting the last layer is that parameters in the final layer reveal more explicit
information relevant to the dataset’s distribution Rieger et al. (2022) which can be used
for distinguishing backdoor uploads. Then, the client secretly shares the direction wi, the
amplitude ||w||i, and last-layer direction vi with two parties, the server for aggregation and
external server. If the SMPC protocol uses Falcon, one more server is added and receives
the third share from the client.

Once servers receive the uploads from the selected clients, they can perform secure
aggregation. It is supposed that the number of received uploads is n, and the clipping
boundary for the current round is c(t). The server first carries out the filtering process, the
block with a light yellow background in Fig. 1, and the procedure can be divided into six
steps. 1○: In the first step, the server uses the directional vector w to compute the cosine
distance matrix Mcos by Eq. (1), where Mcosij = cos − dist(i, j) for i ̸= j, Mcosij = 0 for
i = j, i or j denotes the client’s index, and u denotes the parameter’s index. Since the
vectors are unit vectors, the cosine distance between two vectors can be simplified into a dot
production. The computation is collaboratively completed by two/three servers, involving
the addition and multiplication among secret shares. 2○: In the second step, the server
feeds the Total-Sum-of-Square (TSS)-based DBSCAN with the distance matrix from the
former step. DBSCAN calculates the TSS by Eq. (2) for each pair of rows to obtain a
new distance matrix Mtss. Mcos provides the directional similarity, while Mtss enlarges
the variance of counter-directions and narrows the variance of identical directions such
that the filter can capture the difference more easily. There are two hyper-parameters for
DBSCAN, Eps and MinPts. As honest-majority is the basic assumption, MinPts is set to
⌊n/2⌋+ 1 and Eps is the average of the median (⌊n/2⌋) in each row of the distance matrix
Mtss ∈ Rn×n. Unlkie Nguyen et al. (2021a) where a binary iterative search is applied
for finding the appropriate parameter in every round, our setting for Eps and MinPts
guarantees the DBSCAN can automatically adjust its radius accordingly through the whole
process without any manual involvement and iteration. This step includes the addition,
multiplication, and comparison of shares. 3○: In the third step, DBSCAN filters out the
noise and minority group and returns indices of the majority group. The server selects the
corresponding clients’ parameters from the last layer according to the indices. 4○: For the
next step, similar to step 1, the server again computes the cosine distance matrix but now
uses the last-layer parameters. Then, the server obtains a cosine distance matrix M ′

cos. 5○:
The fifth step is identical to the second step. 6○: In the final steps, DBSCAN outputs the
indices that the server will consider as benign.

cos− dist(i, j) =

∑
uwi,uwj,u√∑

uw
2
i,u

√∑
uw

2
j,u

=
∑
u

wi,uwj,u = wi · wj (1)

tss− dist(i, j) =
∑
u

(Mcosi,u −Mcosj,u)
2 (2)

After knowing which clients are considered as benign ones, the server clips their am-
plitudes before performs the aggregation by ||w||i = min(||w||i, c(t)). On the one hand, it
restrains the abnormally large amplitude and controls the next descent step size. On the
other hand, it provides the l2-sensitivity for the DP budget tracer. During the clipping, the
clipper records the ratio of clients not being clipped as γ̂. The expected clipping ratio is set
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as γ. The next round clipping boundary c(t+1) is updated by c(t+1) = c(t) · exp(−ηc(γ̂− γ)),
where ηc is the learning rate of the clipper. If the actual non-clipping number of clients is
larger than expected, the clipping boundary will decrease to cut more clients in the next
round; otherwise, it will increase to be looser. The exponential base guarantees that any
adjustment is a positive number. As adaptive clipping provides a public clipping boundary
based on rough counting, it cannot reveal sensitive information. SMPC’s operation in this
step requires comparing a share with a public number.

The aggregation rule is simply averaging benign clients’ uploads by wglobal =
1
m

m∑
i=1

wi ·

min(||w||i, c(t)). It is supposed that the number of clients after filtering is m(≤ n). After
obtaining the merged model wglobal, servers collaboratively reveal and announce the plain
text of wglobal. The aggregation contains the addition and multiplication of shares, and the
multiplication of shares and public numbers.

The server eventually knows the global parameter till finishing aggregation, and local
parameters are already merged into one; thus, the server has no idea of individual local
updates. Before sending the global update back to clients, the server adds Gaussian noise
to provide a differential privacy guarantee to defend against client-level inference from the
client side. The mean is 0, and the standard deviation is the maximum l2-sensitivity
multiplied by a coefficient σ that represents the strength of DP. Thanks to the clipping,
all uploads are bounded into a sphere whose radius is exactly the clipping boundary c(t).
Therefore, the noise is added following Eq. (3). Notably, the noise is added to the sum
of updates not after averaging. DP-Noise Adder also tracks the DP budget for the server
because it knows the number of clients used in this round and the amplitude of Gaussian
noise. Finally, ||w̃global|| is compared with ||c(t)||. If ||w̃global|| > ||c(t)||, from which the
server deduces that the amount of noise is added too much, the server will scale down
||w̃global|| to a smaller value by Eq. (4). This operation follows the post-processing property
of differential privacy so that (ϵ, δ) cannot be influenced. This post-processing is equivalent
to adjusting the model learning rate lower after knowing the noise influences too much on
the result. The algorithm of the FLVoogd server is manifested in Alg. 1.

w̃global =
1

m
{

m∑
i=1

wi ·min(||w||i, c(t)) +N (0, σ2 · (c(t))2)} (3)

w̃global := w̃global ·min(1,
c(t)

||w̃global||
) (4)

3.2. FLVoogd Client

Referencing the idea from Ditto Li et al. (2021b), each FLVoogd’s client builds two identical
models, namely, the global model and the local model. Varying from Cao et al. (2020);
Nguyen et al. (2021a,b); Rieger et al. (2022) where the server entirely takes the responsibility
of a robust model, clients can share that responsibility locally. This defensive scheme builds
a gap between the self-used local and global models to enhance the robustness and offers
personalization to users. In each round, the client receives the averaged aggregated weight
difference w̃global from the server and updates the weight of the global model accordingly by
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Algorithm 1 FLVoogd server algorithm
1: Input:
2: C, N ▷ C is the set of clients, N = |C|
3: T , q ▷ T is the number of training iteration, q is the sampling ratio
4: c(0), γ, ηc ▷ c(0) is the initial clipping boundary, γ is the expected clipping ratio, ηc is Clipper’s

learning rate
5: σ, δ ▷ σ is the coefficient to control the noise strength, δ is for DP
6: for round t: 1, 2, ..., T do
7: C(t), n← subsample(C, N , q) ▷ n = |C(t)|
8: for clienti ∈ C(t) do
9: w

(t)
i , ||w||(t)i , v

(t)
i ← clienti(t, send) ▷ w is the unit vector of weight difference, ||w|| is the norm

of weight difference, v is the unit vector of last layer’s weight difference

10: idx
(t)
f1 , n

(t)′ ← Auto DBSCAN({w(t)
1 , w

(t)
2 , ..., w

(t)
n }) by Alg. 2 ▷ n(t)′ = |idx(t)

f1 |
11: idx

(t)
f2 , n

(t)′′ ← Auto DBSCAN({v(t)i : i ∈ idxf1}) by Alg. 2 ▷ n(t)′′ = |idx(t)
f2 |

12: w
(t)
global ← 0, γ̂(t) ← 0

13: for index i ∈ idx
(t)
f2 do

14: if ||w||(t)i > c(t) then

15: ||w||(t)i ← c(t)

16: else
17: γ̂(t) ← γ̂(t) + 1

18: w
(t)
global ← w

(t)
global + ||w||

(t)
i · w

(t)
i

19: w
(t)
global ←

w
(t)
global

n(t)′′ , γ̂(t) ← γ̂(t)

n(t)′′

20: c(t+1) ← c(t) · exp(−ηc(γ̂(t) − γ)), ϵ(t) ← DP budget(n
(t)′′

N
, σ, δ)

21: w̃
(t)
global ← w

(t)
global +

1

n(t)′′N (0, σ2(c(t))2) ▷ satisfying (ϵ, δ)-differential privacy

22: w̃
(t)
global ← w̃global ·min(1, c(t)

||w̃global||
) ▷ satisfying post-processing

23: clienti(t, receive)← w̃
(t)
global

Algorithm 2 Auto DBSCAN

1: Input: W ▷ W ∈ Rn×m represents n×m matrix where each row is a client’s unit vector from n clients
and the dimension of the vector is m

2: Output: idx, |idx| ▷ idx is a list of indices of benign clients
3: Mcos ← CosDist(W ) by Eq. (1)
4: Mtss ← TSSDist(Mcos) by Eq. (2)
5: for row i: 1, 2..., n do
6: mediani ← quickMedian(Mtss,i)

7: median← 1
n

∑n
i=1 mediani

8: Eps← median, MinPts← n//2 + 1
9: idx← DBSCAN(Mtss, Eps,MinPts, precomputed)
10: return idx, |idx|

Wglobal := Wglobal + w̃global. In contrast, the local model is not updated in this step. After
updating the locally global model, the client tests the model accuracy using evaluation data
and obtains the testing accuracy accref .

The client feeds the partial training data to the global and local models in each mini-
batch iteration. It is supposed that there is a coefficient λditto to control the distance of the
local model from the global model. The objective function of the local model becomes like
Eq. (5), where F (·) is the objective function for the global model and originally for the local
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model. The change in the local model’s objective function now is that the client adds an
additional l2-regularization term to force the local model to approximate the global model.
Consequently, the local model can learn from the global model, and the gap between them
is constrained by λditto.

min
Wlocal

F ′(Wlocal;Wglobal) = F (Wlocal) +
λditto

2
||Wlocal −Wglobal||2 (5)

Furthermore, Eq. (5) can be converted into a gradient decent format shown in Eq. (6),
where ηlocal is the client’s local learning rate. The formula shown in Eq. (6) can be easily
implemented by PyTorch where the client extracts the gradient and adds the λditto(Wlocal−
Wglobal)) term to it before running optimizer.step().

g := g − ηlocal(▽F (Wlocal) + λditto(Wlocal −Wglobal)) (6)

Till now, the client has λditto as a controller to adjust the learning distance between
the local and global models, but how to set an appropriate value λditto for the local model?
Intuitively, if the global model is admirable and exemplary, we expect the local model to
learn as much helpful information as possible from the global model; otherwise, we desire
the local model to learn less or even not learn from the global model. Then, the client
can use the testing accuracy accref as a reference to flexibly adjust λditto by Eq. (7). In
the formula, λmax and λmin are the maximum and minimum values for λditto, ηditto is the
learning rate, acclocal is the testing accuracy of the local model, and accthres is the minimum
threshold to increase λditto. λmax and λmin restrain the coefficient of the l2-regularization in
a reasonable interval. ηditto controls each mini-batch iteration’s growing/decaying speed for
λditto. accthres is the threshold to control whether the current global model is worth being
learned. In other words, the local model will absorb from the global model, only if accref is
higher than acclocal + accthres. The client secretly shares his/her update with servers after
completing the training. The algorithm of FLVoogd’s client is manifested in Alg. 3.

λditto := min(λmax,max(λmin, λditto + ηditto(accref − acclocal − accthres))) (7)

4. Experiment

4.1. Experimental Setup

We conducted all the experiments using PyTorch, and the source code was available on
https://github.com/Timo9Madrid7/maliciousfl.
Datasets and Neural Network. We followed the recent research on Byzantine at-
tacks Fang et al. (2020); Wang et al. (2020) on FL and chose a typical application scenario
- image classification. The datasets in our experiments included MNIST, CIFAR-10, and
EMNIST. The non-IID data splitting for MNIST and CIFAR-10 in our experiment followed
the method carried out in FLTrust Cao et al. (2020), where DegnIID (q in Cao et al. (2020))
controlled the level of non-IID. In terms of EMNIST, we applied the method from He et al.
(2020) where the smaller αsim was, the more tasks were dissimilar. CNNs were used as
our global and local models, where CIFAR-10 was trained by ResNet-20 He et al. (2016)

https://github.com/Timo9Madrid7/maliciousfl
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Algorithm 3 FLVoogd client algorithm
1: Input:
2: Dtrain, Deval ▷ Dtrain is the training set, Deval is the testing set
3: Wlocal, Wglobal, F ▷ Wlocal/Wglobal are the local/global parameters, F is the objective function
4: ηlocal, ηglobal, E ▷ ηlocal/ηglobal is the learning rate for the local/global model, E is the number of local

training epochs
5: λ

(0)
ditto, ηditto, accthres, λmin, λmax ▷ λ

(0)
ditto is the initial value for

λditto, ηditto is the learning rate for λditto, accthres is the threshold to start learning, λmin/λmax is the
minimum/maximum learning rate of λditto

6: w̃global ← client(receive) ▷ receive the update from the server
7: Wglobal ←Wglobal + w̃global

8: Wtemp ←deepCopy(Wglobal)
9: accref ←Eval(Wglobal,Deval)
10: for local epoch e: 1, 2, ..., E do
11: for batch iteration B ∈ Dtrain do
12: Wglobal ←Wglobal − ηglobal▽F (Wglobal,B) ▷ global train
13: Wlocal ←Wlocal − ηlocal(▽F (Wlocal,B) + λditto(Wlocal −Wglobal)) ▷ local train
14: acclocal ←Eval(Wlocal,Deval)
15: λditto ← λditto + ηditto(accref − acclocal − accthres) by Eq. (7)

16: w ←Wglobal −Wtemp

17: ||w|| ←
√∑

j w
2
j , w ← w

||w|| , v ←
{wj :j=k,...,m}√∑m

j=k
w2

j

▷ k is the starting index of the last layer

18: client(send)← w, ||w||, v

(269,772 parameters in total), and MNIST & EMNIST were trained by a 2×convolutional
layers’ NN. ResNet-20 was a pre-trained version3 to accelerate the training process.
Evaluation Metrics. Main Task Accuracy (MA) represents the accuracy of a model
tested by its benign task. It indicates the fraction of correct predictions. If the model is
under targeted attacks, Backdoor Accuracy (BA) is the metric to reflect how successful the
adversaries are. It denotes the fraction of correct predictions for backdoor samples.
FL Configuration. The total number of clients N was set to 100. Each client received
unique training samples and testing samples from the split. The learning rates of global
model ηglobal and local model ηlocal were 0.01. The local training epoch E was 1 since clients
did not hold an adequate number of samples. The coefficient of l2-regularization λditto was
initialized as 0 and its min-max interval was [0.0, 2.0], where the maximum was suggested
by Li et al. (2021b). The threshold accthres for the local model starting learning from the
global was 0.05. The learning rate ηditto for λditto was 1. The expected clipping ratio γ, the
initial clipping boundary c(0), the clipping learning rate ηc were 0.5, 10, 0.3. Other settings
varied for different experiments.
Malicious Configuration. Both model poisoning attacks and data poisoning attacks
share a parameter Poisoned Model Rate (PMR), indicating the fraction of poisoned models
for each round. If the attacking type is data poisoning, it has one more parameter Poi-
soned Data Rate (PDR), representing the poisoned ratio of the data. Common attacking
settings are shown in table 1, where settings are nearly marginal thresholds, below which
the attacking effect is non-significant even if it escapes from being detected.

3. https://github.com/chenyaofo/pytorch-cifar-models

https://github.com/chenyaofo/pytorch-cifar-models
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Table 1: Attack settings
Attacks (E)MNIST CIFAR-10

A1 mean = 0, std = 1
A2 Krum’s ϵ = 10−3, threshold = 2× 10−2

A5
a 5x5 white square is inserted into

the targeted data and labeling it as “0”
the semantic pattern is a car

with stripes and labeling “car” to “bird”

A6
by adding Ardis IV to

training and labeling “7” as “1”
by adding Southwest Airline images to

training and labeling “airplane” as “truck”

4.2. Fending-off Byzantine Attacks
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Figure 2: Byzantine attacks on MNIST

Fig. 2 shows MNIST under different attacks from A1 to A6. “Baseline” or “without
defense” results from the server running FedAvg. 21 clients are uniformly randomly se-
lected from 100 participants for the baseline, while 40 clients are for other situations (i.e.
PMR=19/40). In Fig. 2(a), due to malicious random uploads, the aggregated updates are
meaningless, leading to the blue curve with extremely low accuracy; however, the filtering
process conducts so effectively that the learning curve - the green one - can behave normally
under this attack. In Fig. 2(b), the Krum attack tries its best to upload counter-directional
updates to devalue global accuracy. Consequently, the global accuracy is even worse than
a random guess (50%). However, the global accuracy can reach an original level using the
defense of FLVoogd. In Fig. 2(c), the trimmed-mean attack starts to degrade the model
accuracy approximately at midterm and reduces accuracy from higher than 80% to less
than 60% within 50 rounds. FLVoogd prevents this malicious reduction of accuracy effec-
tively. In Fig. 2(d), Byzantine clients flip the labels of all training samples, rendering the
final prediction like a random guess. One notable point is that the filter cannot correctly
recognize flipping uploads in several initial rounds, but it can acknowledge and expel ma-
licious updates once the global model learns a little from those majorities. In Fig. 2(e),
the backdoor triggering attack shows its supremacy at the initial stage, and BA can easily
approximate to 100% in the first several rounds. After the model learns sufficient benign
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samples, BA tends to decrease while MA tends to increase. Without the defense, BA again
grows sharply at midterm and finally attains relatively high accuracy. In contrast, under
the protection, BA is restrained at low accuracy and can impossibly revive after the filter
starts to work. The filter does not work at the initial stage because the model is chaotic, and
the updates produced from the model reveal little information about the data distribution.
In Fig. 2(f ), under no defense, BA manifests likewise A5 at the initial stage but does not
decline after MA rises. Since the malicious data is sampled from another dataset without
intersection with MNIST, learning from the benign samples cannot benefit the model, so
BA persists at high accuracy. However, FLVoogd can successfully detect and block these
uploads according to the abnormal data distribution, preventing the intrusion of edge-case.
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Figure 3: Byzantine attacks on CIFAR-10

Fig. 3 shows CIFAR-10 under different attacks from A1 to A6, where all the attacks
have been eliminated or restrained below comparably low accuracy. Fig. 4 shows EMNIST
under various attacks from A1 to A6. Similar to MNIST and CIFAR-10, all the attacks
have been eliminated or restrained below comparably low accuracy. However, we initially
found that FLVoogd could not prevent EMNIST from A6 productively since 1) we did not
use the whole dataset for the training but followed the advice from He et al. (2020), where
20% was suggested for 100 clients; 2) there were 62 classes to be classified. Consequently,
the model initially required several rounds to figure out what correct “7” and “1” roughly
looked like. The model would not rebound those edge cases if edge-case clients instructed
the model incorrectly with the mislabelled pictures at the beginning. Therefore, in the first
five rounds, we put the model under training with benign-only samples to compensate for
this unfairness. After that, the model could successfully filter out those malicious uploads.

4.3. Adding and Tracking DP

Experiments that test the DP effect and monitor the ϵ budget will be independently studied
in this subsection. The experiments consist of different combinations of subsampling ratio
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Figure 4: Byzantine attacks on EMNIST

q and noise strength coefficient σ. The DP noise, to some extent, will adversely affect the
convergence and accuracy of the model. In return, this kind of sacrifice gains a differential
privacy guarantee. The growth of ϵ after each iteration is estimated by Moments accountant
or Rėnyi-DP (RDP) Wang et al. (2019), where δ is set as a constant (= 10−3 Geyer et al.
(2017)) considering 100 is the total number of clients.
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(a) σ = 1, q = 20/100
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(b) σ = 2, q = 40/100
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(c) σ = 3, q = 60/100
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(d) σ = 4, q = 80/100
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(e) σ = 5, q = 100/100

0 25 50 75 100 125 150 175 200
Round

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
1:20 rdp
moments
2:40 rdp
moments
3:60 rdp
moments
4:80 rdp
moments
5:100 rdp
moments

(f ) ϵ recording

Figure 5: DP’s effect on MNIST

The consequence of DP Gaussian noise is tested by MNIST and shown in Fig. 5. We kept
the ratio of noise strength σ and the chosen number of clients for each round n constant,
σ
n = 1/20. Each experiment used a different subsampling rate q from 0.2 to 1.0. The total
number of training rounds extended to 200, as the noise postponed the convergence. Figures
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nearly exhibit a similar trend. In general, the added noise decreased the final accuracy by
7.0%. In return, almost in all the experimental settings, (ϵ, δ) was better than (20, 10−3),
and the best one can achieve (13.29, 10−3) estimated by RDP. Solid lines and dash lines in
Fig. 5(f ) are ϵ estimated by Moment’s accountant and RDP, respectively, where RDP always
provides a lower ϵ’s boundary. The FLVoogd framework provides an adaptive supervisor
for ϵ, which the server can customize - the values (ϵ, δ) are widely acceptable in reality -
so the server can stop the training or adjust the sampling ratio and the amount of adding
noise in time once ϵ is undesirable.

4.4. Non-IID Interference

Experiments will test DegnIID from 0.2 to 0.7. The number of clients per round is reduced
from 40 to 20 since DBSCAN is unstable with noisy points where the non-IID noise may
connect clusters. The defense may collapse if too many clients are selected per round under
the non-IID setting.
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Figure 6: Non-IID effect on MNIST

The defensive effect under the non-IID setting has been tested on the MNIST dataset,
shown in Fig. 6. In general, FLVoogd cannot ultimately tolerate that clients hold extreme
non-IID samples. In Fig. 6(a), the filter rejects all these uploads until the model converges.
After convergence, the filter hardly distinguishes between the malicious and model uploads
because both appear somewhat random behaviors, resulting in fluctuations in the conver-
gence state. However, the accuracy is still above 90% since benign uploads again become
meaningful once below this threshold, and the filter once more rejects malicious random
uploads. Krum attack shows ineffectual regardless of the non-IID degree in Fig. 6(b). The
filter is so sensitive to the direction of uploads that uploads with reverse directions can
scarcely pass the filtering. In Fig. 6(c), the filter relinquishes its duty after the non-IID
degree is more extensive than 0.5. Compared to A1, A3 is a more advanced scheme, which
chooses the randomness adaptively, so the attacking effect is more significant. In Fig. 6(d),
random flipping works after the non-IID ratio is higher than 0.6. After DegnIID > 0.5, one



Tian Wang Qiao Panaousis Liang

class completely dominates a dataset, leading to each mini-batch iteration containing over
50% samples from the same class. Consequently, the learning process is tampered with by
the flipping of one class intermittently once the non-flipped samples of this class miss the
training round. In Fig. 6(e), backdoor accuracy cannot be constrained if increasing the
non-IID degree to more than 0.5, as the filter cannot discriminate whether the non-IID or
the backdoor targets cause the directional difference. This situation similarly happens in
Fig. 6(f ) where the result is even worse because the defense collapses when the non-IID
ratio is just higher than 0.2. Contradicting A5, where the backdoor targets are still the
samples in the dataset, A6 introduces the backdoor targets from another dataset and aims
to compromise the weakness of the model prediction. The filter performs ineptly if the
model digest cannot reflect normal/abnormal directions. Since the model can never learn
those edge cases with true labels, the model cannot provide evidence of deviant behaviors.
When the non-IID ratio is lower than 0.3, the filter can detect those edge cases mainly
because of the distribution of uploads. However, after non-IID increases, the upload lacks
this kind of information.
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Figure 7: Pretraining and a lower PDR help the defense

Since the FLVoogd performed worse when it suffered from A6’s attack, we selected this
situation for further study. We wanted to assist FLVoogd somewhat - training the model
ahead or decreasing the PMR. As mentioned, pre-training is doable for some application
scenarios. In addition, according to Shejwalkar et al. (2021), PMR≈ 50% is a very pes-
simistic assumption, so we tried to lower it a little bit to see how our framework would
react. In Fig. 7(a), PDR is reduced from 45% to 30%, and the BA learning curve declines
once the model has learned the correct direction from the benign uploads. The poisoning
effect is weakened because of the lower PDR. In Fig. 7(b) and Fig. 7(c), the model accu-
racy is trained approximately to 25% before the attacks deploy. The updating directions
of models become consistent after the pre-train. Thus, the filter can sift those malicious
uploads once it first time meets the upload in an abnormal direction. The results also
verify that defending against targeted attacks depends on the performance of models on
the dataset. If the model can separately recognize the poisoned and normal samples, it
can output distinguishable model updates. Then, after the filter captures this variance, the
defense effectively works.
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5. Conclusion

We introduce FLVoogd, a robust and privacy-preserving federated learning framework that
restrains the adverse impact of Byzantine attacks within an acceptable level while main-
taining the performance of model predictions on the main task. There are two critical
differences between our design and prior works. Firstly, most procedures are executed un-
der privacy preservation, where operations are doable for mostly popular SMPC protocols.
Secondly, we provide adaptive adjustments such that the whole process can run automati-
cally. Future works could include: merging the transfer learning into the current framework
to tackle GAN inference and combine it with other efficiently communicative schemes, e.g.,
sketch, to reduce the communication bandwidth and enhance differential privacy.
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