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Abstract
Modern civilization is highly dependent on industrial agriculture. Industrial agriculture in turn
has become an increasingly complex and globally interconnected system whose historically
unprecedented yield relies strongly on external energy inputs in the shape of machinery,
fertilizers, and pesticides. This leaves the system vulnerable to disruptions of industrial
production and international trade. Several events have the potential to damage electrical
infrastructure on a global scale, including electromagnetic pulses caused by solar storms or the
detonation of nuclear warheads in the upper atmosphere, a pandemic leading to a significant
reluctance to attend their workplaces, as well as a globally coordinated cyber-attack. The
COVID-19 pandemic has highlighted the importance of crisis preparation and the establishment
of more resilient systems. To improve preparation for high-stake risk scenarios their impact
especially on critical supply systems must be better understood. To advance understanding of the
implications for the global food system, this work aims to estimate the effect a global curtailment
of industrial production could have on crop yields of the major staple crops: corn, rice, soybean,
and wheat. We use a generalized linear model to estimate the loss in crop yield based on
temperature, moisture, soil characteristics, nitrogen and pesticide application rates, the fraction
of irrigated area and mechanization. The model predicts crop yields in two phases following a
global catastrophe which inhibits the usage of any electric services. Phase 1 reflects conditions in
the year immediately after the catastrophe, assuming the availability of fertilizer, pesticides, and
fuel stocks. However, those stocks would be subject to rationed use in the first year. In phase 2,
all stocks are used up and artificial fertilizer, pesticides and fuel are not available anymore. The
predictions show a reduction in yield of 15 to 37 % in phase 1 and between 35 to 48 % in phase 2
depending on the crop. Soybean is least affected while wheat, rice and corn decline roughly by
the same amount. Overall Europe, North and South America and large parts of India, China and
Indonesia are projected to face major yield reductions of up to 95% while most African countries
are scarcely affected. The findings clearly indicate hotspot regions which align with the level of
industrialization of agriculture and highlight the need for preparation.

Plain Language Summary
Industrial farming plays a critical role in modern society but relies heavily on energy inputs. This
complex and connected system is vulnerable to damage to industrial production and global trade.
Potential events, such as solar storms, nuclear detonations, or cyber-attacks, can damage the
global electrical infrastructure. The COVID-19 pandemic has shown the importance of
preparedness and resilient systems. To understand the impact of high-risk events on critical
supply systems, this study examines the effects on crop yields of corn, rice, soybean, and wheat.
Using a model, the study estimates that a global catastrophic infrastructure loss would lead to
yield reductions of 15% to 37% in Phase 1 (assuming the existence of remaining input stocks)
and 35% to 48% in Phase 2 (when stocks are depleted). Europe, North and South America, as
well as parts of India, China, and Indonesia, would experience major yield reductions, while
most African countries would be less affected. These findings highlight regions at risk due to the
level of industrialization in agriculture and emphasize the need for preparation. Understanding
the consequences of global disruptions is crucial for building resilience in our food systems.



1 Introduction
The development of agriculture was a major turning point in human history. By offering a

stable food source throughout the year, agriculture facilitated the emergence of complex societies
all around the globe (Smil, 2017). Agricultural practices developed simultaneously in multiple
different cultures, but yields were low and crop production labor intensive: despite its merits,
food production in agricultural societies still required the involvement of most of the population
to feed everyone. It was not until the rise of modern technology which allowed the harnessing of
energy from fossil fuels and its introduction into agriculture in the shape of machinery, artificial
fertilizer, and pesticides during the twentieth century that human populations could grow into the
billions. This stark increase was supported by an expansion of cropland by 40% (Cao et al.,
2021) and by substantially decreasing the number of human work hours required to produce one
ton of grain from 30h/t in 1800 to just 90 min/t in 2000 (Smil, 2017).

But the rapid agricultural and societal development has severe consequences, like
devastating environmental effects (Steffen et al., 2015), challenges related to climate change
(Wiebe et al., 2015), and the decreasing rates of yield increase (van Ittersum et al., 2013), that
also interact with each other. One crucial aspect, however, has been underreported in the
literature: The advances of modern technology in agriculture have also resulted in a strong
dependence of food security on global trade and industrial infrastructure (Neff et al., 2011). This
makes the system vulnerable to events in which industrial infrastructure is disrupted. Especially
on a global scale, the impact can be disastrous. The COVID-19 pandemic has demonstrated that
events deemed highly unlikely can still occur at any given time and has exposed the lack of
preparedness in most countries (Liu et al., 2020).

Research in recent years has highlighted the importance of one critical system for human
survival in case of global catastrophic risk (Bostrom & Cirkovic, 2008): the food production
system (Avin et al., 2018; Baum et al., 2015). Avin et al. (2018) argue that it is affected by most
global catastrophic risks and that it constitutes the mechanism by which many global
catastrophic risks endanger humanity’s survival, namely by compromising agricultural
production to the point of mass starvation. Society is highly dependent on modern agriculture as
it enables most of the population to occupy themselves with tasks beyond food production
(Coates, 2009; Diamond, 2011). This remarkable surplus in food and energy production can only
be maintained through high external inputs into the production system in the form of machinery,
fertilizers, and pesticides (Alston & Pardey, 2014). The importance of external inputs differs
notably by country as there is no one uniform agricultural production system and stark
differences between countries and world regions remain. However, the global food production
system can be identified as a fragile system (Manheim, 2020) which is prone to systemic
cascading failures (Goldin & Vogel, 2010; Helbing, 2013). Hence, even countries with lower
industrial dependence are part of the increasingly connected global system and thus, likely to be
subjected to the ripple effects of cascading failures. These properties, high industrial dependence
and global interconnectedness, have only developed within the last 100 years but have quickly
disseminated and profoundly and lastingly changed society.

This work examines the anticipated change in agricultural yield in a catastrophic
infrastructure loss scenario. The underlying premise of all possible causes for catastrophic
infrastructure loss is a global-scale disruption of the electrical grid. Given the widespread
dependence of global industry and society on electricity, a global electrical failure would



essentially bring most industries and machinery to a standstill. The four main potential causes for
global catastrophic infrastructure loss include:

● High Altitude Electromagnetic Pulses (HEMP) result from nuclear detonations high in
the atmosphere. They cause no immediate harm to humans but can almost instantly
damage electronics. Detonating a nuclear warhead emits gamma rays that interact with
the atmosphere, creating an intense electromagnetic pulse (EMP) spreading at light
speed. The disruptive EMP causes electronics to suffer overvoltage, like a more powerful
lightning strike (Wilson, 2008). The affected area depends on the detonation's power and
altitude; Wilson (2008) suggests one detonation could affect the entire contiguous United
States. Multiple warheads during a nuclear conflict could lead to a global catastrophe.
Recovery would likely be difficult, as critical infrastructure like large power transformers
are often highly customized and currently need 12-24 months for production (Cooper &
Sovacool, 2011).

● A similar risk is posed by solar storms. Solar activity during storms can present itself in
the form of solar flares, coronal mass ejections or both. Solar flares are bursts of x- and
gamma rays and extreme ultraviolet radiation which can disrupt communication
technology (Baum, 2023; Cliver et al., 2022). Weiss and Weiss (2019), however, rate it as
a minor risk and rather emphasize the effect of coronal mass ejections on the American
power grid. This type of solar activity releases supercharged plasma particles towards
earth, creating a geomagnetic storm which acts like a natural EMP towards the electrical
grid with potentially devastating consequences (Baum, 2023; Cooper & Sovacool, 2011;
Talib & Mogotlhwane, 2011). Like HEMPs, coronal mass ejections can permanently
damage large power transformers and thus potentially cause power outages lasting for
years (Cooper & Sovacool, 2011).

● Globally coordinated cyber-attacks on many electrical grids or critical industrial
infrastructure pose a threat on a global catastrophic scale. Among the various systems
under attack, power generation is a prime target for these cyber-attacks (Ogie, 2017).
Until now, such attacks have been relatively limited in scope, but there is concern that
more advanced and motivated actors could cause significant damage and disruption to
these essential systems on a larger scale.

● An extreme pandemic could cause people to be too fearful to report to work in critical
industries, resulting in a collapse of the power grid and other infrastructure, as
maintenance ceases (Denkenberger et al., 2021).

Apart from the specific scenarios described above, the fragile world hypothesis introduced by
Manheim (2020) can also induce or aggravate a loss of industry scenario. Manheim (2020) states
that the world has become increasingly more complex, interconnected and most importantly less
resilient. The economy’s incentives to minimize redundancy have led to systems becoming
progressively more fragile and hence more vulnerable to disruptions. Moreover, fragile systems
can significantly worsen the impact of one of the loss of industry scenarios by leading to faster
and more severe systems’ collapses during a catastrophe.

All this highlights that it is important to increase the stability of our food system.
Resilience efforts for the food production system vary depending on the type of catastrophe. For
sun-blocking scenarios like a supervolcanic eruption this includes the exploration and
preparation of resilient foods such as single cell protein from natural gas (García Martínez et al.,
2022), hydrogen (García Martínez et al., 2021), sugar from wood (Throup et al., 2022),



greenhouses (Alvarado et al., 2020) or seaweed (Jehn et al., 2023). Most of these sources,
however, depend on industrial infrastructure in one way or another. Therefore, for global
catastrophic infrastructure loss scenarios, the adaptation of classical agricultural practices is the
main method to ensure provision. Earlier work has suggested that this could revert agricultural
yield to preindustrial levels (Cole et al., 2016).

To better gauge the impact the inhibition of industrial infrastructure can have, this work
seeks to present a first spatial estimate of the expected changes in agricultural yield in the case of
a global catastrophic infrastructure loss. Based on a multiple regression model using spatial
predictors, we project yields for a worst-case scenario to understand the effects of a disturbance
of industrial infrastructure on modern agriculture.

2 Materials and Methods

2.1 Selection of model crops and influencing factors

We modeled yields of wheat, corn, rice and soybean. They were chosen due to their status
as staple crops, which was determined by considering their yearly production quantity and
harvested area as reported by FAOSTAT. Globally, wheat and rice are the major food staples.
Corn and soybean production is primarily used as livestock and aquaculture feed. Therefore,
both crops have an enormous potential in a global catastrophic infrastructure loss scenario
because their production can be diverted to human consumption. Apart from the potential use
shift, soybean is the only legume and the only oil crop considered in the analysis. Legumes could
play a crucial role for buffering nitrogen availability in the soil in absence of industrial fertilizers
and soybean is the globally most widely produced legume.

Crop yield is influenced by a variety of factors (Neumann et al., 2010; Rabbinge, 1993;
van Ittersum et al., 2013). The yield influencing factors used as model inputs for the analysis
were chosen based on two selection criteria:

1. We identified key factors that played a pivotal role for progress in agriculture from
preindustrial to modern times. Consequently, we selected mechanization, fertilizer,
irrigation, and pesticides, in conjunction with enhanced crop varieties.(Alston & Pardey,
2014; Evenson & Gollin, 2003; Smil, 2017).

2. All factors with inadequate data availability that fell short of the spatial data resolution of
five arcminutes at a global scale were excluded. Therefore, the improved varieties had to
be excluded in the second step due to insufficient data availability. This exclusion of
relevant variables likely leads to an underestimation of yield loss, but cannot be avoided
as no global, high quality data is available.

The availability of the factors listed above is directly dependent on the management decisions of
the farmer. However, there are also influential elements like climatic conditions which cannot be
managed. To control for their impact on crop yield, three climatic variables representing thermal,
moisture and soil conditions are considered in the analysis.

2.2 Spatial data

Global spatial datasets were sourced for each factor as well as for yields under current
conditions. Datasets were selected at five arcminutes resolution when available or downsampled



to this resolution (Table 1; additional information can be found in Description_input_data.pdf in
the repository of this paper (Moersdorf et al., 2023)).

Table 1: Datasets used for calibrating the generalized linear model and simulating loss of
industry scenario conditions.

Dataset Definition Spatial
resolution Year Source Available online

SPAM yield (kg/ha), harvested
area (ha/cell) 5 arcmin 2010 (Yu et al., 2020)

https://doi.org/
10.7910/DVN/ PRFF8V

GAEZ v4 AEZ
Factors

thermal regime class,
moisture regime class,
soil/terrain related class

5 arcmin,
5 arcmin,
30 arcsec 2010 (Fischer, 2021)

https://gaez.fao.org
/pages/data-viewer

PEST-CHEMGRIDS

application rate (kg/ha) of
20 active ingredients for
10 dominant crops and 4
aggregated crop classes

5 arcmin 2015
(Maggi et al.,
2019)

https://doi.org/
10.7927/weq9-pv30

Global Map of
Irrigation Areas -
Version 5

area equipped for
irrigation (% of total area) 5 arcmin 2005

(Siebert et al.,
2013)

https://data.apps.fao.org/
map/catalog/srv/api/
records/f79213a0-88fd-
11da-a88f-000d939bc5d
8

AQUASTAT - FAO's
Global Information
System on Water and
Agriculture

Area (1000 hectares)
equipped for:

Irrigation (Equipped
Lowland Areas, Spate
Irrigation, Total)

Full control irrigation (
Surface, Sprinkler,
Localized, Total, Actually
Irrigated)

Power irrigation

Country
level

Around
mid
2010s

(FAO, 2019)
http://fao.org/aquastat/st
atistics/query/index.html
?lang=en

Gridded nitrogen and
phosphorus fertilizer
use

N and P application rate
(g/m²) 0.5◦degree 1900-2

013

(Lu & Tian,
2016)

https://doi.pangaea.
de/10.1594/
PANGAEA.863323

Global gridded
dataset of manure
nitrogen production
and application

N manure application
(kg/km²) 5 arcmin 1860-2

014

(Zhang et al.,
2017)

https://doi.pangaea.
de/10.1594/
PANGAEA.871980

A global gridded
data set on tillage (V.
1.1)

6 tillage systems
(dominant system/cell) 5 arcmin around

2005

(Porwollik et al.,
2019)

https://doi.org/
10.5880/PIK.2019.009

The N manure and N fertilizer application rate datasets from Table 1 were summed up
into a combined variable N total, as the analysis is only concerned with the effect reduced N
input has on yield and not with the effect of N input from different sources. Moreover, it was
taken as a measure to reduce the number of variables and possible multicollinearity between
them. Nitrogen management could not be considered due to a lack of suitable, global data. The

https://doi.org/10.7910/DVN/PRFF8V
https://doi.org/10.7910/DVN/PRFF8V
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https://data.apps.fao.org/map/catalog/srv/api/records/f79213a0-88fd-11da-a88f-000d939bc5d8
https://data.apps.fao.org/map/catalog/srv/api/records/f79213a0-88fd-11da-a88f-000d939bc5d8
https://doi.pangaea.de/10.1594/PANGAEA.863323
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https://doi.pangaea.de/10.1594/PANGAEA.863323
https://doi.pangaea.de/10.1594/PANGAEA.871980
https://doi.pangaea.de/10.1594/PANGAEA.871980
https://doi.pangaea.de/10.1594/PANGAEA.871980
https://doi.org/10.5880/PIK.2019.009
https://doi.org/10.5880/PIK.2019.009


data pre-processing described in the next section was done before this merge, to be able to detect
outliers.

Mechanization is the only selected factor which requires the use of a proxy as no spatially
explicit data on the degree of mechanization in agriculture is available. We used the “global
gridded data set on tillage (V. 1.1.)” (Porwollik et al., 2019) as a surrogate to determine if an area
is farmed with motorized agricultural machinery or based on human and animal draft power. A
large factor for the classification of tillage systems is the involvement of heavy machinery as it
facilitates plowing soils in greater depth. Hence, it is possible to use the tillage systems as a
proxy to determine which systems rely on machinery for tilling and which do not. We assume
other farm activities such as sowing and harvesting are also carried out with machinery if tilling
is mechanized. Therefore, the tillage systems are reclassified into either 0 = non-mechanized or 1
= mechanized. Conservation agriculture is classified as mechanized even though tillage is
reduced to almost zero because currently conservation agriculture is most widely adopted in
North and South America and Australia (Kassam et al., 2019) where agriculture tends to be
mostly mechanized.

2.3 Preprocessing and statistical yield modeling

Before fitting the model, we pre-processed the data to allow for a robust statistical
analysis. The following operations were carried out for each crop individually:

- The values for crop yield in kg per hectare in each cell represent a varying portion of the
specific crop’s harvested area ranging from 0.1 to 19,344.3 ha. This large range in crop
area per cell size can influence the results of the analysis, as it gives each cell the same
weight, independent of the actual agricultural area in the cell. Therefore, all rows
containing values for harvested area below 100 ha were removed. This operation led to
the deletion of 44-72% of all data points (depending on the crop, as do all following
ranges shown). However, these cells contributed only between 1.6-3.2% of the total
global crop production summed up over total crop specific harvested area and thus do not
play an important part for global food security.

- Subsequently, missing values in the remaining datasets were addressed. Particularly the
pesticides and mechanization data contained missing values. Gap filling of missing data,
e.g. through interpolation, was not possible, as there is no established dependence of
pesticides and mechanization on the other variables, so these data points were removed.
In the N fertilizer column, missing values amounted to 1-2.3% of total data points. The
temperature, the moisture regime and the soil/terrain related columns also had missing
data points in the range of 1.6-2.2%. Cells with missing data for both data sets were
treated with the forward filling method (carrying forward the last observed value).

N fertilizer, the manure, the pesticides and the yield contained implausible values. To
prevent extreme outliers from skewing the relationship, all data with values above the 99.9th
percentile for N fertilizer, manure (99th percentile), N total, pesticides and yield were removed.
Given the distribution of the remaining values and the values commonly reported in the
literature, these data points are more likely to be errors in the input datasets than real information
characterizing the relationship between yield and input factors. Even though there is reason to
assume that more values on both ends of the scale, albeit feasible, can be attributed to calculation
errors or relics of the downsampling approach, this could not be validated and therefore, it was
refrained from excluding more values. Additional information on the data cleaning process and



the effect of each operation on the metrics of the datasets can be found in
reports/Report_descriptions.pdf and reports/Descriptive_statistics.xlsx in the repository of this
paper (Moersdorf et al., 2023)).

In the next step, we check for any multicollinearity present in the data. It can be detected
by calculating the variance inflation factor (Rawlings et al., 1998) for each predictor. The
literature contains different threshold values for when the VIF indicates serious multicollinearity.
The most prominent thresholds are specified as everything above 5 (Huang et al., 2010) or as
values above 10 (Fox & Weisberg, 2011) constitute the need for action. However, the VIF does
not work well for categorical variables if they have multiple levels. So instead, we compute the
generalized variance inflation factor (GVIF) (Fox & Monette, 1992). To make it comparable
across predictors with a differing number of levels, Fox and Monette (1992) suggest using

with Df being equal to the number of levels in each variable. Squaring this value yields𝐺𝑉𝐼𝐹
1

2×𝐷𝑓

the regular variance inflation factor for predictors with one level, so that the variance inflation

factor thresholds can be applied. The squared does not indicate any multicollinearity𝐺𝑉𝐼𝐹
1

2×𝐷𝑓

among the variables for any crop (see the Model_VIF sheet in reports/Model_results.xlsx in the
repository of this paper (Moersdorf et al., 2023)).

As it is harder to maintain agricultural production in very cold, hot, dry or wet climates,
an uneven distribution of observations among the levels in the thermal and moisture regime
classes was detected. For the thermal regime the differences were particularly stark as the coldest
three climate classes count with a very low number of observations. A highly uneven distribution
of observations can lead the model to misjudge the significance of a predictor. To resolve the
issue, the Temperate cool, Boreal and Arctic regimes were aggregated. The uneven distribution
of observations in the moisture regime was addressed by fusing the two lowest (M1 and M2) and
the two highest levels (M6 and M7) into one new level each: M2 = Length of Growing Period <
120 days and M6 = Length of Growing Period 270+ days. These merges do not reflect the best
combinations for each crop. The wheat model, for example, could have benefitted from
combining levels T1 and T2. However, we refrained from performing different merges for each
crop to ensure comparability between the crops.

Adding the variables to the model consecutively does not show any abnormalities in the
standard errors or the p values. Therefore, we estimated sufficient data quality for the following
analysis.

A split-sample approach was applied to calibrate and validate the model. Prior to fitting
the model, 20% of the pre-processed data were randomly selected. This sample was used for
validation while the model was calibrated on the remaining 80% of the data points.

As the dependent variable cannot assume negative values, the distribution of the data
points was strongly right skewed for all crops and the residuals were non-normally distributed,
so the assumptions for a classic multiple regression on a normal distribution were violated.
Therefore, a generalized linear model based on a gamma distribution was fitted to the data. The
link function was assumed to be the natural logarithm, as the data showed a normal distribution
at logarithmic scale. The model is specified as followed

𝑌 ~ 𝐺𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒,  𝑠𝑐𝑎𝑙𝑒)



where Y is the response variable that follows a gamma distribution, shape is the shape parameter
of the gamma distribution (α > 0) and scale is the scale parameter of the gamma distribution (β >
0). The expected value (mean) of the response variable (Y) can be written as anµ
expression of shape and scale

= *µ 𝑠ℎ𝑎𝑝𝑒 𝑠𝑐𝑎𝑙𝑒

The log link connects to the linear predictorµ η

(Eq1)𝑔 µ( ) = 𝑙𝑛 µ( ) = η = β₀ +  β₁ *  𝑥₁ +  β₂ *  𝑥₂ +  ...  +  β  *  𝑥

where β₀, β₁, β₂, ..., β are the model coefficients (parameters to be estimated), x₁, x₂, ..., x are
the predictor variables and p is the number of predictor variables.

The model was fitted with a simple linear relationship and no interactions. The
categorical variables were coded as dummies. To assess model fit, we used McFadden’s ρ²,
which is an alternative for R² for non-normally distributed data. The significance level was set at
α = 5%.

2.4 Yield prediction scenarios

Crop yields are projected under a worst-case scenario where the industry suffers
significant losses, employing a generalized linear model. This assumes a global catastrophe that
disrupts power supply, leading to the inhibition of industrial activities, communication,
transportation, and other electricity-dependent services. However, it is presumed that
transportation remains feasible to a certain extent, allowing farmers to receive necessary inputs
and food distribution to continue (Abdelkhaliq et al., 2016; D. C. Denkenberger et al., 2017).
While the triggering event is expected to occur suddenly, the impact on agricultural production is
likely mitigated by existing stocks of inputs in storage. Consequently, the aftermath of the
catastrophe is divided into two phases: phase 1 encompasses the initial year, during which stocks
are still available, while phase 2 commences in the second year when stocks are depleted, and the
consequences of losing electrical infrastructure manifest in their entirety. The datasets used to
calibrate the model's independent variables are adjusted for predictions based on the assumptions
of either phase 1 or phase 2.

Phase 1
Phase 1 is meant to simulate the immediate stage after the catastrophe that caused the

global catastrophic infrastructure loss. Phase 1 assumes the following:

- No irrigation reliant on electrical pumps.
- Full mechanization persists due to the availability of fuel.
- Reduced input of fertilizers and pesticides due to the cessation of production, although

remaining stocks are utilized.
- Diminished availability of manure as animals are primarily slaughtered to prioritize food

resources, retaining only those suitable for agricultural labor.

There should be enough fuel available to power agricultural machines for another year.
The International Energy Agency (IEA, 2018) set the annual demand of the agricultural industry
in oil products at 111,062 kt of oil equivalent (ktoe) in 2018. Available above-ground fuel after a



global catastrophic infrastructure loss was estimated at 319,000 ktoe, encompassing 172,000 ktoe
of gasoline and 147,000 ktoe of diesel (Cole et al., 2016). Considering that most agricultural
machinery runs on diesel, the estimated stocks last for about a year while leaving the gasoline for
critical transportation. Thus, the mechanization input dataset remains unchanged for phase 1.

Nitrogen (N) fertilizer application rates for phase 1 are calculated based on the annual
global nitrogen surplus (FAO, 2017). This is done under the assumption that not all fertilizer that
is produced is used in the same year. They project a surplus of 14,477 kt N in 2020. In a first step
we calculate the amount of the nutrient applied in each cell as a fraction of the total amount of
the nutrient summed over the crop-specific harvested area with:

(Eq2)𝑁
𝑓𝑟𝑎𝑐

=
𝑁

𝑓𝑒𝑟𝑡
×𝐴

𝑐𝑟𝑜𝑝

∑𝑁
𝑓𝑒𝑟𝑡

×𝐴
𝑐𝑟𝑜𝑝

where Nfert is the application rate of the nutrient in kg ha-1 cell-1 and Acrop is the
crop-specific harvested area in ha cell-1. Each 5 arcminute cell has a specific application rate for
N and a specific harvested area for each crop. The application rate is multiplied by the amount of
crop area in each cell to determine the total amount of N applied to that cell. Then, this total is
divided by the overall amount of N applied worldwide (the sum of N applied in all cells).

This division gives us a fraction, which represents the proportion of N applied to the
entire world that each cell receives. In the first phase, when only a reduced amount of N is
available, this reduction applies equally to each cell. So, if each cell used to apply 100 units of N
under normal conditions, during Phase 1, they would only be able to apply 10 units of N because
of the 90% reduction.

Then, we calculate the new total amount of the nutrient available for the specific crop
Ntotal, crop in phase 1 based on the surplus reported by the FAO (2017).

(Eq3)𝑁
𝑡𝑜𝑡𝑎𝑙, 𝑐𝑟𝑜𝑝

=
∑𝑁

𝑓𝑒𝑟𝑡
×𝐴

𝑐𝑟𝑜𝑝

𝑇
𝑁𝐺

× 𝑇
𝑁𝐺1

where TNG is the total amount of the nutrient (NG = nutrient global) projected to be used
for crop fertilization in 2020 and TNG1 is the projected nutrient surplus in 2020. The total amount
of N used for crop fertilization is projected to be 118,763 kt (FAO, 2017). Lastly the new total is
allocated back to the cells based on Nfrac:

(Eq4)𝑁
𝑓𝑒𝑟𝑡1

=
𝑁

𝑡𝑜𝑡𝑎𝑙, 𝑐𝑟𝑜𝑝
×𝑁

𝑓𝑟𝑎𝑐

𝐴
𝑐𝑟𝑜𝑝



The pesticide application rates for phase 1 are calculated with the same approach as the
fertilizer application rates. However, no data were available on the production surplus of
pesticides generated in one year. Therefore, it was assumed that the surplus’ share of global
pesticide production was in the same range as the share of the nutrients’ surplus in the global
nutrient production (around 10 %). Equations Eq2 and Eq4 were formulated accordingly for
pesticides but remained structurally the same. The new total of pesticides PEtotal, crop available for
a specific crop in phase 1 is calculated as follows:

(Eq5)𝑃𝐸
𝑡𝑜𝑡𝑎𝑙, 𝑐𝑟𝑜𝑝

=
∑𝑃𝐸 ×𝐴

𝑐𝑟𝑜𝑝

𝑇
𝑃𝐸𝐺

× 𝑇
𝑃𝐸𝐺

×
𝑇

𝑛𝐺1

𝑇
𝑛𝐺

2

where PE is the pesticide application rate in kg ha-1 cell-1, TPEG is the total amount of
pesticides used (PEG = pesticides global) for agricultural purposes in 2019 (FAOSTAT, 2023b)
and TnG1 and TnG referring to the totals defined above for nitrogen.

Phase 2
In phase 2 all stocks are assumed to be depleted, hence, mechanisation2, nfert2 and PE2 are

set to zero.

Manure application rates are expected to be the same for phase 1 and 2 as they are
dependent on the available livestock. It is assumed that the human population would switch to a
mostly vegan diet to use the calories which can be produced in the most efficient way possible.
Therefore, only draft animals like horses, buffaloes and cattle will be kept and fed on agricultural
residues and roughage. For this analysis only cattle will be considered (Zhang et al., 2017).
Zhang et al. (2017) did not include horses and buffaloes as they currently only constitute a very
small percentage of the global livestock population and are even less important for manure
production and application in modern agricultural systems. To calculate new manure application
rates, the labor demand in each grid cell is assessed in terms of needed cattle per grid cell by
dividing the harvested area in each cell by the area which can be worked by one head of cattle
(ha per head of cattle), which is assumed to be 7.4 ha per draft animal as a typical working
capacity (Prak, 2014). Considering that modern cattle are not bred to work, this value can be
expected to be considerably lower. To be conservative in terms of manure availability, we used 5
hectares per head of cattle. Next, we calculated the excretion rate of one head of cattle. Zhang et
al. (2017) provided the total amount of manure produced in 2014 which amounts to 131,000 kt N
and the share of the manure produced by cattle, namely 43.7%. There were 1.44 billion head of
cattle in 2014 (FAOSTAT, 2023a). Multiplying the total amount of manure with the fraction
attributed to cattle and dividing the result by the heads of cattle in that year rendered an excretion
rate of ~ 40 kg N head-1 yr-1. In the last step the new crop specific N manure application rate MnC
was computed by

(Eq6)𝑀
𝑛, 𝑐𝑟𝑜𝑝

=
39.77×𝐶

𝑐𝑟𝑜𝑝

𝐴
𝑐𝑟𝑜𝑝



where Ccrop is the crop specific number of cattle in each grid cell. This means that the
available manure comes from the draft cattle needed to labor the area in that cell.

For phase 1 Mn, crop was combined with nfert1 into ntot1. In phase 2 the N from manure is the
only source of N left, so it is taken as the sole input.

As with manure, irrigation as a fraction of the cropland in a cell which is actually
irrigated cannot profit from first year stocks and therefore the same values are used for phase 1
and phase 2. A sharp reduction in actually irrigated area is expected as large parts of the
irrigation infrastructure are dependent on electricity and fossil fuels. Today, around 20 % of
cultivated land is irrigated and it contributes 40 % of global food production. To obtain the
fraction of irrigated area which is reliant on electricity, we combined the information on the
source of the irrigation water (surface or groundwater or other) with country-level statistics. The
fraction of actually irrigated cropland in a global catastrophic infrastructure loss (GCIL) scenario
Igcil was calculated as follows:

(Eq7)𝐼
𝑔𝑐𝑖𝑙

=  𝐼
𝐴𝐶

×(1 − 𝐼
𝑅𝐶

)

where IAC is the total currently (AC = all currently) irrigated fraction of cropland in each
cell and IRC is the fraction of currently irrigated area which is reliant (RC = reliant currently) on
electricity or diesel in each cell.

The datasets comprising the input variables for phases 1 and 2 are fed into the model
specified above to predict the crop-specific yields under global catastrophic infrastructure loss
conditions. The predicted values are used to calculate the crop-specific relative change in yield
RCC for each cell:

(Eq8)𝑅𝐶
𝑐𝑟𝑜𝑝

=
(𝑌

𝑃𝐶
−𝑌

𝑐𝑟𝑜𝑝
)

𝑌
𝑐𝑟𝑜𝑝

where YPC is the predicted crop-specific (PC) yield in the respective phase 1 or 2 and
YCrop is the crop-specific yield around 2010 taken from the SPAM2010 dataset. Values above
zero, resulting from the generalized linear model, were set to zero as yield increase in a global
catastrophic infrastructure loss scenario is not realistic. Rather, the positive values are taken as an
indication for stable yields unaffected by catastrophic circumstances. For the predicted yield and
relative change, descriptive statistics measures were computed for each phase and crop, namely
the range of values, the total crop production, the weighted mean and the corresponding
confidence interval. The weighted mean was also calculated for each continent. The yield was
weighted according to the corresponding harvested area while the relative change was weighted
according to the crop production in 2010. The results of and additional information on these
calculations can be found in reports/Report_descriptions.pdf and
reports/Prediction_statistics.xlsx in the repository of this paper (Moersdorf et al., 2023)).



3 Results

3.1 Model calibration and validation

A generalized linear model based on a gamma distribution with a log link was fitted for
all crops using the same set of variables. The final model for each crop incorporated the
explanatory variables listed in Table 2. Most coefficients had, as anticipated, a positive impact on
the expected yield, but the model struggled to accurately capture low yield values. Nearly all
coefficients were statistically significant at a 5% significance level, except for three instances: In
the wheat model, the thermal regime level 2 was not significantly different from level 1 and the
moisture regime level 3 was not significantly different from level 2; in the soybean model the
nitrogen input did not have a significant impact. For soybean, nitrogen application was not a
significant yield influencing factor as it is a leguminous plant which is able to fix nitrogen.
Wheat is not a crop that is routinely grown under tropical conditions. Therefore, it is reasonable
that the different tropical climates (T1 + T2, M2 + M3) result in similar yields and do not show
significant differences from each other. Further, the thermal and the moisture regime levels were
combined due to low numbers of data points in extreme climates. However, the same number of
levels was used for all crops to ensure model comparability between crops. Consequently, it does
not reflect the ideal number of levels for each individual crop: for wheat, for example, the
number of observations in T1 and T2 was very low, so they could have been combined into one
class. Nonetheless, the separation was maintained to ensure consistency with the models for
corn, rice, and soybean.

Table 2: List of independent variables used in the generalized linear model.
Variable Description Categorical/

Continuous Unit/Categories

n_total
Total nitrogen input
(includes fertilzer and
manure input)

Continuous kg/ha

pesticides
Cumulated pesticide input
(contains 20 different
substances, see Table 1)

Continuous kg/ha

irrigation_tot Fraction of irrigated
cropland per cell Continuous Unitless, values between 0 and 1

mechanized
Use of agricultural
machinery for farming
activities

Categorical 0=not mechanized; 1=mechanized

thz_class Thermal regime class Categorical,
dummy-coded

T1=Tropics, lowland; T2=Tropics, highland;
T3=Subtropics, warm; T4=Subtropics, moderately cool;
T5=Subtropics, cool; T6=Temperate, moderate;
T7=Temperate, cool, Boreal + Arctic

mst_class Moisture regime class Categorical,
dummy-coded

M2=Length of Growing Period(LGP) < 120 days; M3=
LGP 120-180 days, M4=LGP 180-225 days; M5=LGP
225-270 days; M6=LGP > 270 days

soil_class Soil/terrain-related class Categorical,
dummy-coded

S1=Dominantly very steep terrain; S2=Dominantly
hydromorphic soils; S3=No or few soil/terrain limitations;
S4= Moderate soil/terrain limitations; S5=Severe
soil/terrain limitations; L3=Irrigated soils



We measured the total yield change per factor by comparing the minimum and maximum input
values while keeping other factors constant (see sheet YieldReductionPerFactor in
reports/Model_results.xlsx) (Figure 1). This difference was expressed as a percentage of the
maximum input's yield, indicating the extent of yield change when the respective factor was
absent. The most influential factor varied with the crop type. For corn, irrigation caused a
significant 40% yield decrease. Total nitrogen application rate had the largest impact on rice and
wheat yields, resulting in a 45% reduction. In contrast, soybean yield was most affected by the
use of machinery, with a 36% decrease. Pesticide application had the lowest effect, notably
impacting only wheat yields with a 39% reduction. Interestingly, rice yields showed an
unexpected relationship with pesticide application. The model estimated a yield increase of over
10% when no pesticides were used (this is discussed in chapter 4.2). Overall, irrigation had the
most substantial negative impact on yields for three crops, followed closely by the use of
agricultural machinery. Nitrogen application had a varying impact, causing the highest reduction
for wheat and rice, while its effect on rice was relatively low (18% decrease) and negligible for
soybean.

Figure 1: Projected yield change based on the difference between the maximal and minimal
value for all factors by crop.

To calibrate the models, 80% of the data points were used, while the remaining 20% were
reserved for validating the model fit using McFadden's ρ². The validated ρ²-values exhibited
strong variation across different crops, with the highest agreement between data and model found
for corn, yielding a ρ² of 0.47. The generalized linear model for rice achieved a ρ² of 0.40, while
the wheat model obtained 0.36, and the lowest value was observed for soybean at 0.32.



Nonetheless, all validation values indicated a good fit of the models to the data, as ρ² values
ranging from 0.2 to 0.4 represent an excellent fit according to McFadden (1977).

The detailed model results for each crop including a 95% confidence interval for the
coefficients and the corresponding goodness of fit metrics can be accessed in
reports/Model_results.xlsx in the repository of this paper (Moersdorf et al., 2023)).

3.2 Mean predicted yield and average yield reduction in a global catastrophic
infrastructure loss scenario

The predicted yields show significant variation between phase 1 and 2, as well as across
different crops and continents (Figure 2, 3). In phase 1, the average reduction by crop is between
15 and 37%, while in phase 2, it increases to values between 35 to 48% (Figure 2). Among all
the crops, soybeans experience the smallest reduction overall, especially in phase 1. The
reductions differ greatly between phase 1 and 2 for all crops except rice. Rice yield reduction
increases from 32% in phase 1 to 35% in phase 2. In contrast, soybeans perform relatively well
in phase 1 but experience a large decrease in phase 2 (from 15% to 42% yield reduction). Both
wheat and corn already exhibit substantial yield reductions in phase 1 (37% and 30%
respectively), which further worsen in phase 2 (48% for both).

Figure 2: Projected yield reduction for phase 1 and 2 by crop. Values are weighted by the
production of the cells (area times yield), as those areas are more important for food security.

The magnitude of yield decrease also varies significantly by continent (Figure 3). Africa
has the lowest average yield reduction, around 26% over both phases, with little difference
between the phases. Asia also shows a small disparity between phase 1 and 2, but the average
yield reduction over both phases is at 32% notably higher compared to Africa. The difference
between phase 1 and 2 is more pronounced in the remaining continents where yield decreases by
at least two thirds from phase 1 to phase 2. Europe and South America face a similar reduction of
approximately 25% in phase 1 and 44% in phase 2. With a projected decrease in yield of around
30% in phase 1 and almost 48% in phase 2, North America and Oceania are most severely
affected.



The detailed prediction results for each crop, phase and continent and, for comparison,
also the metrics for the yield under current conditions are provided in
reports/Prediction_statistics.xlsx in the repository of this paper (Moersdorf et al., 2023). For
further information on all plots presented in this work and their accompanying metrics,
reports/Reports_descriptions can be consulted.



Figure 3: Projected yield reduction for phase 1 and 2 and all crops by continent. Values are
weighted by the production of the cells (area times yield), as those areas are more important for
food security.



3.3 Spatial patterns of yield loss

The predicted yield loss reveals distinct hotspots in corn (Figure 4), rice (Figure 5),
soybean (Figure 6) and wheat (Figure 7). The impact is more severe in Phase 2, as it represents
the full consequences of losing industrial inputs. Based on the generalized linear model, corn
yields are projected to suffer significant reductions in North and South America, Europe, South
Africa, Zambia, the Nile region, and Southern India. In China, Indonesia, and other parts of
India, the reaction to the impact is highly heterogeneous, with regions alternating between strong
and minimal effects, which reflects the heterogeneous distribution of small holder and large scale
agriculture there today. Similar heterogeneity is observed in India and China for soybean yields,
in Indonesia for rice yields, and in Central China, the Southwestern Caspian region, and Ethiopia
for wheat yields.

Rice yield loss hotspots are projected to be in China, India, Southern Brazil, the
Mississippi region, and European rice-growing regions. Soybean yields are expected to be most
diminished in North and South America and Central Europe. For wheat, the largest decrease in
yield is predicted in Europe, North America, South Africa, Argentina, Northern India,
Northeastern China, Southern Australia, and the Nile region. Globally, the areas with the most
significant negative impacts on yields are anticipated to be North and South America, Europe,
China, India, and Indonesia. These reductions directly align with the level of industrialization in
agriculture today.

When considering the combined implications of these maps, it becomes apparent that significant
agricultural regions, such as Central Europe, are projected to endure a substantial decline of up to
75% in their production potential for rice, wheat, soybean, and corn. Less intensely farmed areas
exhibit lesser impact, but are also usually less productive under current conditions.



Figure 4: Spatial distribution of yield loss for corn in phase 1 and 2 at a resolution of 5 arcmin.



Figure 5: Spatial distribution of yield loss for rice in phase 1 and 2 at a resolution of 5 arcmin.



Figure 6: Spatial distribution of yield loss for soybean in phase 1 and 2 at a resolution of 5
arcmin.



Figure 7: Spatial distribution of yield loss for wheat in phase 1 and 2 at a resolution of 5 arcmin.



4 Discussion
Following the first evaluations of the possible effects of a global catastrophic

infrastructure loss scenario on agriculture by Cole et al. (2016) this work proposes a formal
modeling approach to investigate the issue, adds a spatial component to the analysis and
examines global catastrophic infrastructure loss consequences on agriculture in two different
phases. Cole et al. (2016) assume pre industrial agricultural yield in a global catastrophic
infrastructure loss scenario which corresponds to a 60% drop from current yield levels. The
results at hand suggest that overall yields would only drop by around 35 to 48 % depending on
the crop in phase 2, with corn and wheat (-48 % in phase 2) experiencing the largest reduction.
However, areas with highly industrialized agriculture are affected much more severely and local
yield reductions can reach 75% and more. Still, while Cole et al. (2016) describe their yield
estimate as conservative, the results presented above can be considered optimistic. Due to data
availability we were not able to include all relevant factors and most of the omitted factors would
likely decrease yield even more. Therefore, the predictions should be understood as a first
crop-specific and spatially explicit estimate on how strongly yields could be affected by a
catastrophic scenario which inhibits global industry. The general trends visible in the prediction
results are reliable and can be used as a guideline going forward.

4.1 Limitations

The Input datasets for fitting the generalized linear model were carefully selected, and
each represent a highly significant influence factor as was confirmed by the model results. The
high resolution of five arcminutes was chosen to sufficiently capture the heterogeneity of
agricultural production. However, there are several shortcomings in the available data. First and
foremost, the datasets do not actually showcase the real distribution of the specific variables but
rather a statistical approximation of the real distribution by downsampling. This introduces
uncertainties, which are consequently replicated in our model. The datasets used in this analysis
were not harmonized against each other and standardization was only exercised by some on the
country level against FAOSTAT data. In consequence, the layers do not necessarily fully align:
they differ in the extent covered and in the spatial distribution.

Discrepancies in the extent result in missing data points in the combined dataset used in
the analysis. The mechanized and pesticides datasets covered substantially fewer cells than the
remaining ones. This resulted in many cells having to be dropped before calibrating the model
(Additional information on the data cleaning process and the effect of each operation on the
metrics of the datasets can be found in reports/Report_descriptions.pdf and
reports/Descriptive_statistics.xlsx in the repository of this paper (Moersdorf et al., 2023)). This
was especially a problem in Africa. Solely the corn generalized linear model was calibrated on
sufficient points for that region to yield viable results for most of the African continent. This
coincides with the uncertainty reported by Yu et al. (2020) as they estimate that the uncertainty
of the SPAM2010 dataset is highest in Africa. Apart from the cumulation in African countries,
the dropped cells concentrate outside of the main growing regions and therefore also count with
small harvested areas for the respective crop. Hence, even though many cells were dropped
before calibrating the model, the remaining data still represent the main growing regions and the
majority of yearly crop production for each crop. For rice and soybean the excluded cells
concentrate in Europe and Central America and for rice also in South America. Corn and wheat



overall count with less and smaller clusters of excluded cells as both have major growing zones
in most regions of the world.

Another consequence of misalignment between input datasets has more severe effects on
the model accuracy: If the spatial distribution of values does not match across datasets, the
relationship between the variables we are trying to study (dependent and independent) may be
misrepresented. Consequently, the fundamental subject of our analysis could be distorted.
However, we mitigated this issue by working with large datasets to ensure a sufficient overlap to
properly map the relationship.

Due to the spatial nature of the analyzed data the yield value in each cell does not simply
represent one unit but is rather tied to the area in each cell where the crop is harvested. As a
result, yield values in cells with large harvested areas have a higher importance for the overall
crop yield production than values with smaller harvested areas. A standard generalized linear
model, however, attributes the same weight to each data point, assuming that each data point
stands for one observation. This leads to yields in small areas having a disproportionately large
influence on the model relative to the area they cover while yields on large areas carry
proportionately less weight. To address this imbalance by narrowing the range of the harvested
area values, cells containing less than 100 ha of harvested area were excluded from the modeling
dataset.

Working with spatial data can also lead to effects of autocorrelation among data points. In
high resolution datasets which are derived from statistical interpolation, the effect is enhanced as
more cells in close vicinity to each other tend to contain the same value. Considering that
classical generalized linear models are not equipped to handle this relationship, autocorrelation
can skew model results, especially in combination with misaligned data sets.

While autocorrelation is a phenomenon within one factor, multicollinearity occurs
between two or more independent variables. Initially, we intended to include the phosphorus
fertilizer application rate as a model factor. High quality data were available from the same
source as the nitrogen fertilizer application rate. This, however, led to multicollinearity between
the datasets which had a noticeable impact on the model results. Oftentimes, nitrogen and
phosphorus (and potassium) are applied as compound fertilizer. Therefore, we decided to
consider the nitrogen application rate as a proxy for nutrient input in general and to move
forward without the phosphorus application rate.

As pointed out in 3.1, the fitted models struggle with accurately capturing low yields and
overall estimate a more moderate range of values than the training data (see
reports/Prediciton_statistics.xlsx). Especially for low yields this leads to interpretation problems
for the yield reduction: The predicted minimum value is at least eight times higher than in the
SPAM2010 dataset, so all data points with lower values in the original dataset are projected to
experience a yield increase in a global catastrophic infrastructure loss scenario.That is highly
unrealistic as the catastrophe will have lasting effects on society as whole, creating conditions
which render the improvement of marginal yields very unlikely. Among the model estimates for
different conditions, we also observe that unlike the maximum values, the minimum values
barely differ within one crop. This suggests that lower yields are only marginally if at all
negatively affected by global catastrophic infrastructure loss. We take this as an indication for
stable yields under catastrophic conditions and therefore, interpret yield increases as yield
retention, i.e. no change in yield. There are multiple possible reasons for the smaller value range



in model estimates. Generally, a log link tends to smooth out extremes to be able to generate
better estimates for new data, especially if the training data feature a lot of noise from outliers. It
is likely that the SPAM2010 data contain more outliers on both ends of the spectrum than we
have addressed during the data cleaning process. Additionally, the relationship between
dependent and independent variables could be skewed due to data misalignment (see above). The
effect is likely stronger in the extremes where less data points are available to map the
relationship. Finally, as explained in 2.1 and discussed in 4.2, we had to leave out possibly highly
relevant variables due to lack of data which can also lead to an inaccurate model fit.

The models for rice and soybean each estimated a negative relationship between one
agricultural input and the crop yield. This is unexpected as substances are generally applied to
benefit crop production. For soybean, nitrogen application had a slightly negative effect on crop
yield. While not necessarily expected, this is no reason for concern as this factor is not
statistically significant and soybean is able to fix nitrogen from the air. The notably stronger,
statistically significant negative effect size of pesticide application for rice on the other hand is
surprising. This coefficient does not accurately portray the relationship between pesticide
application and rice yields and there are several possible reasons for the misrepresentation. First,
it could also result from the misaligned data: The rice and soybean datasets have fewer data
points than corn and wheat so it might not suffice to accurately map the relationship despite the
misaligned values. Further, the data quality is typically better in Europe and North America and
the rice and soybean datasets do not have major growing areas in those regions. Lastly, the
relationship between pesticide and nitrogen application rates and yield were calibrated on smaller
units than irrigation and mechanized. As a result, the relationship is less pronounced.

Still, the results here can be seen as a good first estimate of the effects of a global
catastrophic infrastructure loss scenario and should be refined further in the future. The spatial
distribution of yield loss maps very well with the expectation that highly industrialized
agriculture would suffer the most.

4.2 Implications of a global catastrophic infrastructure loss scenario

The results demonstrate a substantial difference between phase 1 and phase 2 yield
losses. It shows that phase 1 can be critical in the preparation for phase 2 because the yield losses
are more manageable in the first phase. This can provide the time necessary to adapt to the new
circumstances by building up non-electrical logistic infrastructure, building tools and wagons,
establishing a communication system, implementing new farming techniques and crop rotations
to manage pests and nutrients, and overall adjusting as a society. The crucial component is the
continued use of the agricultural machinery as it ensures that tasks can be completed on large
farms even as the preparations for the transition to a human and animal operated system are still
underway.

Due to limited data availability some of the factors that were identified as important for
estimating yields in a global catastrophic infrastructure loss scenario were not included in the
generalized linear model: seed availability, (dominant) variety and knowledge of farmers.
Beyond these potential model input factors, there are other characteristics of a global
catastrophic infrastructure loss scenario which codetermine the availability of the input variables
in case of a catastrophe: availability of feed for draft animals and tools and materials for draft
work, draft animals’ constitution, population relocation, climate change, alternative pest control
methods, crop rotations, alternative nutrient sources, means to conserve food and the time it



takes to slaughter an animal. All listed factors and aspects have the potential to increase or
decrease the crop yield in a global catastrophic infrastructure loss scenario. Nonetheless, most
are likely to worsen the catastrophic impact.

Likely the three most important factors are: Seed availability, dominant variety and the
ability of farmers to cope with such a massive shift in production techniques. Seed availability
and the distribution of crop varieties are closely interlinked. A large share of farmers, especially
in industrialized countries, purchase their seeds from large global companies and do not retain
seeds from their own harvest for the next year. This could be changed if needed but still, these
varieties are oftentimes specifically bred to grow well in high-input conditions and to be bought
again. This does not mean that these seeds will not grow, nor will they necessarily grow badly
under low input conditions, but they are certainly more prone to crop failure than local landraces
(Mikkelsen & Bruulsema, 2005). In a global failure of electrical infrastructure, highly
specialized and industrialized plant breeding and seed production will likely also be disrupted.
Corn would be particularly strongly affected as almost all corn crops are grown from hybrid
seeds which are bred varieties targeted specifically at a high one-year performance. If there are
no seeds available from large seed companies and the seeds saved from the high-yielding
varieties do not perform well in the global catastrophic infrastructure loss scenario, there will not
be sufficient seed from landraces available to cultivate all of the current cropland area. Switching
from highly mechanized agriculture to traditional farming techniques may present a challenge for
many farmers. However, there are still some small farms that continue to employ traditional
knowledge. These farms can serve as a valuable resource for teaching farmers the traditional
techniques once again.

5 Conclusions
The goal of this study was to gain new insights into the impact of a large-scale industrial

outage caused by a global catastrophe on the yields of corn, rice, soybean, and wheat. It presents
the first crop-specific and spatially explicit estimation of the effect on crop yields for two
different phases of the scenario, each varying in severity.

Based on the findings, we can conclude that the effects are not uniform across regions,
with clear distinctions between strongly affected and minimally affected areas. The identified
hotspots differ for each crop, aligning with the primary growing regions and the level of
industrialization in agriculture.

Notable differences were also observed between phase 1 and phase 2. The presence of
available stocks of agricultural inputs, although representing only a fraction of the current annual
use, played a crucial role in mitigating yield losses. Phase 1 was identified as a critical step in
allowing agriculture to adapt to the new conditions with changes like using more manure.
Another critical adoption would be a change to a mostly vegan diet. This would free up enough
calories to counteract a part of the experienced losses and enable a larger part of the population
to rebuild infrastructure.

Moving forward, future research should focus on refining the estimates by either
improving the statistical approach presented in this study or integrating a statistical framework
with machine learning techniques or process-based crop models. The analysis could also be
expanded to include a wider range of crops and other agricultural inputs. Additionally,



conducting region-specific analyses, particularly in the identified hotspots and in Africa, could
provide valuable insights.
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