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Preface 
 

This volume contains the abstracts of the posters accepted and presented at the EuroS&P 2023 

conference, which was held on July 3-6, 2023 in Delft, the Netherlands. Following the tradition 

initiated with the 2022 edition of the conference, these proceedings are published on Zenodo 

(https://zenodo.org), an open research repository operated by CERN, which enables sharing and 

preserving of research outputs. 

 

The poster session of Euro S&P is conceived as an opportunity for security and privacy researchers 

to share their recent results, and to obtain valuable feedback on their ongoing work from participants 

at the conference. In total, 8 abstracts were submitted to the poster session, which underwent a 

lightweight review process. In particular, reviews were aimed at checking the coherence of the 

abstracts with the scope of Euro S&P, rather than providing in-depth technical feedback as for a 

regular submission. Each abstract was reviewed by at least two members of the program committee. 

After the review phase, the program committee decided to accept all submitted abstracts. 

 

I would like to thank all the authors for their submissions, and especially the poster presenters to have 

brought up to life an interesting poster session at the conference. I am also indebted to the program 

committee of the Euro S&P poster session, for their timely and useful reviews. I would also like to 

thank the general chairs of Euro S&P 2023, Kaitai Liang and Georgios Smaragdakis; the program 

chairs David Evans and Herbert Bos; the publication chairs Luca Verderame and Stefanie Roos. 

Finally, I am also grateful to Ivan Liang for setting up the HotCRP platform for managing the 

submission process, and to the web chair Roland Kromes for updating the website with the updates 

related to the call for posters. 

 

Luca Mariot, University of Twente, the Netherlands 

IEEE European Symposium on Security and Privacy 2022 Poster Chair 
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Poster: Privacy-Preserving Heat Map Generation
through Spatial and Temporal Local Perturbation

Toon Dehaene, Michiel Willocx, Bert Lagaisse, Vincent Naessens
DistriNet, KU Leuven

Belgium
firstname.lastname@kuleuven.be

Abstract—Businesses and governments increasingly apply ma-
chine learning and AI techniques for various strategic opti-
mization purposes. Many applications, however, require location
data over time of many individuals to train models. Currently,
location streams are collected – often without the end-user’s
consent or even knowledge – by means of seemingly innocent
smartphone applications that continuously report location data
in a background process, raising serious privacy concerns. In this
poster, we propose a transparent and privacy-friendly approach
that perturbs sensitive location data in two dimensions, namely
spatially and temporally. The mechanism can be deployed on
mobile devices such that all obfuscation is executed locally,
thereby protecting the user even in the presence of an untrust-
worthy data collector. The viability of the proposed mechanism is
demonstrated by generating heat maps and predicting hot spots
based on privacy-preserving location streams of many users.

Index Terms—Location, Privacy, Obfuscation, Perturbation

I. INTRODUCTION

Nowadays, many companies and governmental institutions
rely on AI and ML models to optimize business goals and soci-
etal challenges. These models offer, amongst others, insights
in busy areas and crowd movements and aim at optimizing
emerging challenges based on the findings. Examples are
traffic optimization based on historic data streams, optimizing
visitor flows in touristic hot spots, selecting feasible locations
to open new shops, bars or restaurants and deliberately assign-
ing first aid personnel during events.

Currently, location streams are collected and aggregated by
data brokers, and subsequently sold to data analysts. Data
collection often occurs by means of smartphone applications.
Dedicated data collection processes typically run in the back-
ground, continuously logging user locations, and subsequently
send the data to a remote server. Users are often completely
unaware of these practises. Although privacy legislation and
technology providers are cracking down on these practices,
industry practises show that this type of data is still sold on a
massive scale today at various platforms.

While collecting personal location data over time is contro-
versial and impedes the user privacy, the practical applications
of location data are often of a legitimate nature and provide
immeasurable value to governments and commercial organi-
zations. To improve the privacy/utility balance, this poster
proposes a privacy-friendly alternative for collecting location
data over time. The mechanism demonstrates that – while a
feasible privacy level is reached – crowd insights can still be

learned from the obfuscated data. The mechanism performs
all obfuscation locally on the user’s device, thereby distrusting
data collectors.

Contributions. This poster proposes a hybrid mechanism
that supports the privacy-preserving collection of location
streams. We introduce the concept of automatically generated
privacy blobs, which vastly limit the amount of information an
individual leaks towards data collectors, even when reporting
location data over time. While the location data of each
individual separately is meaningless up to a certain privacy
level, we demonstrate that aggregating the privacy-enhanced
location data still allows the creation of accurate heat maps
on a population-level.

II. RELATED WORK

Many research already focused on location obfuscation.
Early work [4], [6] was mostly concerned with obfuscating
location datasets of known size. Later works [8] have raised
concerns about the continuous release of locations, and provide
privacy guarantees for location streams. Our approach benefits
from these research results.

For location obfuscation, our work builds further upon geo-
indistinguishability research that explores noise addition [1],
and adopts the concept of Privacy Zones used by fitness track-
ing social networks such as Strava. Several vulnerabilities have
been found in existing implementations of Privacy Zones [5],
[7]. This work fine-tunes Privacy Zones in accordance with
the proposed countermeasures.

Our research provides a privacy-friendly alternative for
privacy-invasive data analysis on accurate location data, with-
out losing substantial prediction accuracy of crowd optimiza-
tion purposes. Therefore, privacy and utility [3], [9] need to be
balanced. Lastly, our solution is highly configurable, providing
users with transparent control over their privacy settings and
providing developers with the necessary tools to cover a wide
variety of use cases [2].

III. LOCATION OBFUSCATION MECHANISM

A privacy blob is the union of multiple privacy zones, which
defines a finite set of historically reported zones on the map. To
support reporting over time, the existing set of privacy zones
is only extended if a new location outside the existing zones is
visited. Otherwise, the reported location will be at the midpoint
– and optionally radius – of a privacy zone already present



in the privacy blob. Furthermore, we put constraints on the
reporting frequency. The major design goals are enumerated
below. A first one is to support continuous reporting of location
data without unacceptable privacy degradation. The attacker
model assumes a distrusted data collector. To achieve this
goal, all obfuscation occurs locally, which is performed by
constraining reports to a limited set of location points. A
second goal is offering the potential for creating meaningful
aggregated heat maps. For this purpose, each user keeps a
unique yet limited set of coordinates to report from. Averaging
them for a crowd allows to approximate density calculation
thereby relying on data aggregation. Privacy settings – like
radius and report frequency – can depend on the location
sensitivity and time. The user sets a default privacy zone radius
and reporting frequency for automatically generated zones.
A third design goal is to support customization for sensitive
locations and time intervals, and combinations thereof. For
instance, a user can opt not to report her location between
1 a.m. and 8 a.m. We support user-created privacy zones
with customized radius and frequency, that further do not
differ conceptually from the automatically generated ones. For
example, the default radius can be 200 meters, but can be
extended to 500 meters near her house. Multiple privacy zones
of a user that are part of the privacy blob can have overlapping
areas. If all privacy zones that make up the intersection would
be released, a much smaller area of possible real locations
should be leaked to the attacker. Similarly, we do not want
to report the set of privacy zones successively in a short time
span, as this would leak with high probability that the user is
in the intersection area. The obfuscation mechanism contains
logic to introduce low-pass in the choice of her reported
privacy zone. This has the effect that the user has a high
chance of only reporting a single location even when in the
intersection of multiple privacy zones, therefore not leaking
that she is in the intersecting area. The flow of the proposed
strategy is as follows. First, a time check asserts a minimum
interval between two subsequent reports. It also checks against
any user-set time rules. Secondly, the set of all privacy zones
from which a report has been made in the past is evaluated.
These are (location, radius) tuples covering the map. The
zones that contain the current real location are filtered.

If that set is empty, a new privacy zone with the default
radius that contains current location is created, and subse-
quently reported. If the filtered set is not empty, a random one
is selected and its midpoint is reported. When picking from
multiple privacy zones, the following strategy is applied. If the
previous reported zone is in the set, there is a high probability
that it is picked again. Optionally, additional perturbation is
done in the time domain by adjusting the reported timestamp.

IV. CREATING HEAT MAPS – PRELIMINARY EXPERIMENTS

This section demonstrates that location data, obfuscated
with the privacy mechanism described in the previous section,
still allows to create meaningful heat maps for crowd insights.
The experimental setup is presented in Figure 1 and initially
abstracts the time dimension. Firstly, a synthetic dataset of

locations is created, in which one or multiple ongoing events
are simulated by increasing the density of points in certain
areas of the map. Next, the proposed privacy mechanism is
applied to the dataset. A heat map is constructed of both
the original and the obfuscated dataset. Our experiments
demonstrate that it is feasible to reconstruct the simulated
events reflected by hot spots on a map with a high level
of accuracy after applying the proposed transformation to the
data.

Fig. 1. Experimental setup for creating and comparing heat maps based on
original and obfuscated data.

The heat maps are created as follows. For the current sim-
ulation, we assume a population that is uniformly distributed
over a square map with a density that is representative for
many cities. We then generate points for an event of N people
normally distributed with a predefined average distance from a
common center. We add the people attending the event to the
background density of the city. We then apply the obfuscation
mechanism and get a perturbed population. We generate a heat
map for the original and perturbed population and compare
them in a final step. The settings used for figures 2 and 3
are as follows. Event A has 1000 visitors with an average
radius from the center of 200 meters. Event B has 200 visitors
with an average radius from the center of 100 meters. The
background population is 5457 people per square kilometer.
In figure 2 people belonging to an event are moved between
20 and 80 meters to the right and up every iteration, 50 times
in total. The background is a snapshot at iteration 24. All users
generate privacy zones with a radius of 300 meters, and do
not have a maximum report frequency.

A second experiment envisions slow movements of individ-
uals attending the event. This leads to traces for each indi-
vidual. Each user acts according to the mechanism described
earlier, independent from others. The original as well as the
perturbed traces of a single user are depicted.

Finally, the quality of the heat maps is assessed. With
respect to utility, preliminary results show that heat maps
can be reconstructed up to a representative degree. This is
supported by comparing the density plots generated from the
original data (left in figures 2 and 3) to the ones generated
from the perturbed data (right in figures 2 and 3). The density
reveals the magnitude of larger-scale events only, while the
exact amount of people attending an event is not exposed.
More quantitative testing is necessary.



Fig. 2. Left: density of the real data. Right: density of the perturbed data.
Yellow markers: real data. Red markers: perturbed data. (X-axis and y-axis
in meters. Color axis is density per area, lighter is more dense)

Fig. 3. Left: density of the real data. Right: density of the perturbed data.
(X-axis and y-axis in meters. Z-axis density per area).

Regarding privacy, preliminary results show that it is hard
to predict the real location history based on the perturbed data
streams. This claim is supported by checking the distribution
of the errors between reported and real locations (figure 4).

V. CONCLUSION AND FUTURE WORK

This poster presents the preliminary experimental results on
privacy preserving crowd monitoring. Our privacy-preserving
mechanism dynamically creates privacy blobs. Each original
location is mapped to the midpoint of a privacy zone in the
blob. Whenever a user moves within a previously created
privacy blob, the corresponding midpoint is always reported
to the server. This mechanism ensures that individuals never
unintentionally leak their exact location. While this method
aims at protecting the user’s location privacy over time, our
research also demonstrates that aggregate data – over a large

Fig. 4. Distribution of distances between real and perturbed data points

set of users – still contains an acceptable utility level for crowd
analytics purposes.

Our approach is validated by creating heat maps from obfus-
cated location data of a set of artificial users by our privacy
mechanism, and compares these heat maps to heat maps of
the original datasets (i.e. before obfuscation). Currently, The
heat maps included in this poster confirm a basic appropriate
level of accuracy after applying obfuscation. Formal metrics
are required to thoroughly assess our initial findings.

Realistic case studies and data sets can further support our
claims. This will be done in the retail sector in which an
industry partner predicts feasible locations to open new stores.
Accuracy will be compared between predictions made on the
real and the perturbed data.

Another research direction consists of developing an offen-
sive model that aims at recovering as much detail as possible
from the obfuscated dataset. This model should have complete
knowledge of the perturbing mechanism, and have access
to test sets of real location data in the training stage. The
output of this offensive mechanism when applied to obfuscated
data can then be combined with the original data to produce
comparative metrics. The obfuscating mechanism can then be
more easily tuned by iterating over different parameter values,
finding pareto improvement in the utility-privacy plane.

This research is partially funded by the VLAIO ICON
project CoCoNUT and the SOLIDLab Flanders initiative.
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Poster: Towards a Secure and Practical System to Obfuscate Tor Network Traffic
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†KAIST, ‡Chonnam National University, §Kwangwoon University

Abstract—Tor (The Onion Routing) has emerged as a promis-
ing open-source privacy network for providing anonymous
communication in sensitive tasks, such as journalism and
activism. However, it is also susceptible to deanonymization
attacks, particularly flow correlation attacks, which iden-
tify users by correlating unique traffic flow characteristics
observed at the ingress and egress segments of a Tor con-
nection. To mitigate these attacks, various traffic obfuscation
techniques have been developed; however, they often suffer
from bandwidth waste and CPU resource exhaustion, critical
issues in the Tor ecosystem where efficient utilization of the
limited, voluntarily-shared bandwidth and resource of nodes
is crucial. In this paper, we propose ODIN, a Tor-tailored
hardware-based security solution that hinders adversaries
from launching flow correlation attacks. Unlike previous
approaches that primarily added randomly crafted padding
bytes to packets, ODIN innovatively minimizes bandwidth
waste by slicing and reorganizing packets destined for the
same server with the aid of the context of Tor circuits,
effectively addressing the issue of wasted network resources.

1. Introduction

Tor (The Onion Routing) is an open-source privacy
network that enables Internet users, particularly those in
contexts with active censorship such as journalists, ac-
tivists, or whistle-blowers, to access anonymous online
services. The Tor network is widely used, with over 3
million daily users and a total of 6,000 volunteer relay
nodes transmitting terabytes of traffic every day.

As the nature of Tor aims to facilitate anonymous
communication for sensitive tasks, Tor is naturally a target
for many deanonymization attacks. Among them, the flow
correlation attack [8] is obviously the most powerful at-
tack correlating unique characteristics of traffic flows (e.g.,
packet sizes, interval times) observed from the ingress
and egress segments in a Tor connection. The pioneering
research shows that it is effective for deanonymizing Tor
clients and servers. For example, RAPTOR [10] achieved
a 90% accuracy in deanonymizing user identity. Also, the
state-of-the-art flow correlation of DeepCorr [9] offered
a correlation accuracy of 96% even with shorter flow
observations than previous methods required.

In recognition of the threat posed by flow correlation
attacks, several traffic obfuscation techniques [3], [4], [6]
have been developed to mitigate them. However, these
techniques are not well suited to the requirements of the
Tor network due to the following issues:
CPU Resource Exhaustion. Existing secret Tor relay
nodes (e.g., bridge nodes [4]) or pluggable transports

∗Co-first authors, ∗∗Corresponding author

(e.g., obfs4, meek [6]) are utilized to conceal the fact that
clients are using the Tor network by randomizing packet
bytes or disguising a Tor connection as other legitimate
connections (e.g., Skype). However, these techniques rely
on software-based systems to process individual packets,
which significantly consumes CPU resources compared to
using ordinary Tor relay nodes. Among them, it is partic-
ularly crucial for exit nodes to ensure efficient resource
utilization, as they play a vital role in maintaining unin-
terrupted routing and communication in the Tor network.
Tor Bandwidth Waste. Other techniques [5], [7] add
crafted padding bytes to the original packets and control
packet transmission timing to obfuscate the size and in-
terval time of individual packets. However, the inclusion
of padding bytes in these methods imposes additional
burdens on individual packets and can waste Tor network
bandwidth, particularly in situations where a limited num-
ber of volunteer nodes are shared by many Tor clients. As
a result, most existing obfuscation methods are not well
adapted to be used practically in the real Tor network.

In this paper, we propose ODIN, a hardware-based
security solution that addresses both issues raised by
existing solutions. To conserve CPU resources, ODIN of-
floads all Tor traffic obfuscation logic to a programmable
hardware network interface card (i.e., SmartNIC). Also,
ODIN addresses the issue of bandwidth waste by slicing
and reorganizing packets destined for the same server with
the aid of the context of Tor circuits. This approach allows
ODIN to obfuscate the original traffic pattern by assem-
bling two distinct flows, significantly saving bandwidth
and CPU resources compared to existing solutions.

We implement a full prototype of ODIN using the
NVIDIA BlueField 2® SmartNIC [2] and conduct exten-
sive experiments within a realistic Tor testbed environ-
ment. In our private testbed, we establish a trusted exit
node, ODIN, responsible for transmitting Tor traffic to the
server. Additionally, we implement a receiver program,
utilizing recent kernel networking features, designed to
operate on the destination server. The receiver program
ensures that Tor services maintain transparency when de-
ploying ODIN by restoring the combined packets received
from ODIN. In our evaluation, we primarily demonstrate
the effectiveness of obfuscation and performance improve-
ments by presenting different aspects of traffic flow after
the deployment of ODIN.

2. Technical Background and Preliminaries

2.1. Tor Circuit
Tor works by leveraging a core technology known as

onion routing. Onion routing transmits encrypted data (in
multiple layers of encryption) to the final destination (i.e.,



server) through a minimum of three types of relay nodes
in the Tor network.

Entry node, also known as the guard node, serves
as the initial ingress point in the Tor network, receiving
connections directly from Tor clients. Its main role is to
receive multi-layer encrypted traffic from clients, decrypt
the outermost layer, and forward the partially decrypted
traffic to the next node in the Tor network. It is worthy
note that while the entry node has access to the client’s
identity (e.g., IP address) and can detect the client’s uti-
lization of Tor, it is unable to decrypt the final destination
or the content of the client’s traffic due to the multi-layer
encryption mechanisms inherent in onion routing.

Middle node is the second node to which the Tor
client connects and acts as a linking chain. It serves a
crucial role by stripping the second layer of encryption and
seamlessly routing Tor traffic between the entry and exit
nodes. Crucially, due to the principles of onion routing,
this middle node is unable to discern the identities or
information of either the client or the server.

Exit node is the last egress point where Tor traffic
finally hits the public Internet. It communicates directly
with the server, which is the final destination, making
it capable of identifying the server’s true identity and
decrypting the encrypted layers of Tor traffic. As a re-
sult, the exit node becomes a desirable target for several
entities (e.g., law enforcement agencies and threat actors)
to intercept Tor traffic in the middle.

Given its significance, note that several reputable or-
ganizations and privacy-conscious entities already operate
trusted exit nodes [1] with enhanced security features
and capabilities. These trusted exit nodes are specifically
designed to protect both the Tor network and service
operators from potential hazards and threats associated
with exit nodes, thereby enhancing the overall security
and integrity of the Tor ecosystem.

2.2. Flow Correlation Attack
In most scenarios of a flow correlation attack, adver-

saries attempt to link Tor traffic observed from the two
points, ingress and egress. The two points, carrying the
information of the real identity (e.g., client or server), can
be an attractive target in order for adversaries to eavesdrop
on Tor traffic in the middle. If adversaries collect enough
traffic from both points, they can have the capability
of performing a flow correlation attack with following
pioneering traffic analyses tailored to Tor network.
Statistical Metric. Several studies have used a statis-
tical metric to measure the flow similarity of traversed
flows observed from both ingress and egress points. For
example, Sun et al. [10] used the Spearman correlation
coefficient, which centers on a nonparametric measure
that can evaluate the statistical dependence between the
rankings of two given variables. They extracted the TCP
sequence and acknowledgement number from each packet
trace to conduct asymmetric correlation analysis that al-
lows adversaries to observe any direction of the Tor traffic
at both points (ingress and egress points). However, one
obvious problem arises from the fact that they consider
the case where there is a long-lasting Tor connection
(inevitably needs a long flow observation) rather than
aims to consider an intermittent Tor connection which is
pervasive in the real world Tor network.
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Figure 1: ODIN combines packets destined for the same
server, thereby rendering the pattern of Tor traffic indis-
cernible to adversaries.

Deep Learning. To address the issue derived from the sta-
tistical metric, a new approach has emerged to measure the
flow similarity even when considering a short-lived nature
of Tor network. For example, Nasr et al. [9] proposed
the state-of-the-art deep learning-based flow correlation
technique, DeepCorr [9], that is able to correlate Tor traffic
with high accuracy using very short-term observations of
Tor connections. Due to the content encryption for each
packet, they leveraged an advanced deep learning model in
order to learn hidden patterns of flow-level features in Tor
traffic. Specifically, they found dominant characteristic in
the feature of packet sizes and timings when correlating
Tor traffic. Through extensive experiments, they showed
the dangers posed by exposure of flow-level features to
adversaries. Thus, it is necessary to hinder adversaries
from learning unique patterns through these features.

3. ODIN Overview
3.1. Threat Model

The goal of adversaries is to deanonymize clients by
correlating ingress flows and egress flows. They compare
several unique characteristics of Tor traffic (e.g., packet
sizes and timings) instead of attempting to decrypt the
content of Tor traffic. To achieve their goal, we consider
adversaries who have capabilities to eavesdrop on Tor
traffic (especially ingress and egress flows) passively.

We believe this scenario is practical in the real world.
In recent years, many threat actors are running hundreds of
malicious Tor nodes in order to intercept Tor traffic [11].
Adversaries can further leverage BGP hijacking attacks,
which becomes increasingly frequent, by a means to
redirect the Tor traffic to themselves [10]. There might
also be more powerful adversaries, such as governmental
agencies, who can perform wiretapping attacks directly
on multiple Internet ASes or intercontinental fiber optics.
We contemplate the deployment of ODIN on a trusted exit
node, managed securely by reputable entities, mitigating
the risk of adversary compromise.

3.2. System Design
As shown in Figure 1, the design of ODIN is primarily

aimed at achieving a secure and practical obfuscation
system that addresses the following three key aspects:
Context-aware Obfuscation. In order to develop a Tor-
tailored obfuscation system, ODIN ensures consistency
by leveraging the context information of established Tor
circuits. As shown in Figure 1, the CID/SID Sync module
within ODIN perpetually synchronizes with the circuit
identifier (CID) and stream identifier (SID) information



derived from the Tor application through its default API.
The CID provides specificity about the Tor circuit that a
connection refers to, whereas the SID identifies distinct
TCP flows. Utilizing both CID and SID, ODIN combines
distinct flows that are destined for the same server.
Bandwidth-saving Obfuscation. In an environment
where a limited number of Tor nodes share their band-
width, ODIN reduces bandwidth waste effectively. Thus,
the packet processor module in ODIN minimizes Tor
bandwidth by piggybacking on packets already destined
for the same final server. As shown in Figure 1, the packet
processor module removes the headers (e.g., Ethernet) of
two paired packets, and subsequently, it combines the
remaining contents of both packets with a virtual header.
The total size of an n-th obfuscated packet P ′

n is defined
as P ′

n = V + Pr,n + Pr+1,n, where Pr,n denotes the size
of n-th packet in the r-th queue and V denotes the size
of the virtual header. This approach effectively obfuscates
the traffic pattern by combining two distinct flows into
a single flow. After combining, the resulting packets are
encapsulated, encrypted, and sent to the destination server.

Upon arrival at the receiving server, the combined
packets are first decrypted. Subsequently, utilizing the
data embedded within the decrypted virtual header, the
receiver program reassembles them back into their original
form. This reconstitution of packets is performed prior to
the initiation of kernel network stack operations, thereby
guaranteeing that the Tor service on the destination server
receives the packets irrespective of the obfuscation pro-
cess conducted by ODIN. The overall bandwidth waste
is significantly reduced compared to existing padding-
based methods, making ODIN a practical solution in en-
vironments where efficient utilization of limited shared
bandwidth is essential.
Spatial and Temporal Obfuscation. ODIN operates with
obfuscation functionalities for both size and timing under
all circumstances. To this end, we consider two scenarios:
(i) when only a single packet is in the queue or remains
after pairs of packets have been processed within the time
threshold; and (ii) when the combined size of two packets
exceeds the MTU size.

To address these scenarios, the packet processor mod-
ule stores the sizes of previously transmitted packets. Uti-
lizing this information, it calculates the optimal padding
size for the remaining packet as follows:

padding ← CREATERANDOMDATA(MTU − Pr,n)
padingSize← GETSIMILARSIZE(L,Pr,n, padding)

, where MTU is the maximum transmission unit, Pr,n

is the size of an n-th packet in the r-th queue, and L is
the size list of previously transmitted packets. Then, the
packet processor module identifies a size that is most sim-
ilar to those within the list of previously transmitted pack-
ets. This selected size is then used to create a packet that is
sent to the server, thereby preventing potential adversaries
from discerning any unique packet characteristics. This
approach guarantees size and timing obfuscation under
all conditions while preserving the system’s effectiveness.

4. Evaluation
We conduct a preliminary experiment on our private

Tor testbed, comprising three Tor container nodes (i.e.,
entry, middle, and exit) running on two physical machines
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Figure 2: Traffic pattern be-
fore/after deploying ODIN.
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Figure 3: CPU usage of
ODIN and obfs4.

with several services (e.g., video streaming and file down-
loading). The evaluation of ODIN primarily centers on two
key aspects: (i) its efficacy in obfuscating Tor traffic and
(ii) its ability to impose lower overhead compared to an
existing obfuscation solution.

Figure 2 exhibits distinct flow patterns with and with-
out ODIN’s obfuscation functionality. ODIN successfully
combines two distinct traffic flows, resulting in discernible
deviations from the original traffic flow patterns. Figure3
presents the measured CPU usage within a specific time
window, comparing the deployment of ODIN and obfs4
for obfuscation purposes. On average, ODIN exhibits a
5% reduction in CPU overhead compared to obfs4.

5. Future Work
In future work, we will assess the resilience of ODIN-

obfuscated traffic against advanced flow correlation at-
tacks, including those using deep learning techniques.
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Abstract—Dependency Modelling is an established Probabilis-
tic Risk Analysis method that is frequently used to identify and
quantify cyber risks in complex environments, such as Industrial
Control Systems. The method is useful for examining the inter-
relationships between different variables, but the limited data
exposure in the modelling restricts its ability to analyse multiple
independent variables simultaneously or sequentially. In response
to this limitation, we present a new technique that leverages the
Bayesian Network method to draw inferences from unrelated
events and uncovers hidden insights that Dependency Modelling
may overlook. We conducted an evaluation of our proposed
technique using lab-generated data that mimics Colonial pipeline
operations. Our results demonstrated that the proposed technique
exposes previously undetected aspects of the dependency model,
providing business and asset owners with a more comprehensive
understanding of their cyber risks and facilitating better decision-
making. Our technique represents a significant advancement
and is the first to apply this inference method to Dependency
Modelling.

Index Terms—Cyber risks, Dependency Modelling, Bayesian
Network, Variable Elimination

I. INTRODUCTION

The industrial technology landscape is continually evolv-
ing, resulting in an increased connection of processes and
components that enhance productivity and bottom-line impact.
However, this transformation also brings new risks to oper-
ational technology (OT) systems and operations, increasing
complexity and posing significant cybersecurity challenges [1].

Despite continuous efforts by industries and governments to
enhance cybersecurity, major industrial cyber breaches remain
as likely today as they did ten years ago. Recent cyber
attacks on Colonial Pipeline and JBS Foods have highlighted
the consequences of cyber threats and the vulnerabilities of
exchanging data and dependencies in enterprise systems [2].
Successful attacks can lead to a complete system failure,
emphasising the need to evaluate alternative approaches to
mitigate cyber risks in complex systems.

Dependency Modelling (DM) provides a comprehensive
framework for establishing links between system events, pro-
cesses, and dependencies, enabling accurate risk assessments

This work has been supported by the Knowledge Economy Skills Scholar-
ships (KESS2) - a major pan-Wales operation supported by European Social
Funds (ESF) through the Welsh Government, and Thales UK

to support informed decision-making and enhance cyberse-
curity [3]. Despite its capabilities, DM’s limitations prevent
it from providing sufficient insights to fully understand a
system’s complexity beyond conventional approaches, high-
lighting the need for alternative methods.

Contribution: Our proposed technique introduces causal
inference into Dependency Modelling (DM) which allows the
analysis of multiple independent nodes and accounting for
simultaneous or sequential changes within the model. This
multi-nodal analysis increases the identification of cyber risks
that are synonymous with the tight coupling characteristics
phenomena in complex systems where multiple events can
fail synchronously. We believe this enhancement positions
DM as a preferred method to identify cyber risks in complex
environments, including Industrial Control Systems (ICS).

II. RELATED WORK

The potential of Bayesian Networks (BN) as an adaptable
and effective tool in handling incomplete or uncertain informa-
tion has been recognised by researchers [4]. Previous studies,
such as [5], [6], have demonstrated the suitability of BN in
detecting intrusion and insider threats in system networks,
showcasing its efficiency in mitigating cyber risks.

However, the use of BN in identifying cyber risks within
large and complex systems, including ICS, remains limited.
Existing research does not account for the impact of simulta-
neous or sequential failure within complex system networks,
nor have effective techniques for enhancing cyber risk identi-
fication in such systems been proposed.

III. APPROACH

Our approach utilises Directed Acyclic Graphs (DAGs),
which model the conditional dependencies between variables
in a probabilistic model. We implement Bayesian Networks
(BN) to perform statistical inference on DM and calculate the
conditional probabilities of unknown variables based on their
observed values. While both BN and DM are usually causally
constructed, BN assumes that most variables are independent
of their preceding variables, whereas DM assumes that all
variables may be directly impacted by their predecessors. This
property makes BN advantageous, enabling the identification
of a subset of preceding parameters for each parameter in



turn, which allows us to use Variable Elimination (VE) for
causal inference to identify hidden or previously unknown
risks within the system [7].

The VE probabilistic inference algorithm calculates the
marginal probabilities of a target variable by recursively elimi-
nating irrelevant network variables that do not impact the target
variable. This efficiency in handling large and complex BN
makes VE the preferred algorithm over others like the Junction
Tree (JT) and Monte Carlo Markov Chain.

To retrieve hidden data from the model, we construct an
inference query in the form of P (Y |E = e), where Y and
E are disjoint variables in the model, and E is an observed
variable with a value of e [7].

IV. VALIDATION

We aim to determine if the causal inference technique can
reveal changes in the model’s sensitivity when considering the
combination of multiple independent nodes. The traditional 3-
Point Sensitivity (3PS) approach used in DM can only assess
the sensitivity impact of a single leaf node at a time.

To validate our approach, we employed a case study that
mimics Colonial pipeline operations in an Industrial Control
System (ICS) environment, named PipelineX. We focused
on the communication between the IT and OT networks
involved in the shipping process to track product delivery.
After receiving an order from a customer, an operator at
the enterprise network verifies product availability via the
production network before initiating the shipping process. The
shipping process generates a trigger to load the product for
delivery. Figure 1 illustrates the business process description.
Additional information includes the following:

• Remote login to the IT network is available via a secured
Virtual Private Network (VPN) infrastructure, managed
by the Enterprise Access Control.

• There is no network segmentation infrastructure between
the IT and the OT networks.

• A loss of availability on the IT network due to an attack
could disrupt production on the OT network.

Our data is an adaptation from an existing manufacturing
environment with 67 nodes in the model. Each node has three
attributes: name, dependencies (name of parent node), and the
percentage probability of being in a desired state. Each node
is numbered (ref) from 0 (the goal/root node) to 66. We have
included some node names and descriptions in Table I.

TABLE I
NODE WITH REFERENCE NUMBER

Ref Node Name Description
0 Secure and Safe Production This is the goal of the business
9 Enterprise Access Control Access Policies are implemented
34 Wireless Protocols Protocols are updated and secured
40 Background Checks Security check conducted on users
41 Roles and Responsibilities Clearly defined and assigned
42 Training Appropriate training conducted
43 Specialised Training Training specific to functions
44 Security Awareness Basic requirements for users
45 Security Responsibilities Assigned and owned
46 Event and Incident Mgt Logged and reviewed

Fig. 1. Shipping Process Flow in Pipeline X

Conventional behaviour expectation dictates that if a node
fails due to an event, its probability is set to 0 (or 0%). This
event results in a negative impact on the overall model. Con-
versely, setting a node to 1 (or 100%) due to an improvement
in a certain event positively impacts the model. To identify the
node with the highest impact (sensitivity), we set each node
to 0 and 1, respectively, and performed causal inference to
obtain new probability values for the root node. This process
is repeated with combinations of two and three nodes.

The resulting sensitivity scores are presented in Tables II,
III, and IV, where each table lists the top-5 sensitivity scores.
The Node column indicates the node number, corresponding
to its name in Table I. The Probability column displays the
current marginal probability of the overall goal. The last
two columns reveal the sensitivity values, representing the
difference between the marginal probability and the computed
probability when the node is turned off (E=0) and when it
is turned fully on (E=1). As an example, in Table II, Row 1
Column E=0 displays the result of 0.16361779 - 0.042172706,
while Column E=1 is derived from E=1, i.e 0.167503027 -
0.16361779.

TABLE II
CAUSAL INFERENCE FOR SINGLE EVENT

Node Probability E=0 E=1
[40] 0.16361779 0.121445081 0.00388524
[41] 0.16361779 0.121445081 0.00388524
[43] 0.16361779 0.107265991 0.003431626
[44] 0.16361779 0.107265991 0.003431626
[45] 0.16361779 0.107265991 0.003431626

Figure 2A, B and C show the 3PS plots for each table. A
short bar indicates low sensitivity, while a longer bar repre-
sents higher sensitivity. The colour of each bar corresponds
to its influence, where red-coloured bars suggest a negative
impact and green-coloured bars exhibit a positive influence.
The junction between the bars indicates the sensitivity level



Fig. 2. 3-Point Sensitivity Using Causal Inference Analysis

TABLE III
CAUSAL INFERENCE FOR TWO (COMBINED) EVENTS

Node Probability E1=E2=0 E1=E2=1
[40+41] 0.163617787 0.125440583 0.007890686
[40+43] 0.163617787 0.124978108 0.007423034
[40+44] 0.163617787 0.124978108 0.007423034
[40+45] 0.163617787 0.124978108 0.007423034
[41+43] 0.163617787 0.124978108 0.007423034

TABLE IV
CAUSAL INFERENCE FOR THREE (COMBINED) EVENTS

Node Probability E1=E2=E3=0 E1=E2=E3=1
[9+40+41] 0.163617787 0.125560776 0.007904915
[40+41+43] 0.163617787 0.125559031 0.011537933
[40+41+44] 0.163617787 0.125559031 0.011537933
[40+41+45] 0.163617787 0.125559031 0.011537933
[34+40+41] 0.163617787 0.125553184 0.007904016

concerning the overall goal or how far it is from the probability
of the goal. We observed that setting the probabilities of three
nodes to zero (E1 = E2 = E3 = 0) resulted in longer red bars
than only setting the probabilities of two nodes to zero (PE1 =
E2 = 0). This indicates that the model is more sensitive, with
a higher negative impact with more nodes. Conversely, setting
the probabilities of three nodes to one (E1 = E2 = E3 = 1)
resulted in a higher positive influence, with longer green bars
than only setting the probabilities of two nodes to one (E1 =
E2 = 1).

From the information obtained in the model, we conducted
a frequency analysis to identify the nodes with the most
influence, which is a function of how many times they occur in
combination with other nodes. As shown in Figure 3A, Node
41 is the most influential when we perform a two-nodal causal
inference. However, in a three-nodal causal inference, nodes
40 and 41 are of equal influence as both of them appeared five
times, as shown in Figure 3B. The interpretation is that the
asset owner may want to pay closer attention to these nodes.

Fig. 3. Node Frequency Analysis

We validated our technique by checking the consistency
of the sensitivity pattern among the three graphs. As the
number of nodes in the causal inference calculation increases,
the bars in both directions 3PS become longer, indicating
an increased sensitivity (impact) and decreased probability of
success if multiple nodes fail simultaneously. From Tables III
and IV, we observed that node 40 is more critical in a 2-
nodal inference while node 41 is most critical in a 3-nodal
inference. This suggests that our technique can uncover critical
nodes that could potentially prevent attacks, as shown by the
case of the Colonial Pipeline cyber attack. Our technique
enables us to discover more information from DM than it
currently provides, increasing the potential for system owners
to proactively manage and mitigate risks.

V. CHALLENGES AND FUTURE WORK

BN learning requires extensive computation to process
causal queries for two or more nodal combinations, creating
scalability issues for larger models with many nodes. To
overcome these challenges, our consideration is limited to
a system-driven model with a focus on processes and the
interaction between processes. In the future, we hope to
leverage DM’s new capacity to model complex systems and to
develop predictive models that can forecast future cyber risk
trends, based on past data.
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Abstract—The bridging of Web2 and Web3 infrastructure is
a crucial step towards a fully decentralized internet. However,
participating in blockchain systems can be a significant barrier
for most users due to factors such as the high cost of operation
and the computational resources required. To interact with the
blockchain, Web3 application builders rely on endpoint API
services, which can cause centralization issues in terms of privacy,
availability, and security. In response, the community has turned
to light nodes as a potential solution for resource-constrained
clients such as smartphones and browsers to facilitate involve-
ment. In this paper, we provide an overview of recent studies in
light nodes, along with an analysis of light client implementations
in Ethereum and their improvements. We conclude with a call for
further development of light node technology to enable broader
and more diverse participation in decentralized systems.

Index Terms—Web3, Blockchain networks, Light clients

I. INTRODUCTION

Web3, also known as the Decentralized Web, is a vision for
the next generation of Web applications where users can have
stronger ownership over their data and identity, supported by
blockchain technology. However, transitioning to Web3 from
the current web (Web2) poses several challenges [1]. Many
low-capacity remote clients, such as mobile wallets, lack the
ability to run a full blockchain node due to the computational
and storage requirements involved in downloading and verify-
ing all transactions recorded by the chain on the first-time
bootstrapping process. As a result, users have increasingly
relied on trusted intermediaries, such as Infura and Alchemy.
These companies offer JSON-RPC services, which is a remote
procedure call (RPC) protocol that utilizes JavaScript Object
Notation (JSON) to serialize data and send requests to a server.
By using these services, users can access blockchain networks
with reduced friction.

However, the reliance on intermediaries creates multiple
challenges that can negatively impact the privacy, availabil-
ity, and security goals of Web3 [2]. Specifically, interme-
diaries have unrestricted access to transaction requests and
sensitive data from end-users, including IP addresses, which
can jeopardize user privacy. Moreover, intermediaries have
the ability to control the content displayed on the blockchain
[1], which can affect the availability of data and undermine
its reliability. Finally, there is no guarantee that the data
returned by intermediaries is accurate or tamper-proof, which
can compromise the security of transactions and user assets.

While using trusted intermediaries can provide users with
a better user experience, it is essential to find solutions that
provide an optimal balance between minimizing user hardware
requirements and maintaining privacy and security.

In this paper, we focus on the current infrastructure that
bridges Web2 and Web3 from the perspective of decentralized
applications (DApps) builders. As builders are responsible
for providing end-users with access to blockchain content
and interactions, it’s crucial that we understand the privacy,
availability and security implications of current approaches.
Our long-term goal is to make access to Web3 seamless for
Web clients while minimizing the trust assumptions.

II. PROBLEM STATEMENT

In this section, we will discuss the current infrastructure
for bridging Web2 and Web3 and discuss in detail how it can
cause privacy concerns, availability challenges, and security
threats.

A. Current Infrastructure for Bridging Web2 and Web3

Payment-based. Wallets play a critical role in Web3 by
providing a secure way to manage blockchain assets and
facilitating interactions with decentralized applications. To
obtain the current token balance, wallets use JSON-RPC APIs
to send requests to the endpoints of full nodes, which allows
them to communicate with the blockchain network and track
the tip of the chain. For example, MetaMask is a widely-used
Web3 wallet for Ethereum that retrieves the user’s account
address and uses Infura [3] as its default endpoint provider to
query the Ethereum blockchain and obtain the balance for that
address.

Application-based. When an end-user wants to interact
with smart contracts on the blockchain through a website, a
library such as Ethers.js or Web3.js is required to facilitate
communication with the blockchain from the remote client.
Ethers.js, for example, provides a Provider object which en-
ables developers to query the blockchain and get information.
Additionally, a Signer object is used to execute state-changing
operations by signing transactions with the user’s private key,
which is always stored in the wallet, and then broadcasting
them to the network via the Provider object. A Provider object
can be injected by a browser extension wallet like MetaMask,
or backed by an RPC API service available in all node



implementations. Because running a full node locally is costly,
third-party web services such as Infura and Alchemy are
widely used by developers to provide access to the blockchain
network.

B. Privacy, Availability and Security Concerns

Privacy. When using payment-based wallets, users of-
ten share their account address with third-party endpoint
providers, posing privacy risks if their identity is linked to
the address, especially for valuable accounts with significant
cryptocurrencies.

In application-based scenarios, external API services typ-
ically require developers to obtain project-specific API keys
through registration and acceptance of terms of service from
providers [4]. It raises concerns about privacy if the provider
collects and analyzes the usage patterns and behaviour of the
clients for advertising or other purposes.

Availability. Depending solely on a single provider for
Web3 interactions can create a single point of failure, posing
risks in case of provider issues like malicious attacks or net-
work congestion. This undermines the resilience and objective
of Web3 to withstand attacks and outages.

Furthermore, if the provider is not supportive of certain
content on the blockchain, it can result in censorship. It is
particularly problematic in terms of a more transparent and
open Web3 world, where censorship should not be the sole
decision of a small group of people.

Security. Third-party intermediaries can potentially provide
incorrect or fraudulent data if there is no verification process
in place. This can occur if the intermediaries lack sufficient
incentives to behave honestly. Additionally, end-users need
accessible proof to verify that the data they receive is up-
to-date and authentic.

III. LIGHT NODES

A. Overview of Light Nodes Schemes

The immutability of a blockchain is maintained through the
linked list of blocks, known as the distributed ledger, in which
each block contains information from the previous block and is
created through a consensus algorithm such as Proof of Work
using hash puzzles or Proof of Stake based on a proposal
system. Therefore, the process of efficiently rebuilding and
verifying the entire ledger is crucial for new participants in
achieving agreement on the latest state of the blockchain.

There are two kinds of nodes that a user can choose to
interact with a blockchain network: full nodes, which store
and validate the complete historical ledger of transactions, and
light nodes, which rely on full nodes and solely verify block
headers (i.e., small, unique cryptographic fingerprints) with
Merkle tree-based proof system to reduce the amount of data
that needs to be processed. Light nodes, such as the concepts
of Simplified Payment Verification (SPV) for Bitcoin [5] and
light nodes based on Proof of Stake (PoS) in Ethereum [6],
work as a solution for lightweight clients like smartphones and
browsers to avoid intensive storage and computation resources
required by a full node software. The streamlined process to

participate in a blockchain network by light nodes is an option
to achieve a more diverse node composition.

To further address the computational challenges associated
with the linear growth of blockchain size in light nodes, several
studies have explored solutions for making proofs logarithmic
such as super-light nodes that only check a subset of block
headers. For Proof of Work protocols, PoPoW [7] reduces
the linear complexity to be logarithmic with a notion of
”superblock”. NIPoPoW [8] makes it non-interactive, giving
the possibility to interact with multiple servers. FlyClient [9]
further supports checking variant working difficulty by Merkle
Mountain Range (MMR) and sampling. Mina [10] and PoNW
[11] propose recursively composed proofs with SNARKs to
achieve constant bootstrapping complexity. [12] is the first
succinct proofs of proof-of-stake (PoPoS) protocol, taking the
form of a Merkle tree of PoS epochs and a bisection game
design. BITE [13] and DCert [14] are working on using trusted
execution in lightweight clients.

B. Light Node Implementations in Ethereum
The state of light client implementations in major

blockchain systems is presented in detail in [15]. However,
with the transition of Ethereum from PoW to PoS through
the merge [16], a new “sync committee” is introduced in
Ethereum 2.0 to facilitate the proposal of the new head of the
chain by signing proof commitments and handover signatures.
It enables the near-term implementations of Ethereum light
nodes which is a topic not covered in [15].

Before the merge, Ethereum was using the beacon chain as
the consensus layer while the previous main chain acted as the
execution layer. After the merge, we now have one single PoS
Ethereum chain. Therefore, an execution client such as Geth
(the Go implementation of Ethereum) needs to be coupled to
a consensus client like Nimbus (the Nim implementation of
Ethereum 2.0) in terms of running a node. Presently, several
light clients including execution, consensus, and combined
execution/consensus light clients are in development. While
Lodestar [17] and Nimbus [18] are consensus light client
implementations, Helios [19] is a combined execution and con-
sensus light client developed in Rust. In the next subsection,
we will discuss the security measures taken by Helios.

Kevlar [20], based on the research work [12], is a CLI
tool for RPC Proxy fully compatible with PoS Ethereum and
achieves an asymptotically logarithmic bootstrapping com-
plexity, making it highly efficient.

We summarize the existing studies on light clients and
corresponding implementation projects in Table I.

C. Improvements on privacy, availability and security
Decentralized RPC requests. When building DApps with

the Ethers.js library, one useful feature is its ability to link
to multiple endpoint providers. This is made possible through
the library’s default Provider object, where you can configure
several API keys for your network and verify their results
internally. Additionally, DRPC and Pocket are optional de-
centralized networks of RPC endpoints. This feature is partic-
ularly important for light nodes, which requires the ability to



TABLE I: Overview of light client schemes and implementations

Scheme Consensus Complexity Infra Compatibility Crypto Primitives Security assumptions Implementations
SPV [5] Any Linear Any Merkle root hash - -

Ethereum 2.0 [21] PoS Linear Fully compatible Merkle root hash - Nimbus, Helios, Lodestar
NIPoPoW [8] PoW Sublinear Modification NIPoPoWs Fixed difficulty Ergo, WebDollar, Nimiq 1.0
FlyClient [9] PoW Sublinear Modification MMR commitments - ZCash
PoPoS [12] PoS Sublinear Fully compatible Merkle root hash - Kevlar
PoNW [11] PoW O(1) Modification SNARKs Trusted setup -
Mina [10] PoS O(1) New System SNARKs Trusted setup Mina
DCert [14] Any O(1) Any - Trusted Execution DCert

connect to different full nodes to ensure high availability and
reliability in third-party services, such as when bootstrapping
and verifying transaction inclusion. This feature allows light
nodes to maintain a consistent connection to the network, even
if one full node becomes unavailable or unreliable.

RPC Method for Retrieving Merkle Proofs. The widely
supported eth getProof RPC method, proposed in EIP-1186
[22], provides Merkle proofs for specific transactions or stor-
age data in a given block. After retrieving block headers from
full nodes and verifying their validity based on protocol rules,
a light node on Ethereum can easily verify the block root
hash value and Merkle proof. For example, Helios uses a
locally-run proxy server to proxy requests to the execution
endpoint and obtain block proof, and then provides validated
API responses by verifying against the data server using the
consensus endpoint. This method offers a secure and efficient
approach for light nodes to verify blockchain-stored data.

There are still open problems in light nodes including scal-
ability, caching mechanisms, interoperability, and difficulties
posed by new use cases like IoT. Addressing these challenges
is crucial for the continued growth and adoption of light clients
in Ethereum and other blockchain ecosystems.

IV. CONCLUSION

The current infrastructure for bridging Web2 and Web3 is
facing centralization issues due to the reliance on third-party
providers. This violates the expectations of privacy, availabil-
ity, and security guarantees, which are fundamental to the de-
centralization ethos of Web3. The use of light nodes provides
a potential solution to these issues and has been studied under
different protocol rules, with Ethereum being a prominent
example. The implementation of light client technology in
Ethereum has shown improvements, but there is still a need
to find a balance between user hardware requirements and
decentralized participation for future development. Ultimately,
addressing these issues will be critical for achieving a more
decentralized and trustworthy Web3 ecosystem.
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Abstract—Enterprises are quickly transitioning to container
orchestrators, like Kubernetes, which helps developers and en-
gineers manage a large number of container images, pods, and
nodes. However, this new approach does not solve the problem
of software vulnerabilities but arguably it makes vulnerability
management harder. Most of the time, companies have to deal
with thousands of containers in a dynamic environment since they
can fail, and be rescheduled in other nodes. All these factors have
a great impact on the vulnerability management system because
the vulnerabilities and misconfigurations in the system are too
many to be manually operated, so we seek a tool to highlight
the most dangerous (we need a clear definition of dangerous) to
prioritize them.
This paper wants to emphasize the need for a vulnerability
prioritization method and a defense technique improvement.

Index Terms—Vulnerability, Prioritization, Container orches-
tration, Attack kill-chain.

I. INTRODUCTION

Cloud application vulnerabilities have devastating conse-
quences on our digital society, threatening our privacy, fi-
nances, and critical infrastructure. CISQ (Consortium for
Information and software quality) estimates that the cost of
poor software quality in the US has grown to at least $2.41
trillion, but not in similar proportions as seen in 2020. The
accumulated software Technical Debt (TD) has grown to
roughly $1.52 trillion [2].
In the past few years, the research community proposed
sophisticated approaches and techniques to enhance automated
security testing and promptly identify vulnerabilities before
they can be exploited by malicious attackers.
As a result, today a large variety of tools are available to
effectively detect vulnerabilities. However, most organizations
do not know how to deal with the tons of vulnerabilities also
because these tools are prone to produce false positives. The
usual behavior is to patch them based on the score produced
by each individual vulnerability.
As if the problem wasn’t complicated enough, the container
orchestration scenario makes the situation more challenging
due to the rapid and continuous deployment of new containers
and pods in such environments.
In the real world, attackers put together multiple vulnerabilities
to successfully compromise systems as shown in Fig.1 which

is taken from a real attack scenario and is related to the
ATT&CK framework [5].
Thus, analyzing vulnerabilities in combination with each other
represents a fundamental step to obtain a realistic “big picture”
of their implications.
Furthermore, most defensive solutions are reactive solutions,
like intrusion detection systems, system calls monitoring, etc.
Even if these techniques are very well-established, they are
affected by scalability problems and are not meant to prevent
an attack to happen. This poster’s abstract aims to create a
discussion on how vulnerabilities are managed in the container
orchestration environment and particularly in Kubernetes.
More precisely, why don’t we prioritize the software patches
according to the real attack path instead of focusing on a
single score? And if this is possible, can we automate this
discovering-fixing process? Can we be more proactive during
the defense?

Fig. 1. Real attack path in Kubernetes environment

II. PROBLEM STATEMENT

Bug-finding approaches have arguably become too success-
ful thanks to:

1) fuzzers which inject automatically semi-random data
into a program/stack and detect bugs,

2) scanners that identify vulnerabilities relying on a
database of known vulnerabilities.

Industries are finding more vulnerabilities than they can fix
promptly. This leads to a known situation in the security
domain, named alert fatigue, where security operators cannot
stay on top of the large number of alerts produced by potential
security issues, as cited by Sysdig in one of their articles [7]:



”Alert fatigue Syndrome is the feeling of becoming desensi-
tized to alerts, causing you to potentially ignore or minimize
risks and harming your capability to respond adequately to
potential security threats”.
Only a relatively small share of bugs discovered by fuzzers
typically has relevant security implications, while the process
of identifying and analyzing bugs to generate and deploy
patches remains laborious, expensive, and lacks automation.
Therefore, the software industry requires a way to set the
priority of fixing the most harmful bugs (e.g. stand-alone or
concatenated bugs that lead to a dangerous exploit), reducing
costs and manual effort for organizations, and minimizing
the time window in which users are exposed to potential
devastating cyberattacks.
Existing work does not study a critical aspect: how multiple
vulnerabilities can be combined. In fact, when taken individ-
ually, certain vulnerabilities do not provide highly dangerous
capabilities. However, when combined, even low/mid-severity
vulnerabilities can result in high-severity consequences.
Thus, approaches that study vulnerabilities individually, ac-
cording to their severity, are insufficient as they rely on an
unrealistic threat model [1].
Another issue in this field is that most of the defense tech-
niques are meant to react during an attack rather than prevent
it. In other words, only a few approaches adopt proactive
defenses.

III. DISCUSSION AND PRELIMINARY RESULTS

The main challenge for an effective vulnerability analysis
and prioritization strategy is considering multiple vulnerabil-
ities and the capabilities that they enable when combined. In
real-world settings, attackers put together (“chain”) multiple
vulnerabilities to successfully compromise systems. Thus,
ranking vulnerabilities individually, according to their severity,
is insufficient and unrealistic.
Most of the work about vulnerabilities kill-chain takes as a
baseline the CVSS score which is not a good indicator of how
bad the problem is in a particular scenario. For this purpose,
the environmental score is introduced but it is implemented in
a few papers and when used, most of the time the responsibility
is delegated to a security expert. So there is no clear definition
of which score is best since we need also to take into account
the misconfigurations that are introduced by the infrastructure
that allows the programs to work properly, as highlighted in
Fig.2.
The literature is also missing a clear definition of what is best
to prioritize:

1) single highest CVSS? (We disagree);
2) highest score of a kill-chain? Without taking into ac-

count its length;
3) the shortest chain with the highest score?

Finally, there is no clear definition of how to determine the
overall kill-chain score. These are critical open problems to
be addressed to provide a solid base to automate vulnerability
prioritization and patching. The second challenge is changing
the defender’s mindset: until today only two big approaches

have been proposed in the microservices field about the proac-
tive defense. Moving target defense [3] [4] and Mimic defense
[11] leverage the dynamic microservices environment to create
uncertainty for attackers, thereby reducing the probability
of successful attacks. There are no other real ideas about
proactive defenses which instead are highlighted as the leading
approaches for the future.

Fig. 2. Each abstraction level adds some vulnerabilities and misconfigurations

IV. OUR APPROACH

Our approach to cope with these conceptual problems
consist of looking at the scenario from both sides:

1) We want to shed some light on this problem by propos-
ing a method that assigns the proper score to each
vulnerability and misconfiguration in a selected envi-
ronment. We also want to give a clear definition of how
to determine the overall kill-chain score and identify the
most dangerous ones.
As soon as it’s done, we aim to automatically suggest
patches to fix the problem and automate the process of
vulnerability/misconfiguration discovery-fix.
To give a feeling of the proposed approach:

a) Discovery: we want to leverage open-source
tools like kube-bench [8], kube-hunter [9],
and kubeaudit [10] to scan for vulnerabili-
ties/misconfigurations and, based on these findings,
start reasoning about the scores and how can they
be concatenated.

b) Fix: this task is very dependent on the problem. For
instance, we can try to fix it by applying the new
update or release, other times, if the role assigned
to a certain user/pod is too permissive, we can try
to downgrade it.

After the patch is applied, start again with this procedure
because this last step can lead to a new leak in the
system.
We believe that having a tool that is able to highlight
and automatically fix the riskiest path according to the
company’s crown jewels, will help to stay on top of the
large number of alerts and potential security issues that
otherwise could lead to alert fatigue.



2) At the same time, we think taking the right countermea-
sures against the attackers is very useful since most of
the techniques available nowadays reason in a reactive
way, e.g. IDS, NIDS, and system call monitoring are all
used when the victim is under attack. We are wondering
if it is reasonable to create a new proactive defense by
probing the scenario before the attacker’s action, rather
than just responding to it after it has happened. Our
long shot is to automate the penetration testing process
as much as possible. Even if some tools, like Metasploit
[12], already exist and are well-established, we noticed
two main gaps:

a) none of them target specifically the Kubernetes
architecture or any other container orchestrator
structure;

b) they provide a framework or general reason-
ing, leveraging the pen-testers/red-teams knowl-
edge and skills.

We are not introducing a new concept because penetra-
tion testing was done before microservices, but not so
often because the business architecture changed a little
over time. Today we are faced with a very dynamic and
versatile architecture and this change must be managed
accordingly introducing, perhaps, a service that answers
the question: ”Can I find paths to break the cloud appli-
cation?”. This is a challenging task because the leading
idea is to write a program that is able to automatically
attack every single scenario as a pen-tester would do.
Since we need to:

a) gather the pen-testers/hacker behavior and skills;
b) gather the faulty/vulnerable scenarios;
c) generalize the techniques for all the possible cases.

It is easy to realize that the task is very ambitious but, at
the same time, it can be a game changer for the security
industry.

V. CONCLUSION

More attention should be granted to this field to reduce the
gap between academia and industry in container orchestration
security [6]. With this article, we want to emphasize the
false feeling of security generated by fixing the individual’s
most dangerous vulnerability, without taking into account the
bigger picture. We need an effective tool that is able to obtain
an accurate and comprehensive view of the vulnerabilities,
evaluate risks and generate cost-effective patches.
By approaching the problem from the other side, we are
thinking about taking the right countermeasures against the
attackers by reasoning in a proactive way, trying to make
the attack less likely to happen and more challenging for the
attackers to execute it.
Finally, to provide a better understanding of our work and
to propose our solution in a clear way, we aim to map this
flow to the ATT&CK framework [13], which is the most
used framework to describe adversary tactics, techniques, and
procedures (TTPs).
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Abstract—A Time-lock puzzle (TLP) sends information into
the future: a predetermined number of sequential computations
must occur (i.e., a predetermined amount of time must pass)
to retrieve the information, regardless of parallelization. Buoyed
by the excitement around secure decentralized applications and
cryptocurrencies, the last decade has witnessed numerous con-
structions of TLP variants and related applications (e.g., cost-
efficient blockchain designs, randomness beacons, e-voting, etc.).

In this poster, we first extend the notion of TLP by formally
defining the “time-lock public key encryption” (TLPKE) scheme.
Next, we introduce and construct a “tight short-lived signatures”
scheme using our TLPKE. Furthermore, to test the validity of
our proposed schemes, we do a proof-of-concept implementation
and run detailed simulations.

Index Terms—Time-Lock Puzzle, Short-Lived Signatures.

I. INTRODUCTION

A short-lived signature (SLS) provides a verifier with two
possibilities: either a generated signature σ on m is correct,
or a user has expended a minimum predetermined amount of
sequential work (T steps or time) to forge the signature. In
other words, the signatures created remain valid for a short
period of time T . Formally, we define the unforgeability period
as the time starting from when a signer creates a signature for
a message using their private signing information (or key) and
the Sign algorithm. Once the unforgeability period T has
elapsed, anyone can compute a forged signature using some
public signing information and the ForgeSign algorithm.

Recall that any party can compute a forged signature (using
ForgeSign) after the unforgeability period T has passed.
However, there is no guarantee that a party cannot generate
a forged signature in advance. To ensure this, we use the
same model used in [1]. The signature incorporates a random
beacon value to ensure it was not created before a specific time
T0. Suppose a verifier observes the signature within T̂ units
of time after T0. In this case, they will believe it is a valid
signature if T̂ < T because it would be impossible to have
forged the signature within that time period. Once T̂ ≥ T ,
the signature is no longer convincing as it may have been
constructed through forgery.

Brief Concurrent Work: Recently, Arun et al. [1] studied
the variants notion of short-lived cryptographic primitives, i.e.,
short-lived proofs and signatures. Similar to our work, they
make use of sequentially-ordered computations (T -sequential
computation) as a means to enforce time delay during which
signatures are unforgeable but become forgeable afterward
((1+ c) ·T -sequential computations). In this work, we use the

same models as used in [1], however, we define and construct
tight short-lived signatures, where the forged signatures can
be generated in time not much more than sequentially bound
T . In other words, tight short-lived signatures ensure that
forged signatures can be generated in exactly T sequential
computations.

TABLE I: Complexity comparison of SLS schemes.

Paper Setup & Sign Forge Sign Verify Tight
Arun et al. [1] poly(λ) O((1 + c) · T ) VDF ([2], [3]) No
Algorithm poly(λ) O(T ) O(1) Yes

Short-lived cryptographic primitives have many real-life use
cases; we refer to [1] for a detailed discussion of its applica-
tions. Our main contributions are summarised as follows:
• First, we extend the time-lock puzzle [4] by formally

defining the “time-lock public key encryption” (TLPKE)
scheme, and demonstrate a construction using a re-
peated squaring assumption in a group of unknown order
(Sec. III).

• We introduce and construct a “tight short-lived signature”
scheme from our TLPKE scheme (Sec. IV).

• We conduct a proof-of-concept implementation study and
analyze the performance of our construction (Sec. IV).

II. TECHNICAL PRELIMINARIES

Basic Notation: Given a set X , we denote by x
$← X the

process of sampling a value x from the uniform distribution
on X . Supp(X ) denotes the support of the distribution X . We
denote by λ ∈ N the security parameter. A function negl:
N → R is negligible if it is asymptotically smaller than any
inverse-polynomial function, namely, for every constant ϵ >
0 there exists an integer Nϵ and for all λ > Nϵ such that
negl(λ) ≤ λ−ϵ.

Number Theory: We assume that N = p · q is the product
of two large secret and safe primes and p ̸= q. We say that N
is a strong composite integer if p = 2p′ + 1 and q = 2q′ + 1
are safe primes, where p′ and q′ are also prime. We say that
ZN consists of all integers in [N ] that are relatively prime to
N (i.e., ZN = {x ∈ ZN : gcd(x,N) = 1}).

Repeated Squaring Assumption: The repeated squaring as-
sumption [4] roughly says that there is no parallel algorithm
that can perform T squarings modulo an integer N signifi-
cantly faster than just doing so sequentially, assuming that N
cannot be factored efficiently, or in other words RSW assump-
tion implies that factoring is hard. More formally, no adversary



can factor an integer N = p · q where p and q are large
secrets and “safe” primes (see [2] for details on “safe” primes).
Repeated squaring RSW = (Setup, Sample, Eval) is
defined below. Moreover, we define a trapdoor evaluation
RSW.tdEval (which enables fast repeated squaring eval-
uation), from which we can derive an actual output using
trapdoor in poly(λ) time.

• N ← RSW.Setup(λ) : Output pp = (N) where N = p · q as the product
of two large (λ-bit) randomly chosen secret and safe primes p and q.
• x← RSW.Sample(pp) : Sample a random instance x.
• y ← RSW.Eval(pp, T, x) : Output y = x2T mod N by computing the
T sequential repeated squaring from x.
• y ← RSW.tdEval(pp, sp = ϕ(N), x) : To compute y = x2T mod N
efficiently using the trapdoor as follows:

- Compute v = 2T mod ϕ(N).
Note: (2T mod ϕ(N))≪ 2T for large T

- Compute y = xv mod N .
Note: x2T ≡ x(2T mod ϕ(N)) ≡ xv (mod N).

Assumption 1 (T -Repeated Squaring Assumption without
Trapdoor [4]). For every security parameter λ ∈ N, N ∈
Supp(RSW.Setup(λ)), x ∈ Supp(RSW.Sample(N)), and a
time-bound parameter T , computing the x2T mod N without
knowledge of a trapdoor or secret parameter sp using the
RSW.Eval algorithm requires T -sequential time for algo-
rithms with poly(log(T ), λ)-parallel processors.

III. TIME-LOCK PUBLIC KEY ENCRYPTION

The notion of time-sensitive cryptography was introduced
by Rivest, Shamir, and Wagner [4] in 1996, in “Time-lock
puzzles and timed-release Crypto” (TLP). They presented a
construction using repeated squaring in a finite group of un-
known order, resulting in an encryption scheme. This scheme
allows the holder of a trapdoor to perform “fast” encryption
or decryption, while others without the trapdoor can only do
so slowly (requiring T sequential computations).

For the purpose of our tight short-lived signature protocol,
we require and define a variation of TLP. We follow the
definitions given in [4], altered to fit the public key encryption
paradigm, rather than symmetric key encryption. This varia-
tion, which we refer to as “Time-Lock Public Key Encryption”
(TLPKE)1, can be described as a “public key encryption
scheme with sequential and computationally intensive derived
private key generation”.

Protocol: The formal details of our TLPKE construc-
tion from repeated squaring, is TLPKE = (Setup, Eval,
Encrypt, Decrypt) specified in Algorithm 1.

Algorithm 1: Time-Lock Public Key Encryption

• TLPKE.Setup(λ, T )
1) Call and generate N ← RSW.Setup(λ)
2) Generate an input x ∈ Z∗

N ← RSW.Sample(pp)
3) Generates a key pair (pk, sk) for a semantically secure public-key encryption

scheme: PKE = (GenKey, Enc, Dec).
4) Encrypt the sk as ek = sk + x2T mod N

5) Compute y = x2T mod N ∈ Z∗
N efficiently using the trapdoor evaluation

1TLP with public key encryption instead of symmetric key encryption

RSW.tdEval(pp, sp = ϕ(N), x).
6) return pp = (N, T, x, pk, ek).

• TLPKE.Eval(pp)

1) Compute y = x2T mod N ∈ Z∗
N using RSW.Eval(pp, T, x)

2) Extract the decryption key sk = ek − y
3) return (y, sk)

• TLPKE.Encrypt(pp,M )
1) Encrypt a message M with key pk and a standard encryption Enc, to obtain

the ciphertext CM = Enc(pk,M ∥ x) and return CM .
• TLPKE.Decrypt(pp, sk, y, CM )

1) Decrypt the message as M ∥ x = Dec(sk, CM )
2) Parse M ∥ x and return the message M

IV. TIGHT SHORT-LIVED SIGNATURE

Syntax and Security Definitions: Here, we recall and modify
the definition of short-lived signatures (SLS) from [1] and
define our tight SLS as follows:

Definition IV.1 (Tight Short-Lived Signatures). Let λ ∈ N
be a security parameter and a space of random beacon
R ≥ 2λ. A short-lived signature SLS is a tuple of four
probabilistic polynomial time algorithms (Setup, Sign,
ForgeSign, Verify), as follows:
• Setup(λ) → (pp, sk), is randomized algorithm that

takes a security parameter λ and outputs public parame-
ters pp and a secret key sk (the sk can only be accessed
by the SLS.Sign algorithm). The public parameter pp
contains an input domain X , an output domain Y , and
time-bound parameter T .

• Sign(pp,m, r, sk)→ σ, takes a public parameter pp, a
secret parameter sp, a message m and a random beacon
r, and outputs (in time less than the predefined time
bound T ) a signature σ.

• ForgeSign(pp,m, r) → σ, takes a public parameter
pp, a message m and a random beacon r, and outputs
(in time exactly T ) a signature σ.

• Verify(pp,m, r, σ)→ {accept, reject}, is a determin-
istic algorithm takes a public parameter pp, a message
m and a random beacon r and a signature σ, and outputs
accept if σ is the correct signature on m and r, otherwise
outputs reject.

A SLS must satisfy the three properties Correctness (Defini-
tion IV.2), Existential Unforgeability (Definition IV.3), and
Indistinguishability (Definition IV.4) as follows:

Definition IV.2 (Correctness). A SLS is correct (or complete)
if for all λ ∈ N, m, and r ∈ R it holds that,

Pr
[
Verify(pp,m, r, σ) = accept

∣∣∣Setup(λ)→ (pp, sk)

Sign(m, r, sk)→ σ

]
= 1

Definition IV.3 (T -Time Existential Unforgeability). A SLS
has T -time existential unforgeability if ∀ λ, T ∈ N, m and
r ∈ R, and all pairs of PPT algorithms (A,A′), such
an A (offline) can run in total time poly(T, λ) and in a
parallel running time of A′ (online) on at most poly(log T, λ)-
processors is less than T , there exists a negligible function
negl such that,

Pr

[
Sign(m, r, sk)→ σ

Verify(pp,m∗
, r, σ

∗
)

= accept

∣∣∣∣∣
Setup(λ)→ (pp, sk)

A(pp, λ, T )→ α

A′
(pp,m∗

, r, α)→ σ
∗

]
≤ negl(λ)
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Definition IV.4 (Indistinguishability). A SLS is computa-
tionally indistinguishable (and statistically indistinguishable;
when taken over the random coins used by each algorithm and
randomly generated private parameters) if for all λ ∈ N, m,
and r ∈ R it holds that,∣∣∣∣∣∣∣

Pr

[
A(pp,m, r, σ) = accept

∣∣∣∣∣Setup(λ)→ (pp, sk)

Sign(m, r, sk)→ σ

]
−

Pr

[
A(pp,m, r, σ) = accept

∣∣∣∣∣Setup(λ)→ (pp, sk)

ForgeSign(pp,m, r)→ σ

]
∣∣∣∣∣∣∣ ≤ negl(λ)

Our scheme, formalized in Definition IV.1, presents an ef-
ficient generalized framework for short-lived signatures (Al-
gorithm 2) that is compatible with all signature schemes.
However, note that while our Indistinguishability definition
(Definition IV.4) compares distributions of output, some signa-
ture schemes are deterministic (e.g., BLS, RSA signature). In
such cases, it is necessary for Sign and Forge to produce the
exact signature (e.g., Schnorr signature) with overwhelming
probability.

Protocol Design: The formal construction of tight short-
lived signatures SLS = (Setup, Sign, ForgeSign,
Verify) using our TLPKE is specified in Algorithm 2.

Algorithm 2: Tight Short-Lived Signatures from TLPKE

• SLS.Setup(λ)
1) Call and generate N ← RSW.Setup(λ)
2) Generate an input x ∈ Z∗

N ← RSW.Sample(pp).
3) Choose a time bound parameter T ∈ T (λ).
4) Generates a key pair (pk, sk) = ΠKeyGen(λ) for a Signature scheme: Π =

(KeyGen, Sign, Verify).
5) Compute y = x2T mod N ∈ Z∗

N efficiently using the trapdoor evaluation
RSW.tdEval(pp, sp = ϕ(N), x).

6) Encrypts the sk as ek = sk + x2T mod N
7) Output public parameter pp = (N, T, x, pk, ek)a and secret key sk

generated by Π (sk can only be accessed by the SLS.Sign).
• SLS.Sign(m, r, sk)

1) Compute M = H(m ∥ r).
2) Compute a signature σ = ΠSign(sk,M).
3) Output a short-lived signature (σ, r).

• SLS.ForgeSign(pp,m, r)

1) Compute M = H(m ∥ r).
2) Call and extract (y, sk) = TLPKE.Eval(pp).
3) Compute a forge signature σ = ΠSign(sk,M)b.
4) Output a forge short-lived signature (σ, r)

• SLS.Verify(pp,m, r, σ)

1) Compute M = H(m ∥ r).
2) Check that ΠVerify(pk,M, σ)c.

aThe pp can be generate by calling TLPKE.Setup(λ).
bForge signature σ can be computed in time not much more than the sequentiality

bound exactly T even on a parallel computer with poly(log T, λ) processors.
Therefore, our SLS is Tight Short-Lived Signature.

cThe signature verification algorithm can be computed in O(1) time.

Theorem IV.1 (Tight Short-Lived Signatures). Assuming that
H is a random oracle, RSW is the repeated point squaring
assumption, and TLPKE is a time-lock public key encryption
scheme (see Algorithm 1), it holds that the protocol SLS
(Algorithm 2) is a tight short-lived signature scheme.

Proof Sketch. The correctness of the SLS scheme is proven
by the correctness of the underlying time-lock public key
encryption TLPKE. Indistinguishability is trivial as the signing

and forgery produce the exact signature using the underlying
signature scheme, given that the TLPKE.Eval (key extrac-
tion) and TLPKE.Decrypt (decryption) algorithms of the
underlying TLPKE are deterministic. The T -Time Existential
Unforgeability is a direct result of the sequentiality and secu-
rity (T -IND-CPA Security) property of the underlying TLPKE
and modeling H as a random oracle.

Experimental Results: We use Python to implement RSW
primitive (and hence our proposed TLPKE and tight SLS).
The experiments are performed using a Windows 11 system
with Intel(R) Core(TM) i5-1035G1 CPU @1.00GHz with 8
GB RAM. Note that RSW is the underlying required primitive
of our repeated squaring-based TLPKE and tight SLS. Hence,
in this poster, we do not provide detailed simulation results
for TLPKE and tight SLS, focusing instead on profiling the
underlying workhorse primitive.

In Figure 1, we show the experimental results for RSW
evaluation. The RSW.tdEval (Figure 1a) run time changes
linearly with the security parameter λ (the bit length of N
is derived from the bit length of λ). As shown in Figure 1b,
the time taken to compute the RSW.Eval increases with an
increase in the number of exponentiations. Changes in time T
yield a great variation in the evaluation time.

(a) Trapdoor Evaluation Time. (b) Evaluation Time.

Fig. 1: Trapdoor Evaluation and T -Sequential Evaluation of the Repeated Squaring
RSW. j is labelled as “Number of Exponentiations”, T = 2j .

V. FUTURE WORK

We conclude with an open problem: Arun et al. [1] define
reusable forgeability property in the context of short-lived
proofs (see Sec. 4.1 in [1]), which ensure that one slow
computation for a random beacon value (say r) enables
efficiently forging a proof for any statement (say x) without
performing a full additional slow computation. Furthermore,
Arun et al. [1] extend reusable forgeability in the context of
short-lived signatures and describe a construction (see Sec. 8.3
in [1]). In the near future, we hope to construct an efficient
tight reusable and forgeable short-lived signature scheme.
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Abstract—Buoyed by the excitement around secure decen-
tralized applications, the last few decades have seen numerous
constructions of distributed randomness beacons (DRB) along
with use cases; however, a secure DRB (in many variations)
remains an open problem. We further note that it is natural
to want some kind of reward for participants who spend time
and energy evaluating the randomness beacon value – this is
already common in distributed protocols.

In this work, we present RANDGENER, a novel n-party commit-
reveal-recover (or collaborative) DRB protocol with a novel reward
and penalty mechanism along with a set of realistic guarantees.
We design our protocol using trapdoor watermarkable verifiable
delay functions in the RSA group setting (without requiring a
trusted dealer or distributed key generation).

Index Terms—Randomness Beacon, Verifiable Delay Function.

I. INTRODUCTION

A randomness beacon [1] is an ideal functionality that
continuously publishes independent random values which no
party can predict or manipulate; critically, this value must be
efficiently verifiable by anyone. A Distributed Randomness
Beacon (DRB) protocol allows a set of participants to jointly
compute a continuous stream of randomness beacon outputs.
A secure DRB protocol should satisfy the following properties,
outlined in [2], [3], [4]:
(1) Liveness/availability: participants should not be able to

prevent the progress of random beacon computation,
(2) Guaranteed output delivery: adversaries should not be

able to prevent honest participants in the protocol from
obtaining a random beacon output,

(3) Bias-resistance: no participants should be able to influ-
ence future random beacon values to their advantage,

(4) Public verifiability: as soon as a random beacon value
is generated, it can be verified by anyone independently
using only public information, and

(5) Unpredictability: participants should not be able to pre-
dict the future random beacon values.

We introduce two new desirable properties for DRB proto-
cols: (6) a reward mechanism, which incentivizes participants
who invest time and energy in evaluating the randomness
beacon value by rewarding their effort, and (7) a penalty mech-
anism, which discourages inadequate participation, incorrect
information or cheating by applying penalties for participants
who engage in those actions.

Our n-party distributed randomness beacon protocol,
RANDGENER demonstrates a method of claiming “ownership”
of a randomness beacon value evaluation in each round of the
protocol’s execution. This is done by attaching a “watermark”
of computing participants to the result of the evaluation in or-
der to reward corresponding participants for their contribution.

Our contributions are summarised as follows:
• We extend watermarkable VDF (wVDF) defined in [5]

by formally defining a new type called trapdoor
wVDF. Furthermore, we demonstrate a construction using
Wesolowski [5] and Pietrzak’s [6] scheme.

• We construct RANDGENER, an efficient n-party commit-
reveal-recover (or collaborative) distributed randomness
beacon protocol with a novel reward mechanism and
penalty mechanism using a trapdoor wVDF. Our protocol
does not require any trusted (or expensive) setup and
proves that it provides the desired security properties.

Brief Relevant Work: A commit-reveal is a classic approach
proposed in [1]. First, all participants publish a commitment
yi = Commit(xi) to a random value xi. Next, participants
reveal their xi values, resulting in R = Combine(x1, . . . , xn)
for some suitable combination function (such as an exclusive-
or or a cryptographic hash).

However, the output can be biased by the last participant to
open their commitment (referred to as a last-revealer attack),
since the last participant, by knowing all other commitments
xi, can compute R early.

A very different approach to constructing DRBs uses time-
sensitive cryptography (TSC), specifically using delay func-
tions to prevent manipulation. The simplest example is Uni-
corn [4], a one-round protocol in which participants directly
publish (within a fixed time window) a random input xi.
The result is computed as R = TSC(Combine(x1, . . . , xn)).
However, the downside of the Unicorn [4] is that a delay func-
tion must be computed for every run of the protocol. Recently,
Choi et al. [3] introduced the Bicorn family of DRB protocols,
which retain the advantages of Unicorn [4] while enabling
efficient computation of the result (with no delay) if all par-
ticipants act honestly. Yet, as stated in [3], all Bicorn variants
come with a fundamental security caveat, i.e., the last revealer
prediction attack: if participant Pi withholds their xi value, but
all others publish, then participant Pi will be able to simulate
efficiently and learn R quickly (optimistic case), while honest



participants will need to execute the force open and compute
the delay function to complete before learning R (pessimistic
case). Similarly, a coalition of malicious participants can share
their x values and privately compute R. Nevertheless, none of
the existing delay-cryptography-based commit-reveal-recover
style DRB protocols provide a reward/penalty mechanism to
regulate the behaviour of corrupted participants. In this work,
we propose an efficient n-party commit-reveal-recover (or
collaborative) DRB protocol with a novel reward and penalty
mechanism based on the trapdoor wVDF.

TABLE I: Comparison collaborative DRB schemes.
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[4] Sloth O(n) O(1)
(n−1)

n ■G#✓ ×✓✓✓✓×✓××
[2] tVDF O(n2) O(1) n

2 □G#× ✓✓✓✓✓✓×××
[3] VDF O(n2) O(1) n− 1 ⊠G#× ✓✓✓✓✓✓✓××

Ours twVDF O(n2) O(1) n− 1 ⊠G#× ✓✓✓✓✓✓✓✓✓

□ denotes the “asynchronous” network model; ⊠ denotes the “partial synchronous”
network model; ■ denotes the “synchronous” network model. G# denotes the “Common
Reference String” setup assumption; ✓ denotes provide the property; × denotes does
not provide the property. GOD – Guaranteed Output Delivery.

II. TECHNICAL PRELIMINARIES

Basic Notation: Given a set X , we denote x
$← X as the

process of sampling a value x from the uniform distribution
on X . Supp(X ) denotes the support of the distribution X .

We denote the security parameter by λ ∈ N. A function
negl: N→ R is negligible if it is asymptotically smaller than
any inverse-polynomial function. Namely, for every constant
ϵ > 0 there exists an integer Nϵ for all λ > Nϵ such that
negl(λ) ≤ λ−ϵ.

Number Theory: We assume that N = p · q is the product
of two large secret and safe primes and p ̸= q. We say that N
is a strong composite integer if p = 2p′ + 1 and q = 2q′ + 1
are safe primes, where p′ and q′ are also prime. We say that
ZN consists of all integers in [N ] that are relatively prime to
N (i.e., ZN = {x ∈ ZN : gcd(x,N) = 1}).

Repeated Squaring Assumption: The repeated squaring as-
sumption [6] roughly states that there is no parallel algo-
rithm that can perform T squarings modulo an integer N
significantly faster than just doing so sequentially, assuming
that N cannot be factored efficiently, or in other words RSW
assumption implies that factoring is hard. More formally, no
adversary can factor an integer N = p · q where p and q are
large secret and “safe” primes [6]. A repeated squaring RSW
= (Setup, Sample, Eval) is defined below. Moreover,
we define a trapdoor evaluation RSW.tdEval (to enable fast
repeated squaring evaluation), from which we can derive an
actual output using trapdoor in poly(λ) time.

• N ← RSW.Setup(λ) : Output pp = (N) where N = p · q as the product
of two large (λ-bit) randomly chosen secret and safe primes p and q.
• x← RSW.Sample(pp) : Sample a random instance x.
• y ← RSW.Eval(pp, T, x) : Output y = x2T mod N by computing the
T sequential repeated squaring from x.
• y ← RSW.tdEval(pp, sp = ϕ(N), x) : To compute y = x2T mod N
efficiently using the trapdoor as follows: (i) Compute v = 2T mod ϕ(N).
Note: (2T mod ϕ(N))≪ 2T for large T . (ii) Compute y = xv mod N .
Note: x2T ≡ x(2T mod ϕ(N)) ≡ xv (mod N).

III. VERIFIABLE DELAY FUNCTION

A verifiable delay function (VDF), introduced by Boneh et
al. [7], is a special type of delay function f characterized by
a time-bound parameter T and the following three properties:
(i) T -sequential function: The function f can be evaluated in
sequential time T , but it should not be possible to evaluate
f significantly faster than T even with parallel processing.
(ii) Unique output: The function f produces a unique output,
which is efficiently and publicly (iii) Verifiable (in time that
is essentially independent of T ) - meaning that the function f
should produce a proof π which convinces a verifier that the
function output has been correctly computed.

Wesolowski [5] first describes a trapdoor VDF (tVDF) as
a modified and extended version of traditional VDFs [7] such
that the Setup algorithm, in addition to the public parameters
pp, outputs a trapdoor or secret parameter sp to the party
invoking the Setup algorithm. This parameter sp is kept
secret by the invoker, whereas pp is published. Furthermore,
using the trapdoor evaluation tdEval and trapdoor proof
generation tdProve (by enabling fast computations), the se-
cret parameter-holding participants can derive an actual output
and the proof of correctness in poly(λ) time. Parties without
knowledge of the trapdoor, as in the traditional VDF case, can
still compute the output and proof of correctness by executing
Eval and Prove. However, it requires T -sequential steps
to do so. For the purpose of our distributed random beacon
protocol, we require and define a trapdoor watermarkable VDF
(twVDF). In this case, we use the same trapdoor evaluation
tdEval, but we generate a watermarked proof of correctness
using tdProve by embedding a watermark of the evaluator.

In Algorithm 1, we provide details for the formal construc-
tion of watermarkable verifiable delay function VDF using
Wesolowski [5] and Pietrzak’s [6] scheme, consisting of al-
gorithms (Setup, Sample, Eval, Prove, Verify)
with a trapdoor watermarkable VDF evaluation tdEval and
proof generation tdProve.

Algorithm 1: Trapdoor Watermarkable VDF using Wesolowski and Pietrzak

• VDF.Setup(λ)
1) Call and generate N ← RSW.Setup(λ)
2) A cryptographically secure λ-bit hash function Hprime or Hrandom.
3) Generate a time-bound parameter T .
4) return pp = (N, T,H).
• VDF.Sample(pp)
1) Generate an input x ∈ Z∗

N ← RSW.Sample(pp)
• VDF.Eval(pp, x)

1) Compute y = x2T mod N ∈ Z∗
N using RSW.Eval(pp, T, x)

2) Generate an advice string α.

2



3) return (y, α).
• VDF.tdEval(pp, x)
1) Compute group order ϕ(N) = (p− 1) · (q − 1) using trapdoor (p, q).
2) Compute y = x2T mod N using RSW.tdEval(pp, sp = ϕ(N), x).
3) Generate an advice string α.
4) return (y, α).

. . . . . . . . . . . . . . . . . . . . Using Wesolowski’s [5] Scheme . . . . . . . . . . . . . . . . . . . .

• VDF.Prove(pp, x, µ, y, α, T )
1) Generate a prime l = Hprime(x ∥ y ∥ µ) a

2) Compute the proof πµ = x⌊2T /l⌋ (mod N) b and return πµ.
• VDF.tdProve(pp, x, µ, y, α, T )
1) Generate a prime l = Hprime(x ∥ y ∥ µ)
2) Compute group order ϕ(N) = (p− 1) · (q − 1) using trapdoor (p, q).
3) Compute proof πµ = x(⌊2T /l⌋ mod ϕ(N)) (mod N) and return πµ.
• VDF.Verify(pp, x, µ, y, πµ, T )
1) Generate a prime l = Hprime(x ∥ y ∥ µ)
2) r = 2T mod l
3) return accept if (πl

µ · x
r) mod N = y, otherwise reject

. . . . . . . . . . . . . . . . . . . . . . . Using Pietrzak’s [6] Scheme . . . . . . . . . . . . . . . . . . . . . . .

• VDF.Prove(pp, x, µ, y, α, T )

1) Compute u = x2T/2
mod N

2) Generate a random r = Hrandom(x ∥ T/2 ∥ y ∥ u ∥ µ) c

3) Compute x = xr · u mod N and y = ur · y mod N
4) Proof πµ = u ∪ VDF.Prove(pp, x, µ, y, α, T/2) and return πµ.
• VDF.tdProve(pp, x, µ, y, α, T )
1) Compute group order ϕ(N) = (p− 1) · (q − 1) using trapdoor (p, q).
2) Compute u = x(2T/2 mod ϕ(N)) mod N
3) Generate a random r = Hrandom(x ∥ T/2 ∥ y ∥ u ∥ µ)
4) Compute x = x(r mod ϕ(N)) ·u mod N and y = u(r mod ϕ(N)) ·y

mod N
5) Proof πµ = u ∪ VDF.tdProve(pp, x, µ, y, α, T/2) and return πµ.
• VDF.Verify(pp, x, µ, y, πµ, T )
1) Generate a random r = Hrandom(x ∥ T/2 ∥ y ∥ u ∥ µ)
2) Compute x = xr · u mod N and y = ur · y mod N
3) Call VDF.Verify(pp, x, µ, y, πµ, T/2)
4) return accept if T = 1 check y = x2 mod N , otherwise reject.

aSampled uniformly from Prime(λ)
bµ is an evaluator’s watermark
cSampled uniformly from {1, 2, . . . , 2λ}

IV. RANDGENER PROTOCOL DESIGN

In this section, we present our RANDGENER protocol,
a n-party distributed randomness beacon protocol DRB =
(Setup, VerifySetup, Gen). The construction details
are in Algorithm 2 using our trapdoor watermarkable VDF.

Algorithm 2: RANDGENER: Distributed Randomness Beacon Protocol

Input: A globally agreed security parameter λ, a set of participants P =
{P1, P2, . . . , Pn}, a set of public parameters PP = {pp1, pp2, . . . , ppn},
a time-bound parameter T , an initial random beacon value R0 (it becomes available
to all parties running the protocol after the setup is completed at approximately the
same time), and two cryptographically secure λ-bit hash functions: (i) HrandToinput
– mapping a random value to the input space of the VDF, and (ii) HinputTorand –
mapping a VDF output to a random value.
Output: The randomness beacon value R1, R2, . . . , R∞ for that round of the
protocol.

• DRB.Setup(λ)
1) ∀i Pi ∈ P locally generate a public parameter ppi = (Ni, T,H) =

VDF.Setup(λ).
2) ∀i Pi ∈ P run the zero-knowledge protocol for proving that a known Ni is

the product of two safe primes and the protocol “proving the knowledge of a
discrete logarithm that lies in a given range” to show that the prime factors
pi and qi are λ-bits each. Let πNi

denote the resulting proof obtained by
running both protocols non-interactively using the Fiat-Shamir heuristic.

3) Broadcast (PP = {pp1, . . . , ppn}, Π = {πN1
, . . . , πNn}).

• DRB.VerifySetup(PP,Π)

1) For each public parameter ppi ∈ PP and a corresponding proof πNi
∈ Π,

return accept if the validity of ppi can be successfully checked by using
the verification procedures corresponding to the proof techniques used in
DRB.Setup algorithm as specified in [2], otherwise return reject.

• DRB.Gen(PP, T, R0)

1) Set r ← 1.

. . . . . . . . . . . . . . . . . . . . . . . Commit . . . . . . . . . . . . . . . . . . . . . . . deadline T0

2) Compute xr ← HrandToinput(Rr−1).
3) Generate a random input x′

r,i

4) Compute and publish xr,i ← H(x′
r,i||x

′
r) ▷ Broadcast

. . . . . . . . . . . . . . . . . . . . . . . . Reveal . . . . . . . . . . . . . . . . . . . . . . . . deadline T1

5) For each participant Pi ∈ P in parallel
a) Compute (yr,i, αr,i)← VDF.tdEval(ppi, xr,i, T ).
b) Compute πr,i ← VDF.tdProve(ppi, xr,i, µi, yr,i, αr,i, T ).
c) Publish (yr,i, πr,i). ▷ Broadcast

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6) For each participant Pi ∈ P , verify (xr, yr,i, πr,i)

a) If VDF.Verify(ppi, xr,i, yr,i, πr,i, T ) = reject or xr,i was not
published by T1, then remove participant Pi and add P̃ ← P̃ ∪Pi.

7) For all Pi ∈ P , If VDF.Verify(ppi, xr,i, yr,i, πr,i, T ) = accept
a) Compute yr =

∏
Pi∈P yr,i ▷ Optimistic case

b) Optionally, a proof πyr can be compute to enable verification of yr .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8) For each participant Pj ∈ P̃ in parallel ▷ Pessimistic case
a) Compute (yr,j , αr,j)← VDF.Eval(ppj , xr,j , T ).
b) Compute πr,j ← VDF.Prove(ppj , xr,j , µr, yr,j , αr,j , T ).
c) Compute yr =

∏
Pi∈P yr,i ·

∏
Pj∈P̃ yr,j

d) Optionally, a proof πyr can be computed to enable verification of yr .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9) Output the r-th round’s randomness beacon Rr ← HinputTorand(yr)
10) Reward the participants computing the r-th round’s randomness beacon

value P \ P̃ and apply a Penalty to participants P̃ .
11) Set r ← r + 1.
12) Repeat from step 2 to step 11 – to generate the next round’s randomness.

Theorem IV.1. Assuming that HrandToinput and HinputTorand is
the random oracle and VDF is a trapdoor watermarkable VDF,
then it holds that Algorithm 2 is a DRB scheme.

The proof of Theorem IV.1 is deferred to the full version.

V. FUTURE WORK

Existing collaborative DRB protocols experience challenges
in inefficient communication complexity, which limits their
scalability.

In the near future, we hope to construct a complexity-
efficient collaborative DRB protocol.
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Abstract—Secure multi-party computation (MPC)
in a three-party honest majority scenario is cur-
rently the state-of-the-art for running machine
learning algorithms in a privacy-preserving man-
ner. For efficiency reasons, fixed-point arithmetic
is widely used to approximate computation over
decimal numbers. In this poster we present a work-
in-progress efficient three-party maliciously secure
truncation protocol without pre-processing, thereby
improving on the current state-of-the-art in MPC
over rings using replicated secret sharing (RSS).

1. Introduction

Machine learning (ML) and AI dominate the
world of data processing, and the need to preserve
the privacy of both the model owners’ and users’
data becomes an important objective. Numerous
works on privacy-preserving machine learning
use advanced cryptographic techniques such as
secure multi-party computation (MPC) [2]–[4]
to enable confidential training and inference of
various machine learning models. In MPC, the
state-of-the-art is computation in the three-party
setting with honest majority.

A key component in evaluating ML algo-
rithms over MPC is the efficient computation on
secret-shared decimal numbers. Since true float-
ing point arithmetic is expensive, an approxima-
tion, namely fixed-point arithmetic, is employed.
Here, the decimal number is encoded with fixed
precision as an integer where the integer size
is chosen to accommodate the expected range.
Multiplication of two fixed-point integers doubles
the length of the fractional part and thus requires
efficient truncation afterwards to retain the origi-
nal precision. For efficient secret sharing in MPC,
the integer is represented in a ring. SecureML [3]

first proposed a technique allowing truncation
by local operations on the shares in a two-party
setting in semi-honest security. The current state-
of-the-art three-party maliciously secure trunca-
tion was proposed by ABY3 [2], and adopted by
follow up works such as Falcon [4]. In the online
phase, this truncation requires only one round of
communication and only one ring element sent
per party. However, the pre-processing phase in-
volves a costly evaluation of subtraction circuits,
resulting in lower combined throughput.

In this poster, we report on a work-in-progress
protocol that computes the truncation of fixed-
point numbers without pre-processing securely
in the presence of one malicious adversary in
the three-party setting. Our protocol achieves an
overall low cost of two rounds of communication
and one ring element sent per party.
Idea. Our protocol is based on the two-party trun-
cation from SecureML [3]. We first run a semi-
honest truncation in the first round and repeat the
semi-honest truncation a second time but with
a different subset of parties. Finally, the output
of the second round is used to verify that no
malicious behaviour tampered the result obtained
in the first round.

In the following, we briefly present necessary
preliminaries in Sect. 2 and describe our protocol
for truncation in Sect. 3.

2. Preliminaries

We begin by presenting the notation used
throughout this poster, and discuss related work.

2.1. Notation

Given a fixed-point encoded secret x ∈
(−2ℓx , 2ℓx), we define z to be the encoding of



x in the ring Z2ℓ , such that z = x if x ≥ 0 and
z = 2ℓ−x if x < 0. Here, ℓx denotes the length of
the input x, such that ℓx < ℓ−1. We use the nota-
tion of JzK to denote a 2-out-of-3 replicated secret
sharing (RSS), where JzK = (s1, s2, s3), such that
s1 + s2 + s3 = z. We use JzKi = (si, si+1) for
1 ≤ i ≤ 3 to denote the shares of individual
parties. Further, we use ⟨z⟩ to denote 2-out-of-
2 additive sharing of z, i.e., ⟨z⟩1 + ⟨z⟩2 = z
and ⟨z⟩i denotes the share of party i. If z is the
result of a fixed-point multiplication, we denote
the truncation of z by ℓD bits as ⌊z⌋. We use the

notation r
$i,j←−− Z2ℓ to denote r ∈ Z2ℓ sampled

uniformly at random from shared randomness
between parties i and j.

2.2. Related work

In SecureML [3], the authors observe that the
following local operations on a two-party additive
sharing of z amount to a truncation with an error
on the least significant bit (LSB) with a large
probability. If party P1 computes ⟨⌊z⌋⟩1 = ⌊⟨z⟩1⌋
and party P2 computes ⟨⌊z⌋⟩2 = 2ℓ−⌊2ℓ−⟨z⟩2⌋
locally, where ⌊⟨·⟩⌋ denotes a truncation, i.e.,
right shift, on the share value, then the result is a
sharing of ⌊z⌋ ± 1 with probability 1 − 2ℓx+1−ℓ

(see [3, Theorem 1]).
ABY3 [2] introduces two truncation methods

for three-party RSS schemes. The authors note
that the local truncation of SecureML fails when
naively extended to three parties. Nevertheless,
assuming semi-honest security, two parties can
transform a RSS JzK to a 2-out-of-2 sharing
⟨z⟩,perform the SecureML truncation with local
operations and reshare the result to obtain shares
of J⌊z⌋K. However, the above approach is not
secure in the presence of a malicious adversary.
ABY3 therefore proposes another technique to
achieve a maliciously secure truncation. The al-
gorithm assumes a pre-processed pair of shares
of random JrK and J⌊r⌋K, from which the parties
are able to compute J⌊z⌋K = J⌊r⌋K + ⌊(z − r)⌋.
However, the pre-processing is heavy in commu-
nication, requiring O(ℓ) rounds.

3. MaSTer: Maliciously secure trunca-
tion for replicated secret sharing

In Sect. 3.1 and Fig. 1, we describe the idea
behind our maliciously secure truncation protocol

without the need for an offline phase. In Sect. 3.2
and 3.3 we briefly describe our results regarding
the truncation error bounds and give a sketch
proof of security.

3.1. Protocol

Our protocol combines the SecureML trunca-
tion with the extension to a three-party scenario
in semi-honest setting as suggested by ABY3.
The protocol (see Fig. 1) consists of two rounds.
The first round is analogous to the semi-honest
truncation with resharing afterwards and results
in unchecked shares of the truncated multiplica-
tion result in RSS. In our case, the only way
a malicious party can influence the result is by
controlling P1 in the first round and sending
s′2 + δ, where δ is an additive error introduced
by the malicious party. In order to detect this
potential malicious behaviour in the first round,
we introduce a second round where parties P2

and P3 compute the two-party truncation, such
that P1 does not contribute. Therefore, P2 and
P3 now hold two independently created sharings
of the truncated value, allowing them to compute
the difference and hence verifying the correctness
of the value sent by P1, up to an error of ±1. We
will refer to the verification as a γ-check.

3.2. Error Analysis

In Theorem 1 we formalise the probability of
a successful execution of our protocol, verifying
the correctness and consistency of the γ-check.
Upon closer analysis of the error potentially oc-
curring in each execution of the SecureML trun-
cation, we can conclude that despite the execution
of two independent truncations, the difference
between the two results can be bounded by ±1.
This is because the two truncations are performed
on a sharing with the same randomness.

Theorem 1 (Correctness of consistency check).
In an honest execution of ΠTrunc (see Fig. 1),
the consistency check holds with probability
Pr

[∑3
i=1 γi ∈ {0,±1}

]
≥ 1− 2ℓx+2−ℓ.

It is important to note that in the case of
triggering the failure condition of the SecureML
probabilistic truncation, the obtained result will
include a very large error instead of the small
error of ±1. Such error can result in large γ value
causing an abort with no misbehaviour of a ma-
licious party. However, based on Theorem 1 we



Truncation protocol ΠTrunc
P1 P2 P3

JzK1 = (s1, s2) JzK2 = (s2, s3) JzK3 = (s3, s1)

s′1 := r′
$1,3←−− Z2ℓ s′1 := r′

$1,3←−− Z2ℓ

s′2 := rshift(s1 + s2)− r′
s′2−→ s′3 := 2ℓ − rshift(2ℓ − s3) s′3 := 2ℓ − rshift(2ℓ − s3)

s′′3 := r′′
$2,3←−− Z2ℓ s′′3 := r′′

$2,3←−− Z2ℓ

s′′2 := 2ℓ − rshift(2ℓ − s2) s′′1 := rshift(s3 + s1)− r′′

γ2 = s′2 − s′′2
γ2−→ γ1 = s′1 − s′′1

γ3 = s′3 − s′′3
γ1←− γ3 = s′3 − s′′3

Check |
∑

γi| ≤ 1 Check |
∑

γi| ≤ 1

Output J⌊z⌋K1 := (s′1, s
′
2) Output J⌊z⌋K2 := (s′2, s

′
3) Output J⌊z⌋K3 := (s′3, s

′
1)

Figure 1. The truncation protocol ΠTrunc.

can conclude that our protocol aborts incorrectly
with negligible probability for large ℓ.

3.3. Security Proof Sketch

We prove that Πtrunc securely realises Ftrunc
against a static malicious adversary who corrupts
a single party.

Proof. (Sketch.) We give a simulator S that sim-
ulates the honest parties towards an adversary in
an ideal execution with access to Ftrunc. The goal
is to show that this interaction is indistinguishable
for the environment from the interaction between
the real adversary and the real protocol. Notably,
S does not know the inputs of the honest parties
it simulates. However, in the input phase, the
adversary secret-shares its inputs with the hon-
est parties/simulator and thus S always knows
the shares of the corrupted party and can track
them throughout the whole computation. If P1

is corrupted, S receives s′2 from A and since S
knows s2, can reproduce the computation and fail
accordingly. If P2 is corrupted, S sends a random
value in place of s′2 and adapts γ1 s.t. the check
will still hold. If P3 is corrupted, S reproduces
γ1 and γ3 and sends a γ2 that is consistent. In
any case, S uses the ideal truncation functionality
Ftrunc to prepare the output shares.

4. Experiments

We run our experiments in the MP-SPDZ [1]
framework. Our setup consists of three servers
with 16GB RAM each and the network configu-
ration: (i) LAN: 10Gbit throughput, 0.1ms round

trip time (RTT), (ii) WAN: 50Mbps throughput,
40ms RTT. We report the performance results in
Table 1.

TABLE 1. INFERENCE OF ONE SAMPLE, TOTALLING 17100
TRUNCATIONS.

Offline Online Throughput Data
sentLAN WAN LAN WAN LAN WAN

ABY3 0.12 9.35 0.026 2.41 410 5 25.76
MaSTer 0.033 3.657 1818 16 0.407

For a single query we improve the total run-
ning time by a factor of three. The evaluation time
is displayed in seconds, data sent in MB and the
throughput denotes the number of inferences per
minute.
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