
Poster: RANDGENER: Distributed Randomness
Beacon from Verifiable Delay Function
Arup Mondal

Ashoka University
Sonipat, Haryana, India

arup.mondal phd19@ashoka.edu.in

Ruthu Hulikal Rooparaghunath
Vrije Universiteit

Amsterdam, The Netherlands
r.rooparaghunath@student.vu.nl

Debayan Gupta
Ashoka University

Sonipat, Haryana, India
debayan.gupta@ashoka.edu.in

Abstract—Buoyed by the excitement around secure decen-
tralized applications, the last few decades have seen numerous
constructions of distributed randomness beacons (DRB) along
with use cases; however, a secure DRB (in many variations)
remains an open problem. We further note that it is natural
to want some kind of reward for participants who spend time
and energy evaluating the randomness beacon value – this is
already common in distributed protocols.

In this work, we present RANDGENER, a novel n-party commit-
reveal-recover (or collaborative) DRB protocol with a novel reward
and penalty mechanism along with a set of realistic guarantees.
We design our protocol using trapdoor watermarkable verifiable
delay functions in the RSA group setting (without requiring a
trusted dealer or distributed key generation).

Index Terms—Randomness Beacon, Verifiable Delay Function.

I. INTRODUCTION

A randomness beacon [1] is an ideal functionality that
continuously publishes independent random values which no
party can predict or manipulate; critically, this value must be
efficiently verifiable by anyone. A Distributed Randomness
Beacon (DRB) protocol allows a set of participants to jointly
compute a continuous stream of randomness beacon outputs.
A secure DRB protocol should satisfy the following properties,
outlined in [2], [3], [4]:
(1) Liveness/availability: participants should not be able to

prevent the progress of random beacon computation,
(2) Guaranteed output delivery: adversaries should not be

able to prevent honest participants in the protocol from
obtaining a random beacon output,

(3) Bias-resistance: no participants should be able to influ-
ence future random beacon values to their advantage,

(4) Public verifiability: as soon as a random beacon value
is generated, it can be verified by anyone independently
using only public information, and

(5) Unpredictability: participants should not be able to pre-
dict the future random beacon values.

We introduce two new desirable properties for DRB proto-
cols: (6) a reward mechanism, which incentivizes participants
who invest time and energy in evaluating the randomness
beacon value by rewarding their effort, and (7) a penalty mech-
anism, which discourages inadequate participation, incorrect
information or cheating by applying penalties for participants
who engage in those actions.

Our n-party distributed randomness beacon protocol,
RANDGENER demonstrates a method of claiming “ownership”
of a randomness beacon value evaluation in each round of the
protocol’s execution. This is done by attaching a “watermark”
of computing participants to the result of the evaluation in or-
der to reward corresponding participants for their contribution.

Our contributions are summarised as follows:
• We extend watermarkable VDF (wVDF) defined in [5]

by formally defining a new type called trapdoor
wVDF. Furthermore, we demonstrate a construction using
Wesolowski [5] and Pietrzak’s [6] scheme.

• We construct RANDGENER, an efficient n-party commit-
reveal-recover (or collaborative) distributed randomness
beacon protocol with a novel reward mechanism and
penalty mechanism using a trapdoor wVDF. Our protocol
does not require any trusted (or expensive) setup and
proves that it provides the desired security properties.

Brief Relevant Work: A commit-reveal is a classic approach
proposed in [1]. First, all participants publish a commitment
yi = Commit(xi) to a random value xi. Next, participants
reveal their xi values, resulting in R = Combine(x1, . . . , xn)
for some suitable combination function (such as an exclusive-
or or a cryptographic hash).

However, the output can be biased by the last participant to
open their commitment (referred to as a last-revealer attack),
since the last participant, by knowing all other commitments
xi, can compute R early.

A very different approach to constructing DRBs uses time-
sensitive cryptography (TSC), specifically using delay func-
tions to prevent manipulation. The simplest example is Uni-
corn [4], a one-round protocol in which participants directly
publish (within a fixed time window) a random input xi.
The result is computed as R = TSC(Combine(x1, . . . , xn)).
However, the downside of the Unicorn [4] is that a delay func-
tion must be computed for every run of the protocol. Recently,
Choi et al. [3] introduced the Bicorn family of DRB protocols,
which retain the advantages of Unicorn [4] while enabling
efficient computation of the result (with no delay) if all par-
ticipants act honestly. Yet, as stated in [3], all Bicorn variants
come with a fundamental security caveat, i.e., the last revealer
prediction attack: if participant Pi withholds their xi value, but
all others publish, then participant Pi will be able to simulate
efficiently and learn R quickly (optimistic case), while honest

participants will need to execute the force open and compute
the delay function to complete before learning R (pessimistic
case). Similarly, a coalition of malicious participants can share
their x values and privately compute R. Nevertheless, none of
the existing delay-cryptography-based commit-reveal-recover
style DRB protocols provide a reward/penalty mechanism to
regulate the behaviour of corrupted participants. In this work,
we propose an efficient n-party commit-reveal-recover (or
collaborative) DRB protocol with a novel reward and penalty
mechanism based on the trapdoor wVDF.

TABLE I: Comparison collaborative DRB schemes.

Paper
Crypto
Primit.

Comp.
Cost

Comm.
Cost

Fault
Toler.

Crypto
Model Features

N
etw

ork
M

odel

Setup
A

ssum
ption

Trusted
Setup

Req.
A

daptive
A

dversary

Liveness/Availability

Bias
Resistance

Fairness
G

O
D

Scaleability

U
npredictability

Reward
Penalty

[4] Sloth O(n) O(1)
(n−1)

n ■G#✓ ×✓✓✓✓×✓××
[2] tVDF O(n2) O(1) n

2 □G#× ✓✓✓✓✓✓×××
[3] VDF O(n2) O(1) n− 1 ⊠G#× ✓✓✓✓✓✓✓××

Ours twVDF O(n2) O(1) n− 1 ⊠G#× ✓✓✓✓✓✓✓✓✓

□ denotes the “asynchronous” network model; ⊠ denotes the “partial synchronous”
network model; ■ denotes the “synchronous” network model. G# denotes the “Common
Reference String” setup assumption; ✓ denotes provide the property; × denotes does
not provide the property. GOD – Guaranteed Output Delivery.

II. TECHNICAL PRELIMINARIES

Basic Notation: Given a set X , we denote x
$← X as the

process of sampling a value x from the uniform distribution
on X . Supp(X) denotes the support of the distribution X .

We denote the security parameter by λ ∈ N. A function
negl: N→ R is negligible if it is asymptotically smaller than
any inverse-polynomial function. Namely, for every constant
ϵ > 0 there exists an integer Nϵ for all λ > Nϵ such that
negl(λ) ≤ λ−ϵ.

Number Theory: We assume that N = p · q is the product
of two large secret and safe primes and p ̸= q. We say that N
is a strong composite integer if p = 2p′ + 1 and q = 2q′ + 1
are safe primes, where p′ and q′ are also prime. We say that
ZN consists of all integers in [N] that are relatively prime to
N (i.e., ZN = {x ∈ ZN : gcd(x,N) = 1}).

Repeated Squaring Assumption: The repeated squaring as-
sumption [6] roughly states that there is no parallel algo-
rithm that can perform T squarings modulo an integer N
significantly faster than just doing so sequentially, assuming
that N cannot be factored efficiently, or in other words RSW
assumption implies that factoring is hard. More formally, no
adversary can factor an integer N = p · q where p and q are
large secret and “safe” primes [6]. A repeated squaring RSW
= (Setup, Sample, Eval) is defined below. Moreover,
we define a trapdoor evaluation RSW.tdEval (to enable fast
repeated squaring evaluation), from which we can derive an
actual output using trapdoor in poly(λ) time.

• N ← RSW.Setup(λ) : Output pp = (N) where N = p · q as the product
of two large (λ-bit) randomly chosen secret and safe primes p and q.
• x← RSW.Sample(pp) : Sample a random instance x.
• y ← RSW.Eval(pp, T, x) : Output y = x2T mod N by computing the
T sequential repeated squaring from x.
• y ← RSW.tdEval(pp, sp = ϕ(N), x) : To compute y = x2T mod N
efficiently using the trapdoor as follows: (i) Compute v = 2T mod ϕ(N).
Note: (2T mod ϕ(N))≪ 2T for large T . (ii) Compute y = xv mod N .
Note: x2T ≡ x(2T mod ϕ(N)) ≡ xv (mod N).

III. VERIFIABLE DELAY FUNCTION

A verifiable delay function (VDF), introduced by Boneh et
al. [7], is a special type of delay function f characterized by
a time-bound parameter T and the following three properties:
(i) T -sequential function: The function f can be evaluated in
sequential time T , but it should not be possible to evaluate
f significantly faster than T even with parallel processing.
(ii) Unique output: The function f produces a unique output,
which is efficiently and publicly (iii) Verifiable (in time that
is essentially independent of T) - meaning that the function f
should produce a proof π which convinces a verifier that the
function output has been correctly computed.

Wesolowski [5] first describes a trapdoor VDF (tVDF) as
a modified and extended version of traditional VDFs [7] such
that the Setup algorithm, in addition to the public parameters
pp, outputs a trapdoor or secret parameter sp to the party
invoking the Setup algorithm. This parameter sp is kept
secret by the invoker, whereas pp is published. Furthermore,
using the trapdoor evaluation tdEval and trapdoor proof
generation tdProve (by enabling fast computations), the se-
cret parameter-holding participants can derive an actual output
and the proof of correctness in poly(λ) time. Parties without
knowledge of the trapdoor, as in the traditional VDF case, can
still compute the output and proof of correctness by executing
Eval and Prove. However, it requires T -sequential steps
to do so. For the purpose of our distributed random beacon
protocol, we require and define a trapdoor watermarkable VDF
(twVDF). In this case, we use the same trapdoor evaluation
tdEval, but we generate a watermarked proof of correctness
using tdProve by embedding a watermark of the evaluator.

In Algorithm 1, we provide details for the formal construc-
tion of watermarkable verifiable delay function VDF using
Wesolowski [5] and Pietrzak’s [6] scheme, consisting of al-
gorithms (Setup, Sample, Eval, Prove, Verify)
with a trapdoor watermarkable VDF evaluation tdEval and
proof generation tdProve.

Algorithm 1: Trapdoor Watermarkable VDF using Wesolowski and Pietrzak

• VDF.Setup(λ)
1) Call and generate N ← RSW.Setup(λ)
2) A cryptographically secure λ-bit hash function Hprime or Hrandom.
3) Generate a time-bound parameter T .
4) return pp = (N, T,H).
• VDF.Sample(pp)
1) Generate an input x ∈ Z∗

N ← RSW.Sample(pp)
• VDF.Eval(pp, x)

1) Compute y = x2T mod N ∈ Z∗
N using RSW.Eval(pp, T, x)

2) Generate an advice string α.

2

3) return (y, α).
• VDF.tdEval(pp, x)
1) Compute group order ϕ(N) = (p− 1) · (q − 1) using trapdoor (p, q).
2) Compute y = x2T mod N using RSW.tdEval(pp, sp = ϕ(N), x).
3) Generate an advice string α.
4) return (y, α).

. Using Wesolowski’s [5] Scheme .

• VDF.Prove(pp, x, µ, y, α, T)
1) Generate a prime l = Hprime(x ∥ y ∥ µ) a

2) Compute the proof πµ = x⌊2T /l⌋ (mod N) b and return πµ.
• VDF.tdProve(pp, x, µ, y, α, T)
1) Generate a prime l = Hprime(x ∥ y ∥ µ)
2) Compute group order ϕ(N) = (p− 1) · (q − 1) using trapdoor (p, q).
3) Compute proof πµ = x(⌊2T /l⌋ mod ϕ(N)) (mod N) and return πµ.
• VDF.Verify(pp, x, µ, y, πµ, T)
1) Generate a prime l = Hprime(x ∥ y ∥ µ)
2) r = 2T mod l
3) return accept if (πl

µ · x
r) mod N = y, otherwise reject

. Using Pietrzak’s [6] Scheme .

• VDF.Prove(pp, x, µ, y, α, T)

1) Compute u = x2T/2
mod N

2) Generate a random r = Hrandom(x ∥ T/2 ∥ y ∥ u ∥ µ) c

3) Compute x = xr · u mod N and y = ur · y mod N
4) Proof πµ = u ∪ VDF.Prove(pp, x, µ, y, α, T/2) and return πµ.
• VDF.tdProve(pp, x, µ, y, α, T)
1) Compute group order ϕ(N) = (p− 1) · (q − 1) using trapdoor (p, q).
2) Compute u = x(2T/2 mod ϕ(N)) mod N
3) Generate a random r = Hrandom(x ∥ T/2 ∥ y ∥ u ∥ µ)
4) Compute x = x(r mod ϕ(N)) ·u mod N and y = u(r mod ϕ(N)) ·y

mod N
5) Proof πµ = u ∪ VDF.tdProve(pp, x, µ, y, α, T/2) and return πµ.
• VDF.Verify(pp, x, µ, y, πµ, T)
1) Generate a random r = Hrandom(x ∥ T/2 ∥ y ∥ u ∥ µ)
2) Compute x = xr · u mod N and y = ur · y mod N
3) Call VDF.Verify(pp, x, µ, y, πµ, T/2)
4) return accept if T = 1 check y = x2 mod N , otherwise reject.

aSampled uniformly from Prime(λ)
bµ is an evaluator’s watermark
cSampled uniformly from {1, 2, . . . , 2λ}

IV. RANDGENER PROTOCOL DESIGN

In this section, we present our RANDGENER protocol,
a n-party distributed randomness beacon protocol DRB =
(Setup, VerifySetup, Gen). The construction details
are in Algorithm 2 using our trapdoor watermarkable VDF.

Algorithm 2: RANDGENER: Distributed Randomness Beacon Protocol

Input: A globally agreed security parameter λ, a set of participants P =
{P1, P2, . . . , Pn}, a set of public parameters PP = {pp1, pp2, . . . , ppn},
a time-bound parameter T , an initial random beacon value R0 (it becomes available
to all parties running the protocol after the setup is completed at approximately the
same time), and two cryptographically secure λ-bit hash functions: (i) HrandToinput
– mapping a random value to the input space of the VDF, and (ii) HinputTorand –
mapping a VDF output to a random value.
Output: The randomness beacon value R1, R2, . . . , R∞ for that round of the
protocol.

• DRB.Setup(λ)
1) ∀i Pi ∈ P locally generate a public parameter ppi = (Ni, T,H) =

VDF.Setup(λ).
2) ∀i Pi ∈ P run the zero-knowledge protocol for proving that a known Ni is

the product of two safe primes and the protocol “proving the knowledge of a
discrete logarithm that lies in a given range” to show that the prime factors
pi and qi are λ-bits each. Let πNi

denote the resulting proof obtained by
running both protocols non-interactively using the Fiat-Shamir heuristic.

3) Broadcast (PP = {pp1, . . . , ppn}, Π = {πN1
, . . . , πNn}).

• DRB.VerifySetup(PP,Π)

1) For each public parameter ppi ∈ PP and a corresponding proof πNi
∈ Π,

return accept if the validity of ppi can be successfully checked by using
the verification procedures corresponding to the proof techniques used in
DRB.Setup algorithm as specified in [2], otherwise return reject.

• DRB.Gen(PP, T, R0)

1) Set r ← 1.

. Commit . deadline T0

2) Compute xr ← HrandToinput(Rr−1).
3) Generate a random input x′

r,i

4) Compute and publish xr,i ← H(x′
r,i||x

′
r) ▷ Broadcast

. Reveal . deadline T1

5) For each participant Pi ∈ P in parallel
a) Compute (yr,i, αr,i)← VDF.tdEval(ppi, xr,i, T).
b) Compute πr,i ← VDF.tdProve(ppi, xr,i, µi, yr,i, αr,i, T).
c) Publish (yr,i, πr,i). ▷ Broadcast

. Finalize .

6) For each participant Pi ∈ P , verify (xr, yr,i, πr,i)

a) If VDF.Verify(ppi, xr,i, yr,i, πr,i, T) = reject or xr,i was not
published by T1, then remove participant Pi and add P̃ ← P̃ ∪Pi.

7) For all Pi ∈ P , If VDF.Verify(ppi, xr,i, yr,i, πr,i, T) = accept
a) Compute yr =

∏
Pi∈P yr,i ▷ Optimistic case

b) Optionally, a proof πyr can be compute to enable verification of yr .

. Recover .

8) For each participant Pj ∈ P̃ in parallel ▷ Pessimistic case
a) Compute (yr,j , αr,j)← VDF.Eval(ppj , xr,j , T).
b) Compute πr,j ← VDF.Prove(ppj , xr,j , µr, yr,j , αr,j , T).
c) Compute yr =

∏
Pi∈P yr,i ·

∏
Pj∈P̃ yr,j

d) Optionally, a proof πyr can be computed to enable verification of yr .
. .

9) Output the r-th round’s randomness beacon Rr ← HinputTorand(yr)
10) Reward the participants computing the r-th round’s randomness beacon

value P \ P̃ and apply a Penalty to participants P̃ .
11) Set r ← r + 1.
12) Repeat from step 2 to step 11 – to generate the next round’s randomness.

Theorem IV.1. Assuming that HrandToinput and HinputTorand is
the random oracle and VDF is a trapdoor watermarkable VDF,
then it holds that Algorithm 2 is a DRB scheme.

The proof of Theorem IV.1 is deferred to the full version.

V. FUTURE WORK

Existing collaborative DRB protocols experience challenges
in inefficient communication complexity, which limits their
scalability.

In the near future, we hope to construct a complexity-
efficient collaborative DRB protocol.

REFERENCES

[1] M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” SIGACT News, vol. 15, no. 1, pp. 23–27, 1983. [Online].
Available: https://doi.org/10.1145/1008908.1008911

[2] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. R.
Weippl, “Randrunner: Distributed randomness from trapdoor vdfs
with strong uniqueness,” 2020, p. 942. [Online]. Available: https:
//eprint.iacr.org/2020/942

[3] K. Choi, A. Arun, N. Tyagi, and J. Bonneau, “Bicorn: An optimistically
efficient distributed randomness beacon,” IACR Cryptol. ePrint Arch., p.
221, 2023. [Online]. Available: https://eprint.iacr.org/2023/221

[4] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth, unicorn, and
trx,” IACR Cryptol. ePrint Arch., p. 366, 2015. [Online]. Available:
http://eprint.iacr.org/2015/366

[5] B. Wesolowski, “Efficient verifiable delay functions,” 2018, p. 623.
[Online]. Available: https://eprint.iacr.org/2018/623

[6] K. Pietrzak, “Simple verifiable delay functions,” IACR Cryptol. ePrint
Arch., 2018. [Online]. Available: https://eprint.iacr.org/2018/627

[7] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” IACR Cryptol. ePrint Arch., vol. 2018, p. 601, 2018.
[Online]. Available: https://eprint.iacr.org/2018/601

3

https://doi.org/10.1145/1008908.1008911
https://eprint.iacr.org/2020/942
https://eprint.iacr.org/2020/942
https://eprint.iacr.org/2023/221
http://eprint.iacr.org/2015/366
https://eprint.iacr.org/2018/623
https://eprint.iacr.org/2018/627
https://eprint.iacr.org/2018/601

	Introduction
	Technical Preliminaries
	Verifiable Delay Function
	RandGener Protocol Design
	Future Work
	References

