Poster: Tight Short-Lived Signatures

Arup Mondal
Ashoka University
Sonipat, Haryana, India
arup.mondal_phd19 @ashoka.edu.in

Abstract—A Time-lock puzzle (TLP) sends information into
the future: a predetermined number of sequential computations
must occur (i.e., a predetermined amount of time must pass)
to retrieve the information, regardless of parallelization. Buoyed
by the excitement around secure decentralized applications and
cryptocurrencies, the last decade has witnessed numerous con-
structions of TLP variants and related applications (e.g., cost-
efficient blockchain designs, randomness beacons, e-voting, etc.).

In this poster, we first extend the notion of TLP by formally
defining the ‘“‘time-lock public key encryption” (TLPKE) scheme.
Next, we introduce and construct a ‘tight short-lived signatures”
scheme using our TLPKE. Furthermore, to test the validity of
our proposed schemes, we do a proof-of-concept implementation
and run detailed simulations.

Index Terms—Time-Lock Puzzle, Short-Lived Signatures.

I. INTRODUCTION

A short-lived signature (SLS) provides a verifier with two
possibilities: either a generated signature ¢ on m is correct,
or a user has expended a minimum predetermined amount of
sequential work (7" steps or time) to forge the signature. In
other words, the signatures created remain valid for a short
period of time 7. Formally, we define the unforgeability period
as the time starting from when a signer creates a signature for
a message using their private signing information (or key) and
the Sign algorithm. Once the unforgeability period 7' has
elapsed, anyone can compute a forged signature using some
public signing information and the ForgeSign algorithm.

Recall that any party can compute a forged signature (using
ForgeSign) after the unforgeability period T has passed.
However, there is no guarantee that a party cannot generate
a forged signature in advance. To ensure this, we use the
same model used in [1]. The signature incorporates a random
beacon value to ensure it was not created before a specific time
Ty. Suppose a verifier observes the signature within T units
of time after Ty. In this case, they will believe it is a valid
signature if T < T because it would be impossible to have
forged the signature within that time period. Once T>T,
the signature is no longer convincing as it may have been
constructed through forgery.

Brief Concurrent Work: Recently, Arun et al. [[1] studied
the variants notion of short-lived cryptographic primitives, i.e.,
short-lived proofs and signatures. Similar to our work, they
make use of sequentially-ordered computations (7-sequential
computation) as a means to enforce time delay during which
signatures are unforgeable but become forgeable afterward
((1+4¢) - T-sequential computations). In this work, we use the

Ruthu Hulikal Rooparaghunath
Vrije Universiteit
Amsterdam, The Netherlands
r.rooparaghunath @student.vu.nl

Debayan Gupta
Ashoka University
Sonipat, Haryana, India
debayan.gupta@ashoka.edu.in

same models as used in [1/], however, we define and construct
tight short-lived signatures, where the forged signatures can
be generated in time not much more than sequentially bound
T. In other words, tight short-lived signatures ensure that
forged signatures can be generated in exactly 7' sequential
computations.

TABLE I: Complexity comparison of SLS schemes.

Paper Setup & Sign Forge Sign Verify Tight
Arun et al. [1] poly () O((1+c¢)-T) | VDEF (20, [3]) No
Algorithm poly () O(T) O(1) Yes

Short-lived cryptographic primitives have many real-life use
cases; we refer to [1] for a detailed discussion of its applica-
tions. Our main contributions are summarised as follows:

o First, we extend the time-lock puzzle [4] by formally
defining the “time-lock public key encryption” (TLPKE)
scheme, and demonstrate a construction using a re-
peated squaring assumption in a group of unknown order
(Sec. [I).

o We introduce and construct a “tight short-lived signature”
scheme from our TLPKE scheme (Sec. [[V).

« We conduct a proof-of-concept implementation study and
analyze the performance of our construction (Sec. [[V).

II. TECHNICAL PRELIMINARIES

Basic Notation: Given a set X, we denote by = ﬁ X the
process of sampling a value x from the uniform distribution
on X. Supp(X) denotes the support of the distribution X'. We
denote by A € N the security parameter. A function negl:
N — R is negligible if it is asymptotically smaller than any
inverse-polynomial function, namely, for every constant € >
0 there exists an integer N, and for all A > N, such that
negl(\) < A7€

Number Theory: We assume that N = p - ¢ is the product
of two large secret and safe primes and p # ¢q. We say that IV
is a strong composite integer if p =2p’ +1 and ¢ = 2¢' + 1
are safe primes, where p’ and ¢’ are also prime. We say that
Z N consists of all integers in [/V] that are relatively prime to
N (e, Zy ={x € Zn : gcd(z,N) = 1}).

Repeated Squaring Assumption: The repeated squaring as-
sumption [4] roughly says that there is no parallel algorithm
that can perform 7' squarings modulo an integer N signifi-
cantly faster than just doing so sequentially, assuming that NV
cannot be factored efficiently, or in other words RSW assump-
tion implies that factoring is hard. More formally, no adversary

can factor an integer N = p - ¢ where p and ¢ are large
secrets and “safe” primes (see [2]] for details on “safe” primes).
Repeated squaring RSW = (Setup, Sample, Eval) is
defined below. Moreover, we define a trapdoor evaluation
RSW.tdEval (which enables fast repeated squaring eval-
uation), from which we can derive an actual output using
trapdoor in poly(\) time.

e N < RSW.Setup(A) : Output pp = (N) where N = p - q as the product
of two large (A-bit) randomly chosen secret and safe primes p and q.
® x < RSW.Sample(pp) : Sample a random instance x.
T
® y < RSW.Eval(pp, T, z) : Output y = 22
T sequential repeated squaring from x. .
® y < RSW.tdEval(pp,sp = ¢(N),z) : To compute y = x>
efficiently using the trapdoor as follows:
- Compute v = 27 mod ¢(N).
Note: (27 mod ¢(N)) < 27T for large T
- Computejg =z" Tmod N.
Note: z2° = ¢(27 mod ¢(N) = zv (mod N).

mod N by computing the

mod N

Assumption 1 (7-Repeated Squaring Assumption without
Trapdoor [4]]). For every security parameter A\ € N, N €
Supp(RSW. Setup(A)), z € Supp(RSW. Sample(N)), and a
time-bound parameter T', computing the 22" mod N without
knowledge of a trapdoor or secret parameter SP using the
RSW.Eval algorithm requires T-sequential time for algo-
rithms with poly(log(T'), A)-parallel processors.

III. TIME-LoCK PUBLIC KEY ENCRYPTION

The notion of time-sensitive cryptography was introduced
by Rivest, Shamir, and Wagner [4] in 1996, in “Time-lock
puzzles and timed-release Crypto” (TLP). They presented a
construction using repeated squaring in a finite group of un-
known order, resulting in an encryption scheme. This scheme
allows the holder of a trapdoor to perform “fast” encryption
or decryption, while others without the trapdoor can only do
so slowly (requiring 7" sequential computations).

For the purpose of our tight short-lived signature protocol,
we require and define a variation of TLP. We follow the
definitions given in [4]], altered to fit the public key encryption
paradigm, rather than symmetric key encryption. This varia-
tion, which we refer to as “Time-Lock Public Key Encryption”
(TLPKE can be described as a “public key encryption
scheme with sequential and computationally intensive derived
private key generation”.

Protocol: The formal details of our TLPKE construc-
tion from repeated squaring, is TLPKE = (Setup, Eval,
Encrypt, Decrypt) specified in Algorithm [I]

Algorithm 1: Time-Lock Public Key Encryption

e TLPKE.Setup(\, T)
1) Call and generate N <— RSW.Setup(\)
2) Generate an input * € Z3 < RSW.Sample(pp)
3) Generates a key pair (pk, sk) for a semantically secure public-key encryption
scheme: PKE = (GenKey, Enc, Dec).
T
4) Encrypt the sk as ek = sk 4+ 22 mod N

5) Compute y = z2 mod N € Z efficiently using the trapdoor evaluation

ITLP with public key encryption instead of symmetric key encryption

RSW.tdEval(pp,sp = ¢(N), z).
6) return pp = (N, T, z, pk, ek).
e TLPKE.Eval(pp)
o
1) Compute y = 22° mod N € Z} using RSW.Eval(pp, T, x)
2) Extract the decryption key sk = ek — y
3) return (y, sk)

e TLPKE.Encrypt(pp, M)

1) Encrypt a message M with key pk and a standard encryption Enc, to obtain
the ciphertext Cpy = Enc(pk, M ||) and return Cjy.

® TLPKE.Decrypt(pp, sk, y, Car)
1) Decrypt the message as M || x = Dec(sk, Car)
2) Parse M || = and return the message M

IV. TIGHT SHORT-LIVED SIGNATURE

Syntax and Security Definitions: Here, we recall and modify
the definition of short-lived signatures (SLS) from [1] and
define our tight SLS as follows:

Definition IV.1 (Tight Short-Lived Signatures). Let A € N
be a security parameter and a space of random beacon
R > 2*. A short-lived signature SLS is a tuple of four
probabilistic polynomial time algorithms (Setup, Sign,
ForgeSign, Verify), as follows:

e Setup(A) — (pp,sk), is randomized algorithm that
takes a security parameter \ and outputs public parame-
ters pp and a secret key sk (the sk can only be accessed
by the SLS.Sign algorithm). The public parameter pPp
contains an input domain X, an output domain Y, and
time-bound parameter T.

e Sign(pp,m,r,sk) — o, takes a public parameter pp, a
secret parameter sp, a message m and a random beacon
r, and outputs (in time less than the predefined time
bound T') a signature o.

e ForgeSign(pp,m,r) — o, takes a public parameter
pp, a message m and a random beacon r, and outputs
(in time exactly T') a signature o.

e verify(pp,m,r,o) — {accept,reject}, is a determin-
istic algorithm takes a public parameter Pp, a message
m and a random beacon r and a signature o, and outputs
accept if o is the correct signature on m and r, otherwise
outputs reject.

A SLS must satisfy the three properties Correctness (Defini-
tion [IV.2), Existential Unforgeability (Definition [[V.3)), and
Indistinguishability (Definition [IV.4)) as follows:

Definition IV.2 (Correctness). A SLS is correct (or complete)
if for all A € N, m, and r € R it holds that,

Setup(A) — (pp, Sk’):| =1

Pr |verify(pp, m,r, o) = accept
Sign(m,r, sk) = o

Definition IV.3 (7T-Time Existential Unforgeability). A SLS
has T-time existential unforgeability if V \,T € N, m and
r € R, and all pairs of PPT algorithms (A, A’), such
an A (offline) can run in total time poly(T,\) and in a
parallel running time of A’ (online) on at most poly(log T', \)-
processors is less than T, there exists a negligible function
negl such that,
Sign(m,r,sk) — o |Setup(\) — (pp, sk)

Pr |verify(pp,m*,r,a™)[A(PP, A, T) = «

= accept A'(pp, m*,r,a) = o*

S negl()\)

Definition IV.4 (Indistinguishability). A SLS is computa-
tionally indistinguishable (and statistically indistinguishable;
when taken over the random coins used by each algorithm and
randomly generated private parameters) if for all A € N, m,

and r € R it holds that,

Pr {A(pp,m,r, o) = accept

Setup(A) — (pp, sk)
Sign(m,r,sk) — o B

S negl()\)

Pr | A(pp, m, T, = accept
" |: (PP, m, 7,) P ForgeSign(pp, m,r) — &

setup(A) — (pp, sk)]

Our scheme, formalized in Definition presents an ef-
ficient generalized framework for short-lived signatures (Al-
gorithm that is compatible with all signature schemes.
However, note that while our Indistinguishability definition
(Definition [TV.4) compares distributions of output, some signa-
ture schemes are deterministic (e.g., BLS, RSA signature). In
such cases, it is necessary for Sign and Forge to produce the
exact signature (e.g., Schnorr signature) with overwhelming
probability.

Protocol Design: The formal construction of tight short-
lived signatures SLS = (Setup, Sign, ForgeSign,
Verify) using our TLPKE is specified in Algorithm [2]

Algorithm 2: Tight Short-Lived Signatures from TLPKE

e SLS.Setup(A)
1) Call and generate N <— RSW.Setup(A)
2) Generate an input € Z73 < RSW.Sample(pp).
3) Choose a time bound parameter T € T'(\).
4) Generates a key pair (pk, sk) = Ilxeycen () for a Signature scheme: IT =
(KeyGen, Sign, Verify).
5) Computey = x> mod N € 7 efficiently using the trapdoor evaluation
RSW.tdEval(pp,sp = ¢(N), z).
ar
6) Encrypts the sk as ek = sk + x2 mod N
7) Output public parameter pp = (N, T,az,pk,ekﬂ and secret key sk
generated by IT (sk can only be accessed by the SLS.Sign).
e SLS.Sign(m,r, sk)
1) Compute M = H(m || r).
2) Compute a signature o = IIs; g, (sk, M).
3) Output a short-lived signature (o, 7).
e SLS.ForgeSign(pp, m,)
1) Compute M = H(m || r).
2) Call and extract (y, sk) = TLPKE.Eval(pp).
3) Compute a forge signature o = Ilg;qn (sk, M
4) Output a forge short-lived signature (o, r)
e SLS.Verify(pp, m,r, o)
1) Compute M = H(m || r).
2) Check that Myey; ey (pk, M, o)f]

“The pp can be generate by calling TLPKE . Setup(\).

b Forge signature o can be computed in time not much more than the sequentiality
bound exactly T even on a parallel computer with poly(log T', A) processors.
Therefore, our SLS is Tight Short-Lived Signature.

“The signature verification algorithm can be computed in O(1) time.

Theorem IV.1 (Tight Short-Lived Signatures). Assuming that
‘H is a random oracle, RSW is the repeated point squaring
assumption, and TLPKE is a time-lock public key encryption
scheme (see Algorithm E]), it holds that the protocol SLS
(Algorithm [2) is a tight short-lived signature scheme.

Proof Sketch. The correctness of the SL.S scheme is proven
by the correctness of the underlying time-lock public key
encryption TLPKE. Indistinguishability is trivial as the signing

and forgery produce the exact signature using the underlying
signature scheme, given that the TLPKE.Eval (key extrac-
tion) and TLPKE.Decrypt (decryption) algorithms of the
underlying TLPKE are deterministic. The 7-Time Existential
Unforgeability is a direct result of the sequentiality and secu-
rity (T-IND-CPA Security) property of the underlying TLPKE
and modeling H as a random oracle. O

Experimental Results: We use Python to implement RSW
primitive (and hence our proposed TLPKE and tight SLS).
The experiments are performed using a Windows 11 system
with Intel(R) Core(TM) i5-1035G1 CPU @1.00GHz with 8
GB RAM. Note that RSW is the underlying required primitive
of our repeated squaring-based TLPKE and tight SLS. Hence,
in this poster, we do not provide detailed simulation results
for TLPKE and tight SLS, focusing instead on profiling the
underlying workhorse primitive.

In Figure [l we show the experimental results for RSW
evaluation. The RSW. tdEval (Figure [Ta) run time changes
linearly with the security parameter A (the bit length of N
is derived from the bit length of). As shown in Figure
the time taken to compute the RSW.Eval increases with an
increase in the number of exponentiations. Changes in time 7’
yield a great variation in the evaluation time.

Trapdoor Evaluation Time

Evaluation Time
10 = 50000

— o —— " s =128 4
120 A =256
40000 { —e— 1 =512
100 —e- A=102
T e A-128 30000
E A=256 2
T - A=512 T /
= e A-1024 £ 20000 ‘_‘
o s
. 10000 ay
0 e — e o & =
0 —% ——= o

u 5 16 by 18 13 0 1 15 5 17 15 1 0
Number of Exponentiations {log scale) Number of Exponentiations (log scale)

(a) Trapdoor Evaluation Time. (b) Evaluation Time.

Flg 1: Trapdoor Evaluation and T'-Sequential Evaluation of the Repeated Squaring
RSW. j is labelled as “Number of Exponentiations”, 7" = 27.

V. FUTURE WORK

We conclude with an open problem: Arun et al. [[1]] define
reusable forgeability property in the context of short-lived
proofs (see Sec. 4.1 in [1l]), which ensure that one slow
computation for a random beacon value (say r) enables
efficiently forging a proof for any statement (say x) without
performing a full additional slow computation. Furthermore,
Arun et al. [1] extend reusable forgeability in the context of
short-lived signatures and describe a construction (see Sec. 8.3
in [1]). In the near future, we hope to construct an efficient
tight reusable and forgeable short-lived signature scheme.

REFERENCES

[1] A. Arun, J. Bonneau, and J. Clark, “Short-lived zero-knowledge proofs
and signatures,” JACR Cryptol. ePrint Arch., p. 190, 2022. [Online].
Available: https://eprint.iacr.org/2022/190

[2] K. Pietrzak, “Simple verifiable delay functions,” IACR Cryptol. ePrint
Arch., 2018. [Online]. Available: https://eprint.iacr.org/2018/627

[3] B. Wesolowski, “Efficient verifiable delay functions,” 2018, p. 623.
[Online]. Available: https://eprint.iacr.org/2018/623

[4] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” 1996.

https://eprint.iacr.org/2022/190
https://eprint.iacr.org/2018/627
https://eprint.iacr.org/2018/623

	Introduction
	Technical Preliminaries
	Time-Lock Public Key Encryption
	Tight Short-Lived Signature
	Future Work
	References

