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Abstract—Dependency Modelling is an established Probabilis-
tic Risk Analysis method that is frequently used to identify and
quantify cyber risks in complex environments, such as Industrial
Control Systems. The method is useful for examining the inter-
relationships between different variables, but the limited data
exposure in the modelling restricts its ability to analyse multiple
independent variables simultaneously or sequentially. In response
to this limitation, we present a new technique that leverages the
Bayesian Network method to draw inferences from unrelated
events and uncovers hidden insights that Dependency Modelling
may overlook. We conducted an evaluation of our proposed
technique using lab-generated data that mimics Colonial pipeline
operations. Our results demonstrated that the proposed technique
exposes previously undetected aspects of the dependency model,
providing business and asset owners with a more comprehensive
understanding of their cyber risks and facilitating better decision-
making. Our technique represents a significant advancement
and is the first to apply this inference method to Dependency
Modelling.

Index Terms—Cyber risks, Dependency Modelling, Bayesian
Network, Variable Elimination

I. INTRODUCTION

The industrial technology landscape is continually evolv-
ing, resulting in an increased connection of processes and
components that enhance productivity and bottom-line impact.
However, this transformation also brings new risks to oper-
ational technology (OT) systems and operations, increasing
complexity and posing significant cybersecurity challenges [1].

Despite continuous efforts by industries and governments to
enhance cybersecurity, major industrial cyber breaches remain
as likely today as they did ten years ago. Recent cyber
attacks on Colonial Pipeline and JBS Foods have highlighted
the consequences of cyber threats and the vulnerabilities of
exchanging data and dependencies in enterprise systems [2].
Successful attacks can lead to a complete system failure,
emphasising the need to evaluate alternative approaches to
mitigate cyber risks in complex systems.

Dependency Modelling (DM) provides a comprehensive
framework for establishing links between system events, pro-
cesses, and dependencies, enabling accurate risk assessments
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to support informed decision-making and enhance cyberse-
curity [3]. Despite its capabilities, DM’s limitations prevent
it from providing sufficient insights to fully understand a
system’s complexity beyond conventional approaches, high-
lighting the need for alternative methods.

Contribution: Our proposed technique introduces causal
inference into Dependency Modelling (DM) which allows the
analysis of multiple independent nodes and accounting for
simultaneous or sequential changes within the model. This
multi-nodal analysis increases the identification of cyber risks
that are synonymous with the tight coupling characteristics
phenomena in complex systems where multiple events can
fail synchronously. We believe this enhancement positions
DM as a preferred method to identify cyber risks in complex
environments, including Industrial Control Systems (ICS).

II. RELATED WORK

The potential of Bayesian Networks (BN) as an adaptable
and effective tool in handling incomplete or uncertain informa-
tion has been recognised by researchers [4]. Previous studies,
such as [5], [6], have demonstrated the suitability of BN in
detecting intrusion and insider threats in system networks,
showcasing its efficiency in mitigating cyber risks.

However, the use of BN in identifying cyber risks within
large and complex systems, including ICS, remains limited.
Existing research does not account for the impact of simulta-
neous or sequential failure within complex system networks,
nor have effective techniques for enhancing cyber risk identi-
fication in such systems been proposed.

III. APPROACH

Our approach utilises Directed Acyclic Graphs (DAGs),
which model the conditional dependencies between variables
in a probabilistic model. We implement Bayesian Networks
(BN) to perform statistical inference on DM and calculate the
conditional probabilities of unknown variables based on their
observed values. While both BN and DM are usually causally
constructed, BN assumes that most variables are independent
of their preceding variables, whereas DM assumes that all
variables may be directly impacted by their predecessors. This
property makes BN advantageous, enabling the identification
of a subset of preceding parameters for each parameter in



turn, which allows us to use Variable Elimination (VE) for
causal inference to identify hidden or previously unknown
risks within the system [7].

The VE probabilistic inference algorithm calculates the
marginal probabilities of a target variable by recursively elimi-
nating irrelevant network variables that do not impact the target
variable. This efficiency in handling large and complex BN
makes VE the preferred algorithm over others like the Junction
Tree (JT) and Monte Carlo Markov Chain.

To retrieve hidden data from the model, we construct an
inference query in the form of P (Y |E = e), where Y and
E are disjoint variables in the model, and E is an observed
variable with a value of e [7].

IV. VALIDATION

We aim to determine if the causal inference technique can
reveal changes in the model’s sensitivity when considering the
combination of multiple independent nodes. The traditional 3-
Point Sensitivity (3PS) approach used in DM can only assess
the sensitivity impact of a single leaf node at a time.

To validate our approach, we employed a case study that
mimics Colonial pipeline operations in an Industrial Control
System (ICS) environment, named PipelineX. We focused
on the communication between the IT and OT networks
involved in the shipping process to track product delivery.
After receiving an order from a customer, an operator at
the enterprise network verifies product availability via the
production network before initiating the shipping process. The
shipping process generates a trigger to load the product for
delivery. Figure 1 illustrates the business process description.
Additional information includes the following:

• Remote login to the IT network is available via a secured
Virtual Private Network (VPN) infrastructure, managed
by the Enterprise Access Control.

• There is no network segmentation infrastructure between
the IT and the OT networks.

• A loss of availability on the IT network due to an attack
could disrupt production on the OT network.

Our data is an adaptation from an existing manufacturing
environment with 67 nodes in the model. Each node has three
attributes: name, dependencies (name of parent node), and the
percentage probability of being in a desired state. Each node
is numbered (ref) from 0 (the goal/root node) to 66. We have
included some node names and descriptions in Table I.

TABLE I
NODE WITH REFERENCE NUMBER

Ref Node Name Description
0 Secure and Safe Production This is the goal of the business
9 Enterprise Access Control Access Policies are implemented
34 Wireless Protocols Protocols are updated and secured
40 Background Checks Security check conducted on users
41 Roles and Responsibilities Clearly defined and assigned
42 Training Appropriate training conducted
43 Specialised Training Training specific to functions
44 Security Awareness Basic requirements for users
45 Security Responsibilities Assigned and owned
46 Event and Incident Mgt Logged and reviewed

Fig. 1. Shipping Process Flow in Pipeline X

Conventional behaviour expectation dictates that if a node
fails due to an event, its probability is set to 0 (or 0%). This
event results in a negative impact on the overall model. Con-
versely, setting a node to 1 (or 100%) due to an improvement
in a certain event positively impacts the model. To identify the
node with the highest impact (sensitivity), we set each node
to 0 and 1, respectively, and performed causal inference to
obtain new probability values for the root node. This process
is repeated with combinations of two and three nodes.

The resulting sensitivity scores are presented in Tables II,
III, and IV, where each table lists the top-5 sensitivity scores.
The Node column indicates the node number, corresponding
to its name in Table I. The Probability column displays the
current marginal probability of the overall goal. The last
two columns reveal the sensitivity values, representing the
difference between the marginal probability and the computed
probability when the node is turned off (E=0) and when it
is turned fully on (E=1). As an example, in Table II, Row 1
Column E=0 displays the result of 0.16361779 - 0.042172706,
while Column E=1 is derived from E=1, i.e 0.167503027 -
0.16361779.

TABLE II
CAUSAL INFERENCE FOR SINGLE EVENT

Node Probability E=0 E=1
[40] 0.16361779 0.121445081 0.00388524
[41] 0.16361779 0.121445081 0.00388524
[43] 0.16361779 0.107265991 0.003431626
[44] 0.16361779 0.107265991 0.003431626
[45] 0.16361779 0.107265991 0.003431626

Figure 2A, B and C show the 3PS plots for each table. A
short bar indicates low sensitivity, while a longer bar repre-
sents higher sensitivity. The colour of each bar corresponds
to its influence, where red-coloured bars suggest a negative
impact and green-coloured bars exhibit a positive influence.
The junction between the bars indicates the sensitivity level



Fig. 2. 3-Point Sensitivity Using Causal Inference Analysis

TABLE III
CAUSAL INFERENCE FOR TWO (COMBINED) EVENTS

Node Probability E1=E2=0 E1=E2=1
[40+41] 0.163617787 0.125440583 0.007890686
[40+43] 0.163617787 0.124978108 0.007423034
[40+44] 0.163617787 0.124978108 0.007423034
[40+45] 0.163617787 0.124978108 0.007423034
[41+43] 0.163617787 0.124978108 0.007423034

TABLE IV
CAUSAL INFERENCE FOR THREE (COMBINED) EVENTS

Node Probability E1=E2=E3=0 E1=E2=E3=1
[9+40+41] 0.163617787 0.125560776 0.007904915
[40+41+43] 0.163617787 0.125559031 0.011537933
[40+41+44] 0.163617787 0.125559031 0.011537933
[40+41+45] 0.163617787 0.125559031 0.011537933
[34+40+41] 0.163617787 0.125553184 0.007904016

concerning the overall goal or how far it is from the probability
of the goal. We observed that setting the probabilities of three
nodes to zero (E1 = E2 = E3 = 0) resulted in longer red bars
than only setting the probabilities of two nodes to zero (PE1 =
E2 = 0). This indicates that the model is more sensitive, with
a higher negative impact with more nodes. Conversely, setting
the probabilities of three nodes to one (E1 = E2 = E3 = 1)
resulted in a higher positive influence, with longer green bars
than only setting the probabilities of two nodes to one (E1 =
E2 = 1).

From the information obtained in the model, we conducted
a frequency analysis to identify the nodes with the most
influence, which is a function of how many times they occur in
combination with other nodes. As shown in Figure 3A, Node
41 is the most influential when we perform a two-nodal causal
inference. However, in a three-nodal causal inference, nodes
40 and 41 are of equal influence as both of them appeared five
times, as shown in Figure 3B. The interpretation is that the
asset owner may want to pay closer attention to these nodes.

Fig. 3. Node Frequency Analysis

We validated our technique by checking the consistency
of the sensitivity pattern among the three graphs. As the
number of nodes in the causal inference calculation increases,
the bars in both directions 3PS become longer, indicating
an increased sensitivity (impact) and decreased probability of
success if multiple nodes fail simultaneously. From Tables III
and IV, we observed that node 40 is more critical in a 2-
nodal inference while node 41 is most critical in a 3-nodal
inference. This suggests that our technique can uncover critical
nodes that could potentially prevent attacks, as shown by the
case of the Colonial Pipeline cyber attack. Our technique
enables us to discover more information from DM than it
currently provides, increasing the potential for system owners
to proactively manage and mitigate risks.

V. CHALLENGES AND FUTURE WORK

BN learning requires extensive computation to process
causal queries for two or more nodal combinations, creating
scalability issues for larger models with many nodes. To
overcome these challenges, our consideration is limited to
a system-driven model with a focus on processes and the
interaction between processes. In the future, we hope to
leverage DM’s new capacity to model complex systems and to
develop predictive models that can forecast future cyber risk
trends, based on past data.
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