CARMENES Survey Exoplanet discoveries and insights into stellar astrophysics

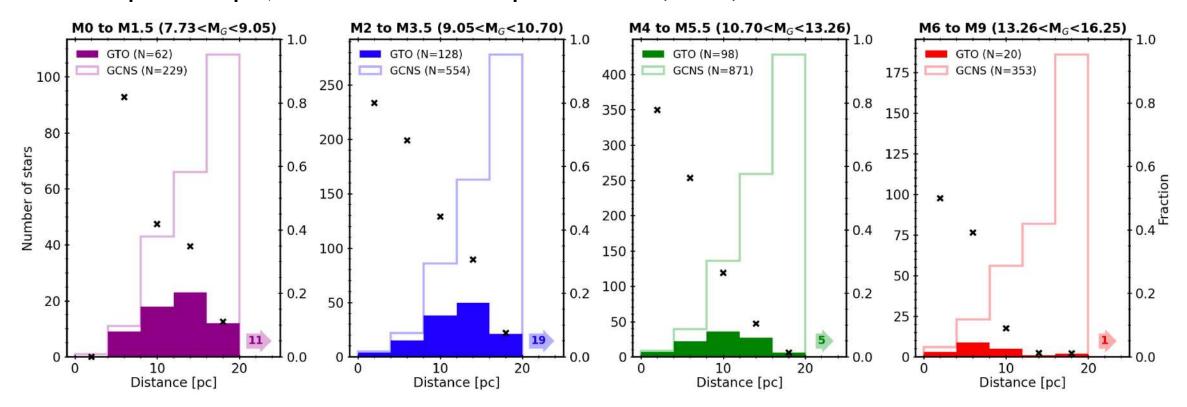
Ignasi Ribas & the CARMENES consortium Institut d'Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l'Espai (ICE, CSIC)

Carne nes

- Calar Alto
- High-Resolution Search for
- M Dwarfs with
- Exo-Earths
- With Near-Infrared and Optical
- Echelle Spectrographs

comenes

- Mounted on 3.5-m @ CAHA
- Consortium: 11 Spanish and German institutions
- GTO: 2016-2020 (750 un)
- CARMENES Legacy-Plus: 2021-2026+ (370 un)

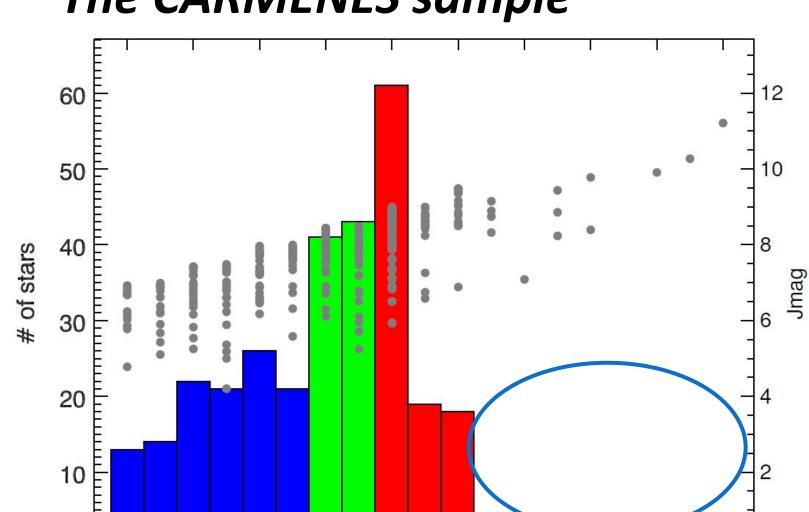


- VIS (520-970 nm) & NIR (970-1710 nm) channels
- Goal: detecting lowmass planets in M-dwarf habitable zones (focus on >M4) → architecture & statistics

The CARMENES sample

comenes

- 362 stars in total 11 SB2 & SB3
- Completeness at 20 pc: 15%
- 48% of M dwarfs within 10 pc
- Up to 10 pc, ratio >50% except late Ms (28%)



The CARMENES sample

0

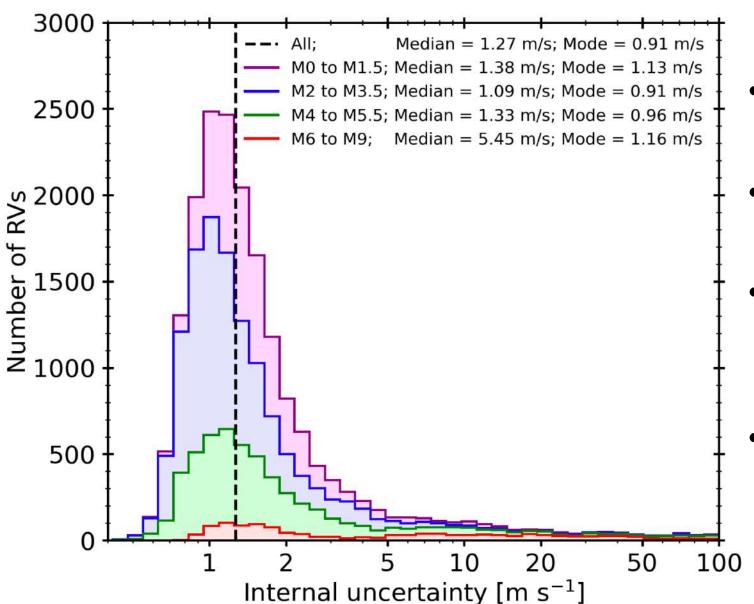
0

2

Spectral Type M

< d > = 13 pc

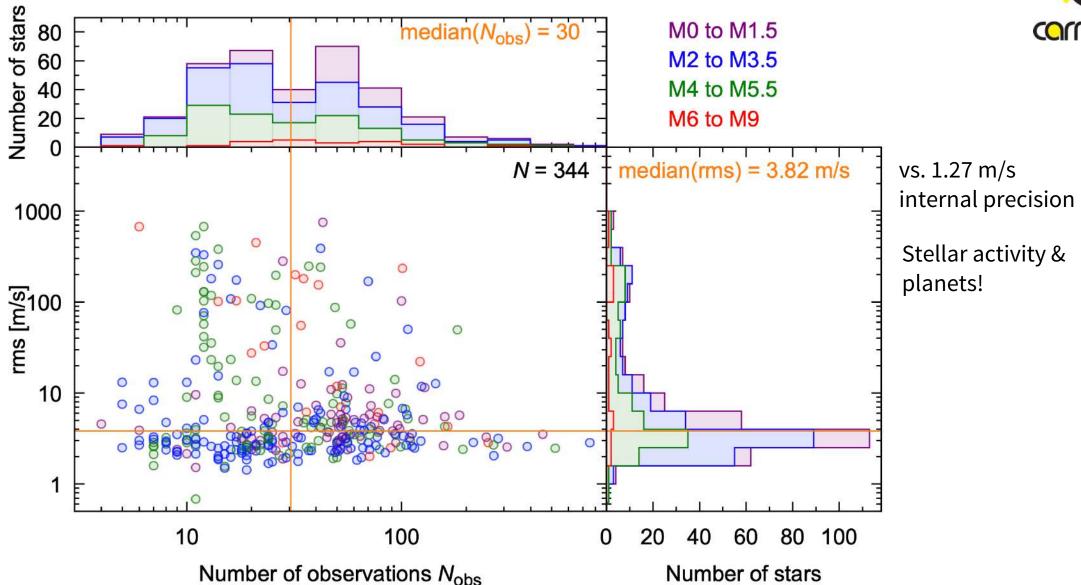
Typical target: M3-M4 & J=7-9 (50% of all)


9

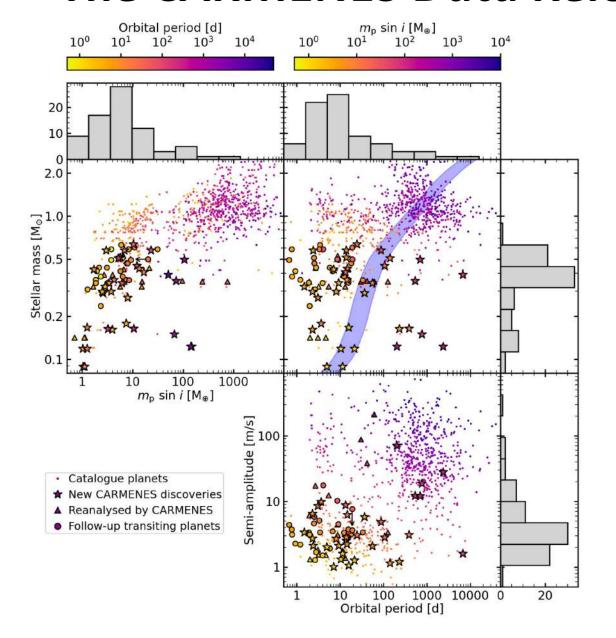
8

6

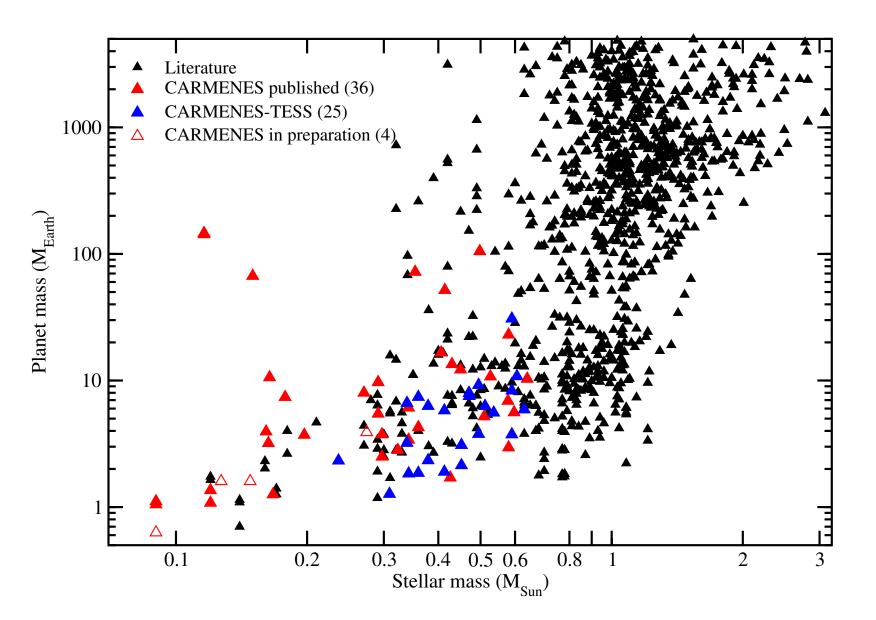
The CARMENES Data Release 1 (2016-2020)



- Ribas et al. (2023, A&A, 670, A139)
- 19623 GTO spectra 19161 useful RVs
- 18893 spectra with full set of data products (SB2 & SB3 excluded)
- VIS: Raw data, calibrated spectra, and high-level data products (RVs and indicators)


The CARMENES Data Release 1: External precision

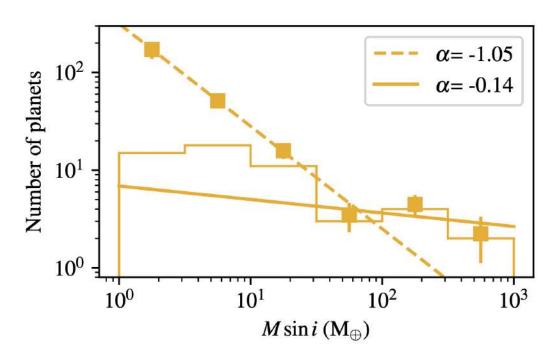
The CARMENES Data Release 1: Planets

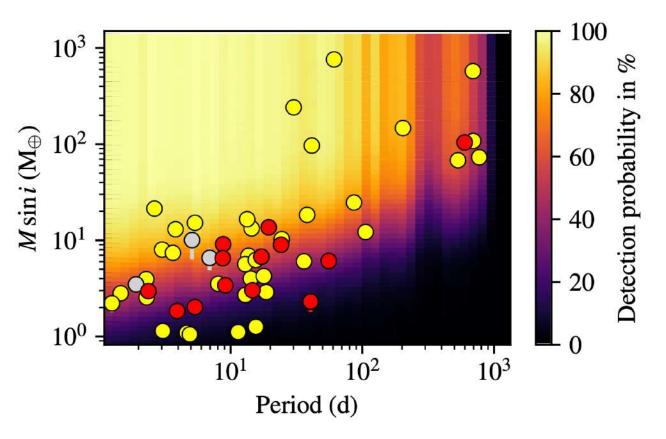


- 50% of all known RV planets with stellar hosts below 0.2 $\rm M_{\odot}$ have been discovered by CARMENES
- Majority of CARMENES planets are super-Earth to Neptune-mass
- In spite of low occurrence rate, CARMENES has discovered 6 Saturnand Jupiter-mass planets
- Most CARMENES planets have P from a few days to a few 10s of days
- 5 new CARMENES low-mass planets orbit within the liquid-water HZ
- Killed a few planets...

CARMENES GTO + Legacy-Plus planets

Planet zoo


- Neptunes in temperate orbits
- Close-in eccentric
- With active star hosts
- Nearby systems with transits


- ...

The CARMENES Survey: Occurrence rates

- Update to Sabotta et al. (2021) from 71 to 238 stars
- Signal retrieval and vetting to identify periodicities (P_{orb} < timespan/1.5)
- 53 planets in 43 systems
- Lower rates than Sabotta et al.
 (2021) → human intervention bias

Ribas et al. (2023, A&A)

The CARMENES Survey: Occurrence rates

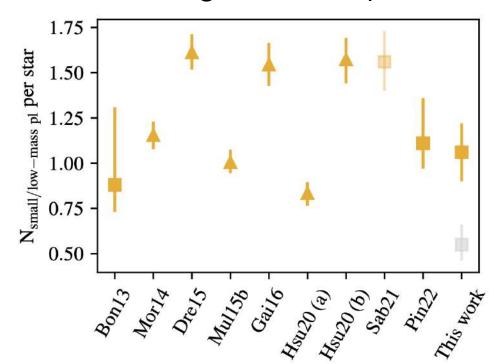
<i>P</i> (d)					
1–10	10–100	100-1000	1-1000		
(a) Planets with 100 $M_{\oplus} \sin i < M_{\rm pl} < 1000 M_{\oplus}$					
0	2	4	6		
< 0.006	$0.010^{+0.010}_{-0.005}$	$0.03^{+0.01}_{-0.01}$	$0.03^{+0.02}_{-0.01}$		
0	1	4	5		
< 0.006	$0.006^{+0.005}_{-0.005}$	$0.03^{+0.01}_{-0.01}$	$0.03^{+0.01}_{-0.01}$		
(b) Planets with $10~M_{\oplus} < M_{\rm pl} \sin i < 100~M_{\oplus}$					
4	7	3	14		
$0.02^{+0.02}_{-0.01}$	$0.04^{+0.02}_{-0.01}$	$0.04^{+0.02}_{-0.02}$	$0.09^{+0.03}_{-0.02}$		
4	7	2	13		
$0.02^{+0.02}_{-0.01}$	$0.04^{+0.02}_{-0.01}$	$0.03^{+0.02}_{-0.02}$	$0.09^{+0.02}_{-0.03}$		
c) Planets v	with $1 M_{\oplus} < M_{\odot}$	$I_{\rm pl} \sin i < 10$	M_{\oplus}		
18	15	0	33		
$0.39^{+0.10}_{-0.07}$	$0.67^{+0.18}_{-0.15}$	< 0.40	$1.37^{+0.24}_{-0.24}$		
15	10	0	25		
$0.33^{+0.08}_{-0.07}$	$0.47^{+0.13}_{-0.13}$	< 0.40	$0.89^{+0.08}_{-0.11}$		
(d) Planets with $1 M_{\oplus} < M_{\rm pl} \sin i < 1000 M_{\oplus}$					
22	24	7	53		
$0.37^{+0.09}_{-0.07}$	$0.63^{+0.14}_{-0.12}$	$0.54^{+0.23}_{-0.17}$	$1.44^{+0.20}_{-0.20}$		
19	18	6	43		
$0.32^{+0.07}_{-0.07}$	$0.47^{+0.13}_{-0.09}$	$0.47^{+0.20}_{-0.16}$	$0.94^{+0.04}_{-0.09}$		
	Planets with 0 <0.006 0 <0.006 Planets with 4 0.02 ^{+0.02} _{-0.01} 4 0.02 ^{+0.02} _{-0.01} c) Planets with 4 0.39 ^{+0.10} _{-0.07} 15 0.33 ^{+0.08} _{-0.07} Planets with 2 0.37 ^{+0.09} _{-0.07}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Planets with $100 \ M_{\oplus} \sin i < M_{\rm pl} < 10 \ 0 \ 2 \ 4 \ < 0.006 \ 0.010^{+0.010}_{-0.005} \ 0.03^{+0.01}_{-0.01} \ 0 \ 1 \ 4 \ < 0.006 \ 0.006^{+0.005}_{-0.005} \ 0.03^{+0.01}_{-0.01} \)$ Planets with $10 \ M_{\oplus} < M_{\rm pl} \sin i < 10 \ 4 \ 7 \ 3 \ 0.02^{+0.02}_{-0.01} \ 0.04^{+0.02}_{-0.01} \ 0.04^{+0.02}_{-0.02} \ 4 \ 7 \ 2 \ 0.02^{+0.02}_{-0.01} \ 0.04^{+0.02}_{-0.01} \ 0.03^{+0.02}_{-0.02} \)$ C) Planets with $1 \ M_{\oplus} < M_{\rm pl} \sin i < 10 \ 18 \ 15 \ 0 \ 0.39^{+0.10}_{-0.07} \ 0.67^{+0.18}_{-0.15} \ < 0.40 \ 15 \ 10 \ 0 \ 0.33^{+0.08}_{-0.07} \ 0.47^{+0.13}_{-0.13} \ < 0.40 \)$ Planets with $1 \ M_{\oplus} < M_{\rm pl} \sin i < 100 \ 0 \ 0.33^{+0.08}_{-0.07} \ 0.47^{+0.13}_{-0.13} \ < 0.40 \)$ Planets with $1 \ M_{\oplus} < M_{\rm pl} \sin i < 100 \ 0 \ 0.33^{+0.08}_{-0.07} \ 0.63^{+0.14}_{-0.13} \ 0.54^{+0.23}_{-0.17} \ 19 \ 18 \ 6$		

- Planets of any mass (1-1000 M_{\oplus}) & period (1-1000 d) around M dwarfs:
 - 1.44 planets per star
 - > 94% of stars have planets
- Results in good agreement with Bonfils et al. (2013), Pinamonti et al. (2022) but more precise (larger sample)
- Excess of giant planets compared with theoretical expectations

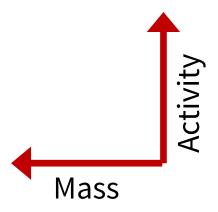
The CARMENES Survey: Occurrence rates

All controls and the control of the	<i>P</i> (d)			
11A	1–10	10–100	100–1000	1-1000
(a)	Planets wit	$h 100 M_{\oplus} \sin i$	$< M_{\rm pl} < 100$	$00M_{\oplus}$
$N_{ m pl,det}$	0	2	4	6
$\overline{n}_{ m pl}$	< 0.006	$0.010^{+0.010}_{-0.005}$	$0.03^{+0.01}_{-0.01}$	$0.03^{+0.02}_{-0.01}$
$\hat{N_{ m h}}$	0	1	4	5
F_{h}	< 0.006	$0.006^{+0.005}_{-0.005}$	$0.03^{+0.01}_{-0.01}$	$0.03^{+0.01}_{-0.01}$
(b) Planets w	ith $10~M_{\oplus} < M_{\odot}$	$I_{\rm pl}\sin i < 100$	O <i>M</i> ⊕
$N_{ m pl,det}$	4	7	3	14
$\overline{n}_{ m pl}$	$0.02^{+0.02}_{-0.01}$	$0.04^{+0.02}_{-0.01}$	$0.04^{+0.02}_{-0.02}$	$0.09^{+0.03}_{-0.02}$
$\dot{N_{ m h}}$	4	7	2	13

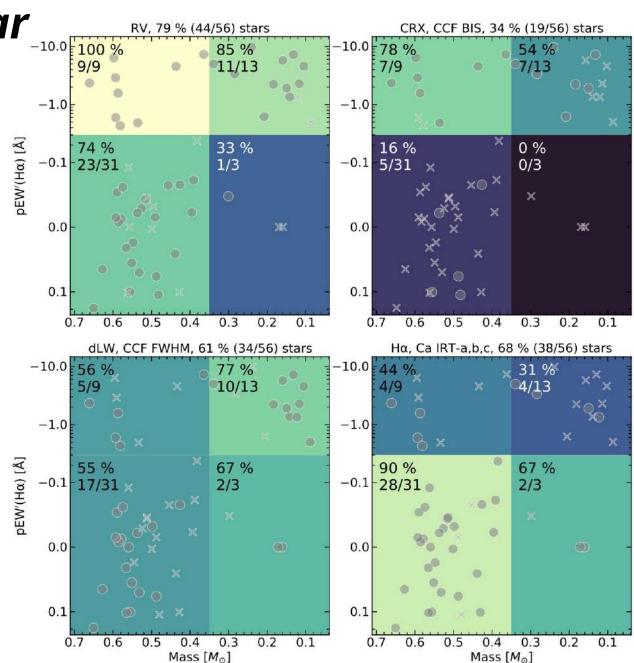
(c) Planets with $1 M_{\oplus} < M_{\rm pl} \sin i < 10 M_{\oplus}$


 $F_{
m h}$

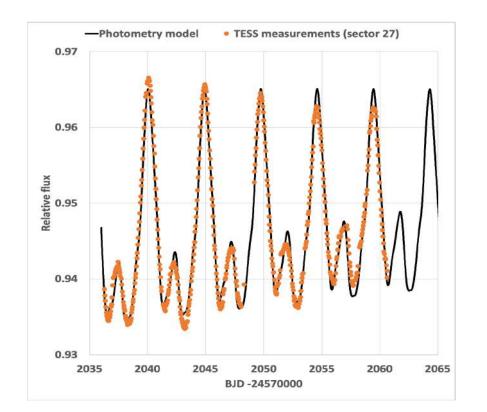
$N_{ m pl,d}$	et 18	15	0	33
$\overline{n}_{\mathrm{pl}}$	$0.39^{+0.10}_{-0.07}$	$0.67^{+0.18}_{-0.15}$	< 0.40	$1.37^{+0.24}_{-0.24}$
$\dot{N_{ m h}}$	15	10	0	25
$F_{\rm h}$	$0.33^{+0.08}_{-0.07}$	$0.47^{+0.13}_{-0.13}$	< 0.40	$0.89^{+0.08}_{-0.11}$

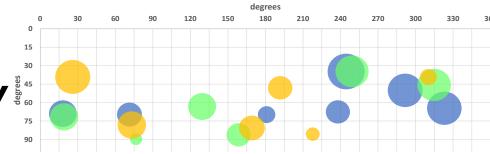

(d) Planets with $1 M_{\oplus} < M_{\rm pl} \sin i < 1000 M_{\oplus}$

$N_{\rm pl,det}$	22	24	7	53
	$0.37^{+0.09}_{-0.07}$	$0.63^{+0.14}_{-0.12}$	$0.54^{+0.23}_{-0.17}$	$1.44^{+0.20}_{-0.20}$
$\overline{n}_{ m pl} \ N_{ m h}$	19	18	6	43
$oldsymbol{F}_{ m h}$	$0.32^{+0.07}_{-0.07}$	$0.47^{+0.13}_{-0.09}$	$0.47^{+0.20}_{-0.16}$	$0.94^{+0.04}_{-0.09}$

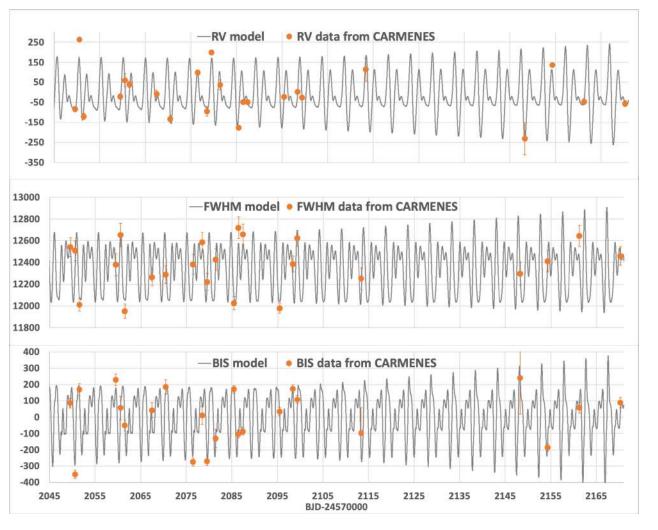

- Discrepancies in number of small/low-mass planets
- Criteria: 1 d < P_{orb} < 100 d, 1 M_{\oplus} < M sin i < 10 M_{\oplus} or 1.3 R_{\oplus} < R < 3.7 M_{\oplus}
- Different assumptions on planet mass distribution: log-uniform vs. power law

Ribas et al. (2023, A&A) Understanding stellar activity indicators

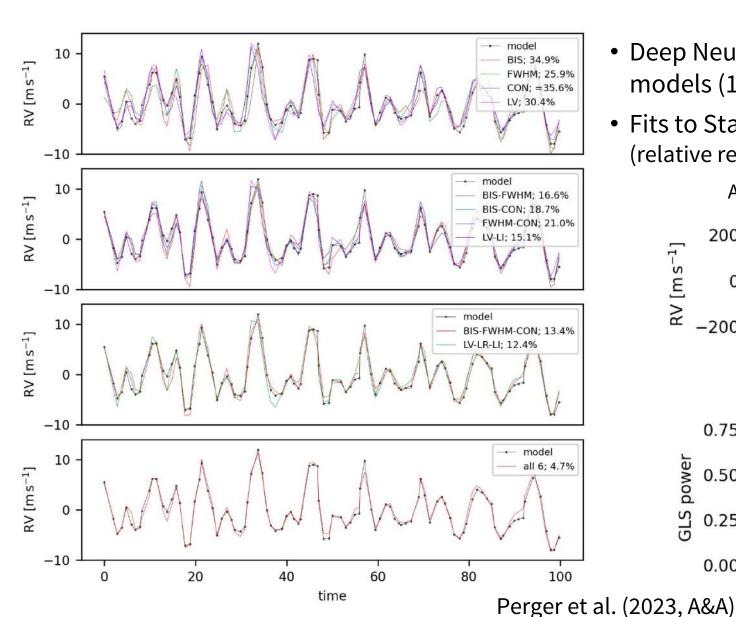

Lafarga et al. (2021, A&A) Also soon Kemmer et al. (A&A, subm.)

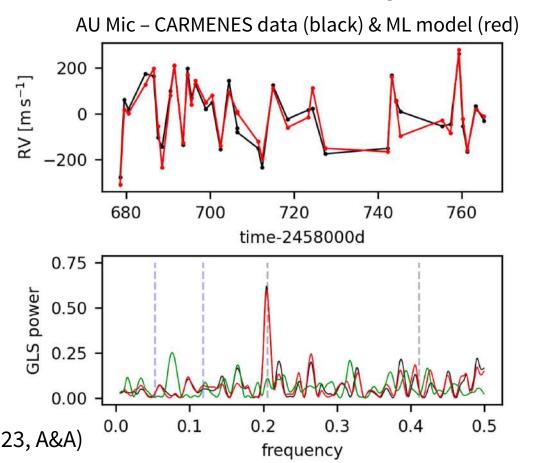


AU Mic: Simultaneous fit of photometry & spectroscopy hotometry & spectroscopy


• Inversion of simple spot model with StarSim (Herrero et al. 2016; Rosich et al. 2020)

PhD Thesis of Carles Blázquez





ML approach to RV activity correction

- Deep Neural Network trained with StarSim models (106) using different observables
- Fits to StarSim simulated data using a DNN (relative residual error in % → 1/20 of original)

And many more science topics...

comenes

- Planetary atmospheres
- Stellar atmospheric parameter determination
- Stellar activity (rotation, lines, magnetic fields)
- Planetary dynamics
- Transit detection follow-up (K2, TESS)
- Spectroscopic binaries
- Methodology (tellurics, cross-correlation, LBL)

Poster 21 M. Lafarga et al.

Poster 44 D. Montes et al.

Poster 43 C. Duque-Arribas et al.

Poster 29 P. Chaturvedi et al.

Take-home messages

- cormenes
- ➤ The CARMENES DR1 is out (Ribas et al. 2023, A&A) and the survey continues until 50 measurements for all 345 targets are reached (2026)
- ➤ Not quite volume-limited but close (48% of all Ms within 10 pc)
- Updated planet occurrence rates (238 stars & 53 planets)
- > Found one (or more!) new planet(s) around Teegarden's Star
- Lots of data available for many applications (19,000 measurements with up to 5 yr baseline; median n_{obs} = 30)
- More to come in a few years
- Enjoy!