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Abstract

Correlated noise is generally present in experimentally recorded electron energy loss spectra due to a non-ideal electron detector. In

this contribution we describe a method to experimentally measure the noise properties of the detector as well as the consequences it has

for model-based quantification using maximum likelihood. The effect of the correlated noise on the maximum likelihood fitting results

can be shown to be negligible for the estimated (co)variance of the parameters while an experimentally obtained scaling factor is required

to correct the likelihood ratio test for the reduction of noise power with frequency. Both effects are derived theoretically under a set of

approximations and tested for a range of signal-to-noise values using numerical experiments. Finally, an experimental example shows

thatthecorrectionforcorrelatednoiseisessentialandshouldalwaysbeincludedinthefittingprocedure.
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1. Introduction

Model-based quantification of electron energy loss
spectra makes use of a maximum likelihood estimator to
estimate the parameters of a model by fitting this model to
an experimental spectrum. If an appropriate model is
chosen, the estimated parameters are measurements of
physically interesting properties of the sample, like e.g. the
concentration of certain chemical elements. This procedure
was explained in detail in Refs. [1,2] and had the advantage
of not only returning measurements of the parameters in
the model but also returning estimates for the lowest
expected variance on these parameters and returning an
indication on whether the model was an appropriate
description for the experimental observations. Using the
maximum likelihood procedure also guaranteed that in
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practice the real (co)variance of the parameters for
repeated experiments was approaching the lowest expected
(co)variance asymptotically (for a large number of pixels in
the spectrum) as calculated by the so-called Cramér Rao
lower bound (CRLB). This achievement of the lower
bound on the (co)variance of the parameters was shown to
be valid for numerical calculations under situations similar
to the experimental situation. In real experiments, however,
the CRLB was only approached within a factor 2 or 3,
indicating that some of the assumptions in the model were
not met. The two basic assumptions were that we had:
1.
 A valid model for the expectation value lm of the
experiment in each pixel m.
2.
 A valid noise model.
The first assumption is a typical problem in physics and we
believe that we can come up with a sufficiently accurate
model for the expectation values depending on a sufficient
but limited amount of parameters. For the second
assumption, however, we took the noise to be independent
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Poisson-distributed noise with a factor allowing for gain in
the detector system. In this paper we will describe how we
introduce a more realistic noise model allowing for
correlated noise due to a non-ideal detector system.

The original assumption of independent noise in each
pixel would be perfectly valid for a serial-EELS instru-
ment1 but breaks down for parallel-EELS systems where
the spectrum is recorded in parallel on a 1D or more
commonly on a 2D detector [3,4]. Meyer et al. [5–7] have
studied, both theoretically and experimentally, the signal
and noise transfer through some common 2D detectors in
great detail. In this paper we will make use of their findings
and derive the consequences of the detector properties on
the recording of EELS spectra and the effect this has on
model-based quantification. We will show that the detector
introduces correlation in the noise which can be taken
approximately into account in the maximum likelihood
process by experimentally obtained scaling factors. The
approximations are shown to be very good for both
realistic numerical experiments as well as for real experi-
ments.

2. The effect of correlated noise on the Fisher information

and on the likelihood

If we can treat the effect of the conversion between
electrons and final observed counts in the detector as a gain
G and a convolution with a point spread function hm:

ym ¼ Gxm � hm, (1)

with ym the observed counts and xm the original detected
electrons and

P
mhm ¼ 1. It is possible to come back to the

original electron counts via deconvolution if the Fourier
spectrum of h does not contain zeros. In practical cases, the
point spread function hm of the detector is a sharp function
of only a few pixels wide with a smooth spectrum:

xm ¼
ym

G
� gm, (2)

with gm the point spread function of the deconvolution
process given by

gm ¼F�1
1

FðhmÞ

� �
. (3)

Note that noise amplification will occur, but in this case
that is exactly what we want to make the noise power
spectrum flat again as needed for independent Poisson
noise. So, in principle we can deconvolve our experimental
data to undo the effect of the detector and then apply the
formulas for the independent pixel Poisson log likelihood
from [1]:

lnP ¼
X

xm lnðlmÞ � lm � lnðxm!Þ, ð4Þ

lnP ¼
X

xm ln
lm

xm

þ ðxm � lmÞ, ð5Þ
1If the timing is chosen so that there are no memory effects.
with P the probability of obtaining an experimental
spectrum with values xm if the true model spectrum has
values lm and pixel-independent Poisson noise is assumed.
Stirling’s formula was used for the logarithm of a factorial
assuming a high number of electrons in each pixel (xmb1).
This deconvolution process, however, has several dis-

advantages:
�
 Edge artefacts will arise from the fact that one only
measures the spectrum in a limited range of energies.
These artefacts are entirely unwanted because they alter
the precious data.

�
 Although the deconvolution will flatten the noise

spectrum to white noise as expected for Poisson noise,
it does not completely undo the correlation since the
scattering in the scintillator is a stochastic process which
can in general not be undone unless one knows the path
that each photon took, and not just the probabilities for
each path.

�
 As a principle in parameter estimation, one should never

apply transformations on the data, but always include
their effect in the model.

Therefore we want to investigate whether it is possible to
derive the effect of the induced correlation in the noise by
the detector in a direct way. In the rest of this section, we
assume the gain G ¼ 1. This can always be achieved by
simply scaling the data by G. We will first derive the effect
of correlated noise on the elements of the Fisher informa-
tion matrix and secondly we look at the effect on the log
likelihood.

2.1. Correlated noise and Fisher information

We start by deriving the elements of the Fisher
information matrix given by

Fi;j ¼ �
q2 lnP

qyiqyj

, (6)

with yi the parameters of the model. Assuming that we
know the real electron counts xm we can start from Eq. (5)
and take a first derivative w.r.t. to a parameter:

q lnP

qyi

¼
X

m

qlm

qyi

xm

lm

� 1

� �
. (7)

Taking the second derivative, we obtain the components of
the Fisher information matrix:

Fi;j ¼ �
q2 lnP

qyiqyj

¼
X

m

q2lm

qyiqyj

1�
xm

lm

� �
þ

qlm

qyi

qlm

qyj

xm

l2m

" #
,

(8)

which is linear in xm. In the optimum, the first derivative
(Eq. (7)) is zero and therefore the factor multiplying the



double derivative vanishes. We get

Fi;j;opt: ¼
X

m

qlm

qyi

qlm

qyj

xm

l2m

" #
. (9)

Rewriting this to make the presence of the noise clear gives

Fi;j;opt: ¼
X

m

qlm

qyi

qlm

qyj

xm � lm þ lm

l2m
, ð10Þ

Fi;j;opt: ¼
X

m

1

lm

qlm

qyi

qlm

qyj

nm

lm

þ 1

� �
, ð11Þ

with nm the noise term.2 We can split the information in
two parts:

Fi;j;opt: ¼
X

m

1

lm

qlm

qyi

qlm

qyj

þ
X

m

1

lm

qlm

qyi

qlm

qyj

nm

lm

. (12)

There are two reasons why the last term can be neglected in
practice:
�

2

the

C

ðS=
N

The noise over signal ratio nm=lm should be much
smaller than 1 for good experimental data.

�
 Usually the parameters are non-local in the sense that

qlm=qyia0 for a wide range of m and is smoothly
varying with m. If we also assume that the model is
smooth, the fluctuating noise term will cancel out after
summing. This will happen regardless of whether the
noise was correlated or not.

We get

Fi;j;opt: �
X 1

lm

qlm

qyi

qlm

qyj

, (13)

which is independent on the correlation of the noise. This
means that for calculating the estimated covariance on the
parameters via the CRLB theorem [1]:

VFX1, (14)

with V the covariance matrix. For a large number of pixels
in the spectrum, the equal sign is approached as shown in
Refs. [1,2]. This makes the estimated covariance matrix:

V̂ ¼ F�1 (15)

independent of the fact that the noise is correlated under
the given assumptions. There are several intuitive reasons
why these assumption should be valid:
�
 Reasonable models should have many fewer parameters
than experimental pixels. The information in the whole
spectrum is somehow divided over the parameters which
cancels out the correlation between the pixels.

�
 If the signal-to-noise ratio is high, the requirement for non-

local parameters and smoothness is not even necessary.
Note the qualitative resemblance with the so-called Shannon–Hartley

orem in communication theory which states that the channel capacity

(bits/s equivalent of information transferred) goes as C ¼ B log2ð1þ

NÞÞ with B the bandwidth of the channel, S the total signal power and

the total noise power.
�
 The model will in general be smooth over the distances
where correlation plays a role, since also the signal is at
least smeared out by the modulation transfer function of
the detector which in practice is wider than the noise
transfer function (detector quantum efficiency (DQE)
drops with frequency [7]). In practice the energy width
of the source is another factor which smooths the model
even more depending on the energy dispersion used.

A notable and obvious exception would be when the model
would be just modelling the pixel values. In that case the
parameters are highly local and then the Fisher informa-
tion would depend strongly on the correlation. However,
such a model would not be very useful since physics in
general is of course looking for a reduction of the number
of parameters by making use of appropriate models.

2.2. Scaling the likelihood

Although we showed that the (co)variance of the
parameters of a model is essentially unchanged when
correlated noise is present, we will show now that the
likelihood itself is strongly dependent on the presence of
correlated noise. This can be seen by making a Taylor
expansion around xm ¼ lm:

lnP � �
X

m

ðxm � lmÞ
2

2lm

�
ðxm � lmÞ

3

3!l2m
þ

2ðxm � lmÞ
4

4!l3m
þ � � � .

(16)

We see that up to second order in the noise this is the same
as for the log likelihood for Gaussian noise with a variance
of lm. Neglecting the higher order terms we get

lnP � �
X

m

ðnmÞ
2

2lm

þ � � � , (17)

with nm ¼ xm � lm the noise signal if the model is an
adequate description of the experiment. We see that the log
likelihood is given by the sum of the noise ‘‘power’’ (n2

m)
per pixel and per electron in that pixel. It is convenient to
rewrite this in spectral form by noting that the average
noise power spectrum of 1 pixel with 1 electron is constant
and given by

n2
f ¼ 1. (18)

Noting that we can view the experiment as electrons
arriving one after the other and that power (or variance) is
additive, we can write the sum as

lnP � �
1

2

X
f

ðnf Þ
2
¼ �

N

2
. (19)

For correlated noise, the average noise power spectrum is
no longer flat and we have

lnP0 � �
1

2

X
f

ðn0f Þ
2
¼ �

N

2C
, (20)
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Fig. 1. Numerical calculation of the cumulative distribution of LR ¼

�2 lnP for N ¼ 1024 and 1000 repeated experiments for both correlated

and uncorrelated noise. Both results can be modeled quite well with a w2

distribution with N=C or N degrees of freedom. The fit is as least as good

as that for the uncorrelated case. The main deviations are located in the

right part of the curve which is unimportant since we typically want to use

e.g. a 5% significance level.
with n0f the average noise power spectrum for 1 pixel with 1
electron. And

C ¼

P
n2

fP
n02f

, (21)

the ratio between the total average noise power in the
spectrum without and with correlation. This shows that the
log likelihood scales with 1=C when going from uncorre-
lated noise to correlated noise which is important when
doing acceptance tests. It appears as if the total number of
independent pixels is scaled down by C due to correlation.
This affects the degree of freedom of the system from N �

I to ðN=CÞ � I with I the number of independent
parameters in the model.

2.2.1. Effect on the variance for white illumination

Note also that C is the factor with which the variance for
constant illumination is scaled. This can be seen from (Eq.
(17)) since for white illumination lm ¼ l is constant:

lnP � �
1

2l

X
m

ðnmÞ
2
þ � � � , ð22Þ

lnP � �
C

2l

X
m

ðn0mÞ
2
þ � � � . ð23Þ

The sample variance is given as

var ¼
1

N

X
ðnmÞ

2, ð24Þ

var0 ¼
1

N

X
ðn0mÞ

2
¼

1

C
var, ð25Þ

which therefore scales down by C if correlation is present.
This is the reason why we have to correct the gain Gvar

measured as the experimental relationship between var-
iance and mean for even illumination, with a correction
factor C to obtain the true gain G of the detector.

2.2.2. Effect on model validation

The reduction of degrees of freedom of the system has a
profound influence on model validation using the like-
lihood ratio [1,8,9]. Not only does it scale down the log
likelihood but it also changes the w2 distribution with which
we have to compare this output. We change the equations
from

LR ¼ �2 lnP! w2ðN � IÞ (26)

to

LR0 ¼ �2 lnP0 ! w2
N

C
� I

� �
. (27)

Note that it is not obvious that after correlation the
distribution of the LR outcomes would still be a w2

distribution, and in principle a numerical simulation is
needed to find out the new distribution function. We show,
however, in Fig. 1 for a realistic numerical simulation
(same model as in Section 3) that our assumption to just
scale the w2 distribution for different degrees of freedom
works quite accurately.

2.3. Conclusions

To summarise the findings of the previous sections we
can state that under certain circumstances the effect of
correlated noise on the parameter estimation problem is
twofold:
�
 The Fisher information for a reasonable model
does not change with correlated noise. This means that
for the calculation of the estimated (co)variance via the
CRLB we can use the formulas for uncorrelated noise.
As long as we correct properly for the gain of the
detector.

�
 The log likelihood on the other hand scales with a factor

C relating the total noise power with and without
correlation which is important to take into account
when doing acceptance tests. Intuitively this can be
understood by the fact that correlation causes a
reduction in the high frequency components of the
noise which will make the experiment look too good
when calculating the likelihood assuming uncorrelated
noise.

At first sight there might seem to be a contradiction in both
conclusions since the Fisher information matrix is the
double derivative of the log likelihood, so if the log
likelihood scales, so must the Fi;j. The reason for this
apparent contradiction can be seen as follows. The lnP is a
function of n2

m while the F i;i contain a sum over nm. For
lnP the summing will depend on the correlation because it



affects the total noise power by a factor C, while the sum
over nm in the Fi;i formula cancels out approximately
because of the fact that the noise has a zero mean
regardless of whether it is correlated or not.

3. Numerical simulations

A series of numerical experiments is carried out to test
the validity of the approximations above on a simple model
consisting of a constant background and a Lorentz peak
having four parameters:

lm ¼ y0 þ y1
ðy2=2Þ

2

ðm� y3Þ
2
þ ðy2=2Þ

2
, (28)

with y0 the height of the constant background, y1 the
height of the Lorentz peak, y2 the FWHM and y3 the
position. The constant background is chosen in order to
avoid edge artefacts when calculating convolutions. Several
realisations of the experiment can now be obtained adding
Poisson noise nm from an appropriate random generator:

xm ¼ lm þ nm. (29)

The effect of the detector is then modeled as convolution:

ym ¼ lm � hS þ nm � hN, (30)

with hS and hN the point spread functions for signal and
noise, respectively. We take for these point spread
functions Lorentzians with FWHM f S and f N. In general
f S4f N because the DQE drops with higher frequencies
(see Section 4). To obtain DQE values comparable to an
existing detector [6] we use f S ¼ 2:2 pixels and f N ¼ 2
pixels. We can deconvolve the ym to regain a white noise
spectrum and get an approximation for the original
electron counts x̂m:

x̂m ¼ lm � hS � gN þ nm � hN � gN, (31)
Table 2

Results for an average of 100 electrons per pixel

y0 Stdev CRLB y1 Stdev CRLB y2 S

Model 1 80.6 0.657 0.664 321 10.481 9.391 10.1 0

Model 2 80.4 0.655 0.666 316 10.008 9.210 10.3 0

Model 3 80.7 0.657 0.664 323 10.514 9.429 10.0 0

Model 4 80.4 0.655 0.666 316 10.008 9.210 10.3 0

Table 1

Results for an average of 10 electrons per pixel

y0 Stdev CRLB y1 Stdev CRLB y2

Model 1 8.04 0.204 0.210 31.6 3.349 2.945 10.2

Model 2 7.96 0.202 0.209 31.8 3.235 2.941 10.2

Model 3 8.06 0.203 0.210 32.6 3.407 3.019 9.92

Model 4 7.96 0.202 0.209 31.8 3.235 2.941 10.2
with

gN ¼F�1
1

FhN

� �
, (32)

which immediately shows a problem when hNahS:

x̂m ¼ lm � hS � gN þ nm (33)

in the sense that the deconvolution of the noise cannot
cancel the point spread function of the signal properly.
Fortunately, since f S4f N this will only cause a blurring of
the signal. The gain of the detector is taken to be the same
for signal and noise as

G ¼
X

hN ¼
X

hS. (34)

We can now test the different ways of treating the effect of
correlated noise:
1.
tde

.39

.38

.38

.38

Stde

1.14

1.09

1.10

1.09
Do model fitting on the xm assuming Poisson-distrib-
uted independent pixels.
2.
 Do model fitting on the ym assuming Poisson-distributed
independent pixels but correcting for the gain.
3.
 Do model fitting on the x̂m assuming Poisson-distrib-
uted independent pixels.
4.
 Do model fitting on the ym assuming Poisson-distributed
independent pixels but correcting for the likelihood
scaling.

With 2 being the way which was used in EELSMODEL up
to now and 4 the way which is implemented in a new
version of EELSMODEL.
The results for 200 repeated experiments for different

signal-to-noise ratios are given in Tables 1–3. Note that all
models find a reasonable estimate for the CRLB. Model 2
is always too optimistic in terms of acceptance tests which
is corrected in model 4. Model 4 finds an average
lnP=ðN=C � IÞ very close to 1, but the amount of accepted
v CRLB y3 Stdev CRLB Chisq Accepted (%)

0 0.346 127.01 0.128 0.127 1.003 94.00

3 0.355 127.01 0.128 0.130 0.321 100.00

8 0.343 127.01 0.127 0.127 1.002 94.00

3 0.355 127.01 0.128 0.130 1.009 96.50

v CRLB y3 Stdev CRLB Chisq Accepted (%)

7 1.123 127.02 0.463 0.412 1.015 95.50

4 1.117 127.02 0.448 0.410 0.324 100.00

5 1.083 127.02 0.445 0.399 1.012 95.50

4 1.117 127.02 0.448 0.410 1.016 96.50



Table 3

Results for an average of 1000 electrons per pixel

y0 Stdev CRLB y1 Stdev CRLB y2 Stdev CRLB y3 Stdev CRLB Chisq Accepted (%)

Model 1 807 2.315 2.101 3215 29.502 29.719 10.0 0.111 0.109 127.00 0.040 0.040 1.004 95.50

Model 2 806 2.322 2.101 3157 28.100 29.154 10.3 0.110 0.112 127.00 0.040 0.041 0.331 100.00

Model 3 807 2.314 2.099 3229 29.623 29.839 9.99 0.111 0.108 127.00 0.040 0.040 1.004 95.50

Model 4 806 2.322 2.101 3157 28.100 29.154 10.3 0.110 0.112 127.00 0.040 0.041 1.038 96.00

3

spectra is slightly too high (95% expected). This could be
due to the fact that we approximate the distribution of the
likelihood ratio with a chi-square distribution. We see that
also model 3 performs well although in practice we want to
avoid deconvoluting the spectra to avoid introducing edge
artefacts. On the other hand model 4 gives almost identical
results without deconvolution even for situations with a
very poor signal-to-noise ratio.

4. Noise properties of the detector

The detector can be characterised by measuring sepa-
rately the transfer function for the noise and for the signal
as was shown in Refs. [5–7]. The fact that noise and signal
transfer are different is quite confusing but leads to the
physically observed effect of a spatial frequency-dependent
DQE. The DQE is connected to the transfer of signal and
noise as given in Ref. [5]:

DQEðu; vÞ ¼ DQEð0; 0Þ
MTFðu; vÞ

NTFðu; vÞ

� �2

, (35)

with NTF the noise transfer function and MTF the
modulation or signal transfer function written as a function
of spatial frequency ðu; vÞ. Experimentally this is a function
which decreases with spatial frequency which means that
the NTF has more high-frequency content than the MTF.
Or that the point spread function for noise is more
localised than the point spread function for the signal. This
was explained in Ref. [5] as the fact that for a single
electron hitting the detector the distribution of the few
photons created by this event is likely to be more localised
than the overall distribution of photons when a large
number of electrons hit the detector. This affects the noise
power spectrum since each electron creates independently
its own noise contribution while for the signal the
expectation value is used. In our case we are, however,
mainly interested in the noise transfer which is easier to
measure than the signal transfer as described in Ref. [7].

4.1. Experimental determination of the noise power

spectrum

To obtain an estimate of the noise transfer function the
following procedure is used:
The dark current increases with exposure time, but in practice this has

a negligible effect on the result. The effect can be quantified by repeating

the procedure with the illumination fully blanked so that only dark counts
�

are measured.
The CCD is illuminated with even illumination with a
mean number of counts lm;n ¼ x̄m;n.
�
 Two exposures taken under the same conditions are
subtracted to obtain the noise signal

ffiffiffi
2
p

nm;n. This avoids
artefacts in the gain correction or dark correction to be
regarded as noise.

�
 The noise signal is summed in vertical direction over the

same area as is used for the conversion of the CCD
image into an EELS spectrum: nm ¼

P
nnm;n.
�
 The power spectrum of this integrated noise signal is
calculated as jFnmj

2, with F the Fourier transform.

�
 The previous steps are repeated and an average power

spectrum is calculated. Iteration is stopped when the
power spectrum has an acceptable smoothness, conver-
gence is slow especially for the low frequencies.
Averaging the power spectra and not first averaging
the noise is necessary because of the fact that only the
noise variances (related to power) are additive (if
subsequent exposures are independent).

An improvement in speed can be obtained when using
the oversampling technique described in Ref. [7]. In this
technique, power spectra taken at different binning settings
are combined. This has the advantage that readout times
are lower for binned readout while the spectra still contain
the low-frequency information of the noise power spec-
trum.
The obtained averaged power spectrum can be numeri-

cally smoothed to obtain a useful estimate of the power
spectrum. The power spectrum can be seen as the square of
the noise transfer function NTF2ðuÞ since the incoming
independent Poisson noise has a white power spectrum
which is altered by the noise transfer function to create the
observed power spectrum. Fourier transforming the noise
power spectrum gives the autocorrelation function of the
noise according to the Wiener–Khinchine theorem.

4.2. Experimental determination of the gain

To determine the gain of the detector system (counts/
electron) as far as the noise is concerned one can make a
plot of the variance as a function of the mean for even
illumination by collecting a set of data with increasing
exposure times.3 The procedure is similar to the noise
power spectrum determination:
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Record the noise signal nm as above, under conditions of
white illumination.

�
 Repeat this for different exposure times.

�
 Determine the factor Gvar relating the experimental

variance of the noise varðnmÞ ¼ GvarmeanðxmÞ with
linear interpolation.

The gain factor Gvar obtained in this way is not the true
gain of the system since the correlation lowers the variance.
It was shown in Eq. (25) that the reduction of the variance
is given by a correlation factor C which can be determined
from the noise power spectrum. The true gain of the system
is therefore given by

G ¼ GvarC. (36)

Both procedures for the noise power spectrum and the
determination of gain are combined in a Digital
Micrographt script, freely available together with an
updated version of EELSMODEL [10]. Note that in
previous papers [1,2] we used Gvar ¼ G since we neglected
correlation (C ¼ 1). In the following sections we will
discuss the case when correlation is not negligible as is the
case for currently available detectors.

5. Experiments

5.1. Experimental noise properties

The noise properties for two different detectors were
measured: A 1K CCD with phosphor scintillator on a
GIF200 mounted on a Phillips CM30 and a 1K CCD with
phosphor scintillator on a GIF2000 mounted on a JEOL
3000F. A power spectrum for the GIF2000 detector is
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given in Fig. 2. The results for gain and correlation factor
obtained by the script described in Section 4 are given in
the following table:
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Type
 Gvar
 G
 C
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1K Phosphor GIF200
 CM30
 1.80
 5.45
 3.03
 2.4

1K Phosphor GIF2000
 3000F
 2.83
 7.12
 2.52
 3.1
Note that the newer detector on the GIF2000 system
apparently has a higher gain and less noise correlation.
This makes it a more desirable detector for core loss EELS
measurements where you want to get most out of noisy
spectra.
The gain G used in this paper is the value with which the

noise power spectrum has to be divided to have the same
total noise power as an ideal uncorrelated electron
detector. The signal gain on the other hand is denoted by
GT and is measured by using the GIF drift tube as a
Faraday cup coupled to a load resistor and a voltmeter. In
the terminology of Meyer et al. [7] our GT ¼MTFð0Þ and
Gvar ¼ NTF2ð0Þ. Note that for a detector where the noise is
only formed by a single correlated Poisson detection step4

GT ¼ G. Apparently, in a real detector G4GT meaning
that more noise power is present as would be expected from
the signal gain GT. In our case both detectors have about
double the total noise power as an ideal detector with the
same correlation properties. It is interesting to note that the
gain ratio between both detectors is approximately 1.3 in
favour of the detector on the 3000F regardless of whether
one takes G or GT.

5.2. Repeated experiments on SrTiO3

A set of 100 spectra from a SrTiO3 crystal was taken
keeping exactly the same conditions with a JEOL 3000F
microscope and GIF 2000 spectrometer. The detector chip
in the GIF is a 1K CCD with phosphor scintillator. A tilt
of � 2� from the 100 zone axis is used to avoid channelling.
One spectrum for this set is shown in Fig. 3 together with a
model consisting of a second-order log polynomial, two
Hartree Slater edges for the TiL2;3 and O K-edges and a
fine structure component [2] of 65 points for Ti and 45
points for O. Multiple scattering is included by a
convolution with a recorded low loss spectrum. The
obtained results for the Ti/O ratio can be tabulated with
their 95% confidence intervals between brackets calculated
from Eqs. (26) and (27) in Ref. [1]:
Ti/O ratio
 0.359
 (0.353, 0.365)

Stdev
 0.0316
 (0.0278, 0.0367)

CRLB
 0.0306

Acc. at 5%
 83%
in a

oint
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Fig. 4. Histogram of the distribution of the estimated Ti/O ratio for 100

spectra together with the theoretical Gaussian prediction. The experimen-

tally obtained mean ¼ 0:359 and standard deviation ¼ 0:0316, while the

CRLB ¼ 0:0306. An excellent agreement with theory is obtained,

indicating a good description of the noise.
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Fig. 3. Experimental spectrum and the average model obtained from

fitting 100 spectra.
We see from the table how remarkably well the standard
deviation is predicted by the CRLB. The obtained ratio is
biased with respect to the expected 0.333, but this is a
matter of accuracy which will be discussed in a future
paper. In principle the theory only describes the expected
standard deviation but contains no indication on the
accuracy of the obtained results. Note also that the
standard deviation in this case is quite high (� 10%)
which is due to the rather noisy spectra. Clearly if one
would take only a single spectra to estimate the stoichio-
metry of this sample with such a low signal-to-noise ratio,
large errors are to be expected. The acceptance of 83% is a
little bit lower as the theoretical expected acceptance of
95%. This can have two origins: either the model is not
good enough, or the noise model is wrong. To discriminate
between these two options we fitted a power law back-
ground Að E

Estart
Þ
�r in a region of the spectrum behind the O

K-edge (588–680 eV). This fit resulted in the next table with
95% confidence levels between brackets:
A
 1891
 (1878,1904)

Stdev
 63
 (55,73)

CRLB
 66

r
 3.32
 (3.31,3.33)

Stdev
 0.066
 (0.058, 0.077)

CRLB
 0.071

Acc. at 5%
 94%
We see from this table that the noise model is quite
accurate in the sense that a model with 94% acceptance is
possible with standard deviation on the two parameters
being very close to the predicted CRLB. The fact that both
CRLB are higher than the real obtained standard devia-
tions can be seen as a statistical effect: the 95% confidence
intervals for 100 repeated experiments are given between
brackets.
This leads to the conclusion that the model must be the

origin of the slightly lower acceptance for the complete
model including the excitation edges. One of the weak
points of the fine structure component is the fact that it
does not take into account life-time broadening. Therefore
we need an extremely high number of parameters (65 and
45) to come close to an acceptable model while this high
density of points is only needed near the onset of the edges
because of life time broadening. Future work is needed to
design a fine structure component which takes this life time
effect into account by e.g. sampling on a quadratic mesh. If
we look at the distribution of the Ti/O ratio in Fig. 4 we see
how well the theoretical Gaussian curve describes the
observed results. In comparison with previous publications
[1,2], we see that including the correlation gives a much
better estimate of the standard deviation. The problem of
creating acceptable models still remains, although with the
use of the fine structure component [2] we come very close.
Another useful tool to study the noise in these spectra is

by creating a residual map. The residual map is calculated
as the difference between the average model (model
evaluated at the mean of the parameters ȳi for 100 spectra)
and the spectra. If the model is statistically correct then the
residual should be a pure noise signal which can then be
used to compare this noise with the expected behaviour of
the noise for a given detector. This is a consistency check of
the noise model from the data itself, but it can also reveal
problems with the model. The residual map is shown in
Fig. 5 and shows a smooth noisy behaviour as expected.
Only near the white lines of Ti, some outliers seem to exist
which can be attributed to energy drift. If the energy drifts
in comparison to the fixed average model, an error is made
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Fig. 5. Residual map for the 100 spectra calculated as the difference

between the average model and each experiment. This map should show

the noise if the model was a good description of the experiment and is

therefore a good tool to study whether this noise behaves as expected for a

given detector. If deviations exist they must either point to a bad model or

to a bad noise model.
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Fig. 6. Variance vs. mean calculated from the residual. We see that the

variance follows closely the expected linear behaviour with a slope give by

a previous measurement for this detector indicating that the model is quite

a good description of the experiments. Some outlier points exist which can

be attributed to energy drift. If the energy drifts, the model will not fit very

well especially near the sharp white line features of the TiL2;3 edge.
which cannot be attributed to noise. If we plot the variance
of the residual w.r.t. the mean we get Fig. 6. This plot
shows that most points lie close to the line varm ¼ Gvarx̄m,
obtained from previous measurements of the noise proper-
ties of the detector, with the exception of some outlier
points which were attributed to energy drift. This shows
that indeed the noise behaves as described by the noise
characterisation of the detector.
6. Conclusion

We have shown that correlated noise due to the non-
ideal detector can be characterised using automated scripts
which measure the noise power spectrum and the gain
factor, relating the variance of the noise for white
illumination with the mean number of counts in such a
spectrum. The scripts are available on the EELSMODEL
website within the new distribution [10].
The obtained noise power spectrum is also essential as an

input for a Wiener type deconvolution process where
deconvolution only is performed for those frequency
components where the signal-to-noise ratio is greater than
1. A detailed study describing this is currently being carried
out.
Knowing the noise power spectrum and the gain factor

we have established approximate ways of describing the
effect on a maximum likelihood fitting process. We showed
that under reasonable assumptions, the effect of the
correlated noise on the (co)variance estimates of the
parameters is negligible, while the gain factor correction
is essential. The model validation, using the likelihood ratio
test, is very sensitive to the correlated noise but its effect
can be approximated quite well by a scaling of the number
of independent pixels by a correlation factor C. This
correlation factor can be obtained from the experimental
noise power spectrum as the ratio of the total noise power,
if independent Poisson noise is assumed, over the experi-
mental total noise power. This corrects for the fact that
correlation reduces the amount of high-frequency noise
which would lead to an unrealistically high probability that
a certain experiment could have occurred for a given
model.
The approximate corrections were tested on a large set of

numerical experiments showing that the corrections work
extremely well even for spectra with very low signal-to-
noise ratios. Finally, the approach is tested on a set of
experimental SrTiO3 spectra showing that the corrections
are essential and lead to a realistic estimation of the
variance of the parameters and a useful indication for the
model acceptance tests.
The corrections have been included in the model-based

quantification program EELSMODEL and a new version
is available for download in Ref. [10]. Users can create
entries for the measured noise properties of their specific
detector making use of an automated script.
It is clear that not only for imaging purposes, but also

for quantitative EELS, the TEM community would profit
from the development of better detectors with a reduced
point spread function for signal as well as noise. But until
then, it will be necessary to include the effects of correlated
noise when applying model-based fitting techniques on
spectral as well as on image data.
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