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Background: about the Co-UDlabs Project 
Co-UDlabs is an EU-funded project aiming to integrate research and innovation activities in the field of Urban 
Drainage Systems (UDS) to address pressing public health, flood risks and environmental challenges. 

Bringing together 17 unique research facilities, Co-UDlabs offers training and free access to a wide range of high-
level scientific instruments, smart monitoring technologies and digital water analysis tools for advancing knowledge 
and innovation in UDS.  

Co-UDlabs aims to create an urban drainage large-scale facilities network to provide opportunities for monitoring 
water quality, UDS performance and smart and open data approaches.  

The main objective of the project is to provide a transnational multidisciplinary collaborative research infrastructure 
that will allow stakeholders, academic researchers, and innovators in the urban drainage water sector to come 
together, share ideas, co-produce project concepts and then benefit from access to top-class research 
infrastructures to develop, improve and demonstrate those concepts, thereby building a collaborative European 
Urban Drainage research and innovation community. 

The initiative will facilitate the uptake of innovation in traditional buried pipe systems and newer green-blue 
infrastructure, with a focus on increasing the understanding of asset deterioration and improving system resilience. 
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List of acronyms 
 

Acronym / Abbreviation Meaning / Full text 

CCTV Close circuit television 

DL Deep Learning 
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1. Executive summary 
The primary method for defect identification and classification is based around using CCTV to collect 
images and then these are used for subsequent analysis. In the later analysis images are normally 
manually inspected and defects are classified according to a standard classification. The defect 
classification methods used in European countries are different, but have a similar structure, which 
reflects their historical development and is described in EN13508:Part2. The current national defect 
classification schemes are generally complex involving a large number of defect codes. Considering 
the various defect classification codes across Europe the number of unique defect codes is now 
greater than 300. In contrast in Japan the defect coding system contains just 10 defect types. There 
are a number of academic studies and more recent companies that are developing data-driven 
classifiers to link observed defects with a defect classification code. These studies have shown some 
promise but have resulted in collection of large numbers of images. 
 
This milestone report describe the outcome of work to consider what knowledge could be gained 
from a more straightforward defect classification approach.    This report presents a deep-learning 
based framework for the automated detection of in-pipe defects in closed-circuit television (CCTV) 
sewer surveys. The framework utilizes the Ultralytics YOLO v8 model for image processing and defect 
detection. By eliminating the need for manual feature extraction, this approach simplifies the 
identification of defects that are challenging to extract features from, such as those found in sewer 
pipes. The report outlines the methodology, demonstration results, and provides recommendations 
for further work. All the source code is open access and has been developed to a standard to 
encourage other, especially non-specialists in small companies and utilities to try and investigate 
whether a more simplified defect classification scheme can provide the knowledge needed to 
enhance their management of buried sewer assets. All the code is publically available, with sample 
images and written software support to allow ease of access.  The team at Sheffield will continue to 
develop this open access approach to software development and encourage those that use the code 
and uploaded images to report on their findings.    
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2. Introduction 
In the water industry, the timely detection of in-pipe defects is crucial for maintaining efficient and 
reliable sewer systems. CCTV inspection is the most popular technique used to locate and identify 
individual defects, this data is then used to assess sewer condition. Decisions on sewer rehabilitation 
and replacement are often based on the condition data obtained from the analysis of CCTV images. 
About ten years ago studies in the Netherlands e.g. Dirksen et al. (2010) reported that the manual 
inspection of CCTV images could lead to two types of error. In the first defects were missed and in the 
second defects were not recorded accurately. Manual inspection also was the major cost element of 
sewer inspection. Dirkesen et al. (2010) also demonstrated that the introduction of a more complex 
sewer defect classification standard led to higher levels of defect mis-identification. 

There have been a number of studies on automated defect detection using classical computer vision 
methods such as colour thresholding and feature extraction. Recently, more advanced computer vision 
models have used deep learning (DL) without the need for a separate phase of feature extraction. For 
example, Myrans et al (2019) used a Random Forests based approach to identify defect types as 
specified in the UK’s sewer classification system. This approach classified the probability of a defect 
(type) in an image using a collection of RF algorithms trained on image data for specified defect types. 
The highest ranked defect was then assigned to that frame. Using case study data this approach was 
able to correctly identify different defect types from 86% for joints, to 20% for holes. It is clear that the 
approach’s reliability varied strongly with defect type. This work is continuing with the use of larger 
and larger image training sets.   

A different approach was used in this work. Firstly a simplified defect classification system was 
proposed and then an automated based image approach proposed. This approach was tested with 
data obtained from water utilities. This milestone report introduces an automated approach based on 
deep learning, which eliminates the need for manual feature extraction, making it particularly suitable 
for complex defect identification in sewer pipes. It also examines the potential for utilising simpler 
defect classification methods to assess whether a DL method combined with a simpler defect 
classification method could provide useful information to water utilities. 

The code and the underlying training and validation data are open source and available via github. The 
aim being to encourage others (non-specialists) to investigate the potential for using such an approach.   
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3. Approach 
The classification of in-pipe defects plays a crucial role in effectively addressing maintenance and 
management of sewer networks. These defects are categorized into five distinct classes in this report, 
arranged in descending order of importance, as outlined in Table 1. Each class encompasses several 
subclasses, which provide further granularity by considering factors such as the defect's position, size, 
or condition. A recent DWA survey described that "Intruding or defective connections" (27.3 %) 
followed by "Fissure” (25.7 %) and then displaced joints (18.9%) were the most frequent type of 
structural pipe damage. Blockage was the most common operational defect.  The simpler classification 
was determined based on evidence such as this and should reflect the impact and source of each 
defect, Table 1.  

• Blockage: common operational defect that reduces flow capacity and increases flood risk. 
• Intrusion: artefact that reduces flow capacity and increases flood risk 
• Joint: physical artefact of many sewer pipes 
• Crack: artefact showing evidence of minor structural damage 
• Sever damage: a group of defects that indicate the loss of structural integrity 

These classification types were used to define images that were used to train the developed DL model.  

To train the deep learning (DL) model for automated defect detection, a set of labels, as presented in 
Table 2, is employed to annotate the CCTV images. These labels, comprising eight categories, are not 
directly tied to the defect classes or subclasses but have been formulated based on the characteristics 
observed during DL image analysis. The DL model relies primarily on shape and colour attributes to 
accurately recognize and classify the objects (defects) within the images. In order to mitigate the 
influence of colour, which does not significantly contribute to the defect classification, a preprocessing 
step is performed wherein the images are converted to grayscale before being utilized for model 
training. 

Regarding shape analysis, the DL model demonstrates an ability to identify objects with similar shapes, 
regardless of their dimensions. However, if there are significant differences in shape, they are 
considered distinct objects. For instance, within the defect classification outlined in Table 1, intrusions 
are classified as a single class. However, it should be noted that an intrusion can manifest as either a 
pipe or a tree root, exhibiting entirely different shapes. To account for this distinction, the labelling 
system within the DL framework assigns intrusions to two separate categories, namely 'ObsPlc' and 
'ObsRot', representing pipes and tree roots, respectively, as depicted in Table 2. 

Conversely, certain defects, such as cracks, encompass multiple subclasses within the defect 
classification provided in Table 1. However, for DL analysis, only a single label, denoted as 'Crk', is 
defined. When the DL model successfully detects a crack, it becomes necessary to employ additional 
specialized models to accurately quantify the number of cracks, measure their sizes, and determine 
their positions within the image. This subsequent analysis enables the mapping of detected cracks to 
their respective subclasses within the defect classification scheme. For other defect types, also, such 
post analyses are necessary to be able to map the detected defects to the classes in Table 1. 
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Table 1. Classifications of sewer in-pipe defects. 

No. Class Subclasses 

1 
Blockage 
(deposits / 
attached deposits) 

Small 

Medium 

Large 

2 

Intrusion 
(defective 
connection, pipe, 
root) 

Small 
Upper part of pipe section 
Lower part of pipe section 

Medium 
Upper part of pipe section 
Lower part of pipe section 

Large 
Upper part of pipe section 
Lower part of pipe section 

3 Joint 
Undamaged 

Damaged 

4 Crack 

Longitudinal 

Small 
Dangerous 
position 
Not dangerous 

Medium 
Dangerous 
position 
Not dangerous 

Large 
Dangerous 
position 
Not dangerous 

Circumferential 

Small 

Medium 

Large 

5 Severe damage 

Hole 

Broken / fractured 

Collapsed 
 

 

 

 

 

 

 



CO-UDlabs – EU-H2020 Grant Agreement N° 101008626 
 

10/17 

 

 

 

Table 2. Labels used for DL model training. 

Label Label Name Map to classifications in Table 1. 

Obstacle – Block ObsPlc Measure size of obstacle after DL 
detection 

Obstacle – Tree Root ObsRot Measure size of obstacle after DL 
detection 

Obstacle – Sediment 
Deposition 

ObsDep Measure size of obstacle after DL 
detection 

Joint Jnt Measure thickness of joint after 
DL detection 

Crack Crk After DL detection, count number 
of cracks in the image and 
measure size and position of 
them 

Damage – Hole DmgSev Directly mapped 

Damage – Severe 
(Broken, Collapsed) 

DmgSev Measure / compare cross-section 
of pipe after DL detection  

 

Condition assessment approaches, particularly in the EU have become more complex to apply 
especially by including (i) estimates of likelihood and scale of consequence and occasionally 
intervention costs. The original idea of condition grades was to aggregate complex visual observations 
of in-pipe defects into a single numerical “aggregated” grade. Current inspection capabilities (CCTV, 
with mainly manual interpretation) mean that all assets cannot be inspected in a timely fashion. This 
lack of data and knowledge has led to the need to develop deterioration models. Given the lack of 
repeat defect inspection data a knowledge gap is how individual in-pipe defects develop. Currently 
asset databases have a relatively small number of defect observations taken at a relatively low 
frequency. So there is little empirical evidence as to how defects develop. Some defects, e.g. joint 
displacement may develop slowly and continuously before resulting in sudden failure. Others such as 
a crack may be created and then suddenly fail as local stresses are concentrated by this type of defect. 
There is a need to collect data on pipe defects that make of a large proportion of in-pipe defects and 
also have a high impact when they fail  
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4. Methodology 
 To enable the automated defect detection, the Ultralytics YOLO v8 framework is employed 

(available at https://github.com/ultralytics/ultralytics, accessed on 13/06/2023). This robust system 

processes images and facilitates the training of models that can effectively identify and locate 

defects. The project GitHub repository (https://github.com/Co-UDlabs/sewer_defects, accessed on 

13/06/2023) provides a comprehensive guide, complete with instructions on data preparation, image 

labelling, model training, and usage, along with the relevant source codes. 

For image labelling, YoloLabel v1.2.1 (accessible at https://github.com/developer0hye/Yolo_Label, 

accessed on 13/06/2023) is utilized. The process of labelling is demonstrated in the accompanying 

video, which can be found at the following link: 

https://drive.google.com/file/d/1CTeDLK8DkOE8SMFm0joFSnadAJ92aY35/view?usp=drive_link 

(accessed on 13/06/2023). In this video, instances of defects are easily labelled using a rectangular 

bounding box defined by four vertices, ensuring accurate annotation. 

Within the repository, two models specifically cater to camera calibration and object size estimation. 

These models, being further developed for sewer pipes, serve as valuable resources for mapping the 

detected defects to the classifications defined in Table 1.  

To showcase the functionality of the three models, several examples are provided at 

https://github.com/Co-UDlabs/sewer_defects/tree/coudlabs/coudlabs/examples (accessed on 

13/06/2023). Additionally, exemplar input data necessary for running these examples are 

conveniently located in a Google Folder, accessible through the following link: 

https://drive.google.com/drive/u/1/folders/1BoLSWbCj6WimaW4-Wca3CPkpgW5HJUqH (accessed 

on 13/06/2023). 

By leveraging the capabilities of the Ultralytics YOLO v8 framework, coupled with the provided 

guidelines, image labelling tools, and pre-prepared models, the detection of defects within unseen 

pipes can be automated with precision and efficiency. These resources contribute to advancing defect 

analysis and maintenance practices in sewer systems, ultimately leading to more frequent and possibly 

better quality data to understand defect development. Another advantage of a simpler classification 

approach is that it can better focus the manual inspection of existing CCTV data in identifying the 

location of all defects, their simple grouping and so allow inspectors to focus on what they consider to 

be key defects. 

  

https://github.com/ultralytics/ultralytics
https://github.com/Co-UDlabs/sewer_defects
https://github.com/developer0hye/Yolo_Label
https://drive.google.com/file/d/1CTeDLK8DkOE8SMFm0joFSnadAJ92aY35/view?usp=drive_link
https://github.com/Co-UDlabs/sewer_defects/tree/coudlabs/coudlabs/examples
https://drive.google.com/drive/u/1/folders/1BoLSWbCj6WimaW4-Wca3CPkpgW5HJUqH
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5. Preliminary Results 
The dataset shared via the aforementioned Google Drive link serves as a limited-scale demonstration 
of the model's functionality. It should be noted that the labelled images within the dataset are free 
from any copyright restrictions and can be utilized without constraint. In order to train our model, this 
dataset was combined with a portion of the publicly available Sewer-ML Dataset1 (not included in the 
Google Drive folder). A total of 1,577 images captured from sewer pipes were annotated to identify 
defects. The distribution of incident occurrences for each label specified in Table 2 is graphically 
represented in Figure 1. It is worth mentioning that the dataset does not contain any instances of pipe 
corrosion, hence the additional 'Cor' label has no corresponding data within the current dataset. Figure 
2 provides a visual depiction of the positional coordinates and dimensions of the bounding boxes 
encompassing the labelled defects. 

 
Figure 1. The number of instances of the labelled defects in the training dataset. 

 

 
Figure 2. Position of the centre of the bounding boxes and their width and height for all the defects 

in the pipes. 

                                                 
 
1 Haurum and Moeslund (2021) Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and 
Benchmark. Available at https://vap.aau.dk/sewer-ml/ (accessed on 13/06/2023) 
 

https://vap.aau.dk/sewer-ml/
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The dataset was partitioned into three distinct subsets for the purposes of training, validation, and 
testing, with proportions of 75%, 15%, and 15%, respectively. Figure 3 presents the Precision-Recall 
curve obtained from training the model using 75% of the data, allowing for an analysis of the model's 
accuracy across different defect types. 

In Figure 4, a selection of labelled images employed for training and validation is showcased, while 
Figure 5 demonstrates the model's corresponding predictions on this dataset. The accuracy metrics for 
the training and validation phases are calculated based on the disparities between the positional 
coordinates and sizes of the bounding boxes employed during training and those predicted during 
validation. 

 
Figure 3. Precision-Recall of the model training. This is based on still images. 
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Figure 4. Labels in some of the images used to validate the model. 

 

 
Figure 5. Predictions by the model of a part of the validation set shown in Figure 4. 

 
Subsequently, the trained model was utilized to predict and detect defects within a set of previously 
unseen images, constituting 15% of the overall data. Figure 6 provides several examples showcasing 
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the model's predictions, with the numerical values displayed above the respective bounding boxes 
indicating the confidence level of each detection, which ranges from 0 to 1. 

 

 

 

 
Figure 6. A few examples of the results of the defect detections using the trained model. 

When employing the model for defect detection in videos, as opposed to static images, it becomes 
crucial to establish a methodology for enhancing the confidence of predictions based on the sequential 
nature of image frames. If the model identifies a specific defect across multiple consecutive frames, it 
signifies a heightened level of confidence in the prediction. To achieve this, predetermined thresholds 
must be established concerning the number of successive frames and the minimum prediction 
confidence required. For instance, if the same defect is detected in 30 consecutive frames with a 
confidence level surpassing 0.5, it is highly probable that an actual defect exists, thus warranting 
further inspection. 
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6. Further Developments 
The team at Sheffield are continuing to develop the work in the following ways:  

 Collect more data of cracks and damages to enhance the model's training and performance. 

 Review and refine the definitions, as well as clarify the distinctions between different 

obstacle types, i.e. ObsPlc (block obstacle), ObsRot (tree root), and ObsDep (sediment 

deposition). 

 Explore the utilization of different versions of pre-trained YOLO models, which can be found 

on the following page: https://docs.ultralytics.com/models/yolov8/#supported-tasks 

(accessed on 13/06/2023). 

 Fine-tune the hyperparameters of the YOLO model specifically tailored to the requirements 

of the current application. Detailed information on this process can be found here: 

https://docs.ultralytics.com/usage/cfg/#train (accessed on 13/06/2023). 

 Evaluate the effectiveness of image filtering techniques during the preprocessing step of the 

Defect Detection Model. This may involve experiments with conversion to greyscale and the 

implementation of noise reduction methods. 

 Enhance the Defect Size Estimation model, ensuring improved accuracy in real-world 

scenarios. 

7. Conclusions 
 
An open access github site has been developed that contains well-structured and supported code to 
analyze  CCTV sewer inspection images. The code support and open license is to ensure that others 
can use, investigate and develop the code as they wish. 

A simplified defect classification was proposed that grouped defects on their impact rather than their 
visual appearance. 

The deep learning-based framework presented in this report offers a promising solution for the 
automated detection of in-pipe defects in CCTV sewer surveys. By leveraging the Ultralytics YOLO v8 
model and eliminating the need for manual feature extraction, this approach simplifies and enhances 
the accuracy of defect identification.  

The preliminary results demonstrate the effectiveness of the framework, and further development 
steps are outlined to improve its performance and expand its capabilities. 

 
 
 
 
Please note that all the links provided in this report are subject to availability and may change over 
time. Although this is not the intention of the authors. If changes are made to these links they will be 
communicated through the CoUD_Labs project website. 

https://docs.ultralytics.com/models/yolov8/#supported-tasks
https://docs.ultralytics.com/usage/cfg/#train
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